Spectra of computable models of strongly minimal disintegrated theories

Steffen Lempp, University of Wisconsin-Madison

http://www.math.wisc.edu/~lempp

(Joint work with Uri Andrews)

October 12, 2016
Throughout this talk, we work in a countable (computable) relational first-order language \mathcal{L}.
Throughout this talk, we work in a countable (computable) relational first-order language \mathcal{L}.

Recall that an \mathcal{L}-theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is \aleph_1-categorical.
Throughout this talk, we work in a countable (computable) relational first-order language \mathcal{L}.

Recall that an \mathcal{L}-theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is \aleph_1-categorical.

A strongly minimal theory T is *disintegrated* if for all $\mathcal{M} \models T$ and all $A \subseteq \mathcal{M}$,

$$\text{acl}(A) = \bigcup_{a \in A} \text{acl} \{a\}$$
Throughout this talk, we work in a countable (computable) relational first-order language L.

Recall that an L-theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is \aleph_1-categorical.

A strongly minimal theory T is *disintegrated* if for all $M \models T$ and all $A \subseteq M$,

$$acl(A) = \bigcup_{a \in A} acl(\{a\})$$

Zil’ber’s Conjecture (1970’s) stated that any strong minimal theory is either disintegrated, essentially that of a vector space, or bi-interpretable with an algebraically closed field. (We call such theories *trichotomous*.)*
Throughout this talk, we work in a countable (computable) relational first-order language \mathcal{L}.

Recall that an \mathcal{L}-theory is strongly minimal if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is \aleph_1-categorical.

A strongly minimal theory T is disintegrated if for all $\mathcal{M} \models T$ and all $A \subseteq M$,

$$\text{acl}(A) = \bigcup_{a \in A} \text{acl}\{a\}$$

Zil’ber’s Conjecture (1970’s) stated that any strong minimal theory is either disintegrated, essentially that of a vector space, or bi-interpretable with an algebraically closed field. (We call such theories trichotomous.)

The following theorem will allow us to define spectra:

Theorem (Baldwin/Lachlan 1971)

The countable models of any \aleph_1-categorical but not totally categorical theory T in any countable language form an elementary chain

$$M_0 \prec M_1 \prec \ldots \prec M_\omega$$

where M_0 is the prime model and M_ω is the countable saturated model of T.

Definition

The spectrum of computable models of an \aleph_1-categorical but not totally categorical theory T in any computable language is

$$SCM(T) = \{\alpha \leq \omega | M_\alpha \text{ is computable}\}.$$
The following theorem will allow us to define spectra:

Theorem (Baldwin/Lachlan 1971)

The countable models of any \aleph_1-categorical but not totally categorical theory T in any countable language form an elementary chain

$$M_0 \prec M_1 \prec \ldots \prec M_\omega$$

where M_0 is the prime model and M_ω is the countable saturated model of T.

Definition

The *spectrum of computable models* of an \aleph_1-categorical but not totally categorical theory T in any computable language is

$$SCM(T) = \{\alpha \leq \omega \mid M_\alpha \text{ is computable}\}.$$
The following theorem will allow us to define spectra:

Theorem (Baldwin/Lachlan 1971)

The countable models of any \aleph_1-categorical but not totally categorical theory T in any countable language form an elementary chain

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \ldots \prec \mathcal{M}_\omega$$

where \mathcal{M}_0 is the prime model and \mathcal{M}_ω is the countable saturated model of T.

Definition

The *spectrum of computable models* of an \aleph_1-categorical but not totally categorical theory T in any computable language is

$$\text{SCM}(T) = \{\alpha \leq \omega \mid \mathcal{M}_\alpha \text{ is computable}\}.$$

Warning: \mathcal{M}_α may have dimension $k + \alpha$ for fixed $k > 0$.

Steffen Lempp, University of Wisconsin-Madison
We first present all previously known results about upper bounds for spectra:
We first present all previously known results about upper bounds for spectra:

Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any \(\aleph_1 \)-categorical) theory is a \(\Sigma^0_3(\emptyset(\omega)) \)-subset of \([0, \omega]\).
We first present all previously known results about upper bounds for spectra:

Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any \aleph_1-categorical) theory is a $\Sigma^0_3(\emptyset^\omega)$-subset of $[0, \omega]$. If T is also model complete, its spectrum is a Σ^0_4-set.
We first present all previously known results about upper bounds for spectra:

Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any \(\aleph_1\)-categorical) theory is a \(\Sigma^0_3(\emptyset^\omega)\)-subset of \([0, \omega]\). If \(T\) is also model complete, its spectrum is a \(\Sigma^0_4\)-set.

Theorem (Goncharov/Harizanov/Laskowski/Lempp/McCoy 2003)

A strongly minimal disintegrated theory \(T\) is model complete in the language \(\mathcal{L}_M\) (expanded by constants for a model \(M\) of \(T\)).
We first present all previously known results about upper bounds for spectra:

Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any \aleph_1-categorical) theory is a $\Sigma^0_3(\emptyset^{(\omega)})$-subset of $[0, \omega]$. If T is also model complete, its spectrum is a Σ^0_4-set.

Theorem (Goncharov/Harizanov/Laskowski/Lempp/McCoy 2003)

A strongly minimal disintegrated theory T is model complete in the language \mathcal{L}_M (expanded by constants for a model M of T).

Corollary

For any strongly minimal disintegrated theory T, the spectrum of T is a Σ^0_5-set.
Theorem

The following are all previously known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Goncharov 1978) and $[0, n]$ ($n \in \omega$, Kudaibergenov 1980)
- $\{\omega\}$ (Hirschfeldt/Khoussainov/Semukhin 2006)
- $\{0, \omega\}$ (Andrews 2011, the first known non-interval!)
- All spectra except for the last are for a strongly minimal disintegrated theory; the last is by a Hrushovski construction.
The following are all previously known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Goncharov 1978) and $[0, n]$ ($n \in \omega$, Kudaibergenov 1980)
- ω and $[1, \omega]$ (Khoussainov/Nies/Shore 1997)
- $\{1\}$ (Nies 1999) and $[1, \alpha]$ ($\alpha \leq \omega$, Hirschfeldt/Nies 1999)

All spectra except for the last are for a strongly minimal disintegrated theory; the last is by a Hrushovski construction.
Theorem

The following are all previously known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Goncharov 1978) and $[0, n]$ ($n \in \omega$, Kudaibergenov 1980)
- ω and $[1, \omega]$ (Khoussainov/Nies/Shore 1997)
- $\{1\}$ (Nies 1999) and $[1, \alpha]$ ($\alpha \leq \omega$, Hirschfeldt/Nies 1999)
- $\{\omega\}$ (Hirschfeldt/Khoussainov/Semukhin 2006)
Theorem

The following are all previously known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Goncharov 1978) and $[0, n]$ ($n \in \omega$, Kudaibergenov 1980)
- ω and $[1, \omega]$ (Khoussainov/Nies/Shore 1997)
- $\{1\}$ (Nies 1999) and $[1, \alpha]$ ($\alpha \leq \omega$, Hirschfeldt/Nies 1999)
- $\{\omega\}$ (Hirschfeldt/Khoussainov/Semukhin 2006)
- $\{0, \omega\}$ (Andrews 2011, the first known non-interval!)
Theorem

The following are all previously known spectra of computable models of strongly minimal (indeed, all \(\aleph_1 \)-categorical) theories:

- \(\emptyset \) and \([0, \omega]\) (trivial)
- \(\{0\} \) (Goncharov 1978) and \([0, n]\) (\(n \in \omega\), Kudaibergenov 1980)
- \(\omega \) and \([1, \omega]\) (Khoussainov/Nies/Shore 1997)
- \(\{1\} \) (Nies 1999) and \([1, \alpha]\) (\(\alpha \leq \omega\), Hirschfeldt/Nies 1999)
- \(\{\omega\} \) (Hirschfeldt/Khoussainov/Semukhin 2006)
- \(\{0, \omega\} \) (Andrews 2011, the first known non-interval!)

All spectra except for the last are for a strongly minimal disintegrated theory; the last is by a Hrushovski construction.
The following are all known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories in finite languages:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Herwig/Lempp/Ziegler 1999)
Theorem

The following are all known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories in finite languages:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Herwig/Lempp/Ziegler 1999)
- $[0, \alpha)$ ($\alpha \leq \omega$) and $\{\omega\}$ (Andrews 2011)
Theorem

The following are all known spectra of computable models of strongly minimal (indeed, all \aleph_1-categorical) theories in finite languages:

- \emptyset and $[0, \omega]$ (trivial)
- $\{0\}$ (Herwig/Lempp/Ziegler 1999)
- $[0, \alpha)$ ($\alpha \leq \omega$) and $\{\omega\}$ (Andrews 2011)

All spectra except for the last bullet are for a strongly minimal disintegrated theory; the last bullet is by Hrushovski constructions.
For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:
For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language \mathcal{L}, then the possible spectra of computable models are exactly \emptyset, $[0, \omega]$, and $\{0\}$.

This shows that the Herwig/Lempp/Ziegler model was "essentially" the only way to construct a nontrivial spectrum for a strongly minimal disintegrated theory in a finite language.

In addition to disintegrated theories, the result of Andrews/Medvedev also extends to locally modular expansions of a group and, by Poizat (1988), to field-like theories, i.e., to "most" trichotomous theories.
For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language \mathcal{L}, then the possible spectra of computable models are exactly \emptyset, $[0, \omega]$, and $\{0\}$.

This shows that the Herwig/Lempp/Ziegler model was “essentially” the only way to construct a nontrivial spectrum for a strongly minimal disintegrated theory in a finite language.
For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language \mathcal{L}, then the possible spectra of computable models are exactly \emptyset, $[0, \omega]$, and $\{0\}$.

This shows that the Herwig/Lempp/Ziegler model was "essentially" the only way to construct a nontrivial spectrum for a strongly minimal disintegrated theory in a finite language.

In addition to disintegrated theories, the result of Andrews/Medvedev also extends to locally modular expansions of a group and, by Poizat (1988), to field-like theories, i.e., to "most" trichotomous theories.
For infinite languages, the situation is more difficult.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) *binary relational* language \mathcal{L}, then the possible spectra of computable models are exactly the following seven sets: \emptyset, $[0, \omega]$, $\{0\}$, $\{1\}$, $\{0, 1\}$, $\{\omega\}$, and $[1, \omega]$.
For infinite languages, the situation is more difficult.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) binary relational language \mathcal{L}, then the possible spectra of computable models are exactly the following seven sets: \emptyset, $[0,\omega]$, $\{0\}$, $\{1\}$, $\{0,1\}$, $\{\omega\}$, and $[1,\omega]$.

Our recent work has been motivated by the following sweeping

Conjecture

If T is a strongly minimal disintegrated theory in a (possibly infinite) relational language \mathcal{L} of arity at most n, then there are only finitely many possible spectra of computable models.
For infinite languages, the situation is more difficult.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) binary relational language \mathcal{L}, then the possible spectra of computable models are exactly the following seven sets: \emptyset, $[0, \omega]$, $\{0\}$, $\{1\}$, $\{0, 1\}$, $\{\omega\}$, and $[1, \omega]$.

Our recent work has been motivated by the following sweeping

Conjecture

If T is a strongly minimal disintegrated theory in a (possibly infinite) relational language \mathcal{L} of arity at most n, then there are only finitely many possible spectra of computable models.

The following constitutes progress toward, and related to, this conjecture.
In a strongly minimal model \mathcal{M}, a relation $R \subseteq M^n$

- *has (Morley) rank* 0 if R is finite (and nonempty);
- *has (Morley) rank* at most 1 if for any $\bar{a} \in M^n$ with $\mathcal{M} \models R(\bar{a})$, $\dim(\text{acl}(\bar{a}))$ is at most 1, i.e., \bar{a} does not contain two mutually generic elements.
In a strongly minimal model \mathcal{M}, a relation $R \subseteq M^n$

- has (Morley) rank 0 if R is finite (and nonempty);
- has (Morley) rank at most 1 if for any $\bar{a} \in M^n$ with $\mathcal{M} \models R(\bar{a})$, $\dim(\acl(\bar{a}))$ is at most 1, i.e., \bar{a} does not contain two mutually generic elements.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language \mathcal{L} of bounded arity such that in each model \mathcal{M} of T, any relation $R^\mathcal{M}$ has rank at most 1, then the possible spectra of computable models are exactly the following nine or ten sets: \emptyset, $[0, \omega]$, $\{0\}$, $\{1\}$, $\{0, 1\}$, $\{\omega\}$, $[1, \omega]$, $\{0, \omega\}$, and $\{0, 1, \omega\}$, and possibly $\{1, \omega\}$.
In a strongly minimal model \mathcal{M}, a relation $R \subseteq M^n$

- has (Morley) rank 0 if R is finite (and nonempty);
- has (Morley) rank at most 1 if for any $\bar{a} \in M^n$ with $\mathcal{M} \models R(\bar{a})$, $\dim(\acl(\bar{a}))$ is at most 1, i.e., \bar{a} does not contain two mutually generic elements.

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language L of bounded arity such that in each model \mathcal{M} of T, any relation $R^\mathcal{M}$ has rank at most 1, then the possible spectra of computable models are exactly the following nine or ten sets: \emptyset, $[0, \omega]$, $\{0\}$, $\{1\}$, $\{0, 1\}$, $\{\omega\}$, $[1, \omega]$, $\{0, \omega\}$, and $\{0, 1, \omega\}$, and possibly $\{1, \omega\}$.

Among the two additional spectra, $\{0, \omega\}$ was not known before to be the spectrum of a disintegrated theory; and $\{0, 1, \omega\}$ was not even known to be a spectrum at all.
The assumption of bounded arity in the previous theorem was crucial since we also have:

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language \mathcal{L} (of any arity) such that in each model \mathcal{M} of T, any relation $R^\mathcal{M}$ has rank at most 1, then the possible spectra of computable models are exactly the nine or ten spectra from the previous theorem as well as the sets $[0, \alpha)$ and $[0, \alpha) \cup \{\omega\}$ for all $\alpha \leq \omega$.
With a trick, we can “almost” reduce the ternary case to the rank-1 case and obtain the following

Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a ternary relational language \mathcal{L}, then there are at least nine and at most eighteen possible spectra of computable models:

For any spectrum S, $[3, \omega) \cap S \neq \emptyset$ implies $[1, \omega] \subseteq S$.
Step 1: Reduce to rank 1:

Binary \mathcal{L}: If M_α for some $\alpha \geq 2$ is computable, then fix two mutually generic $a, b \in M_\alpha$.
Step 1: Reduce to rank 1:

Binary \mathcal{L}: If \mathcal{M}_α for some $\alpha \geq 2$ is computable, then fix two mutually generic $a, b \in M_\alpha$. Now $R^{\mathcal{M}_\alpha}$ has rank 2 iff $\mathcal{M}_\alpha \models R(a, b)$, so in that case we replace R by $\neg R$ (which is at most rank 1).
Step 1: Reduce to rank 1:

Binary \(\mathcal{L} \): If \(M_\alpha \) for some \(\alpha \geq 2 \) is computable, then fix two mutually generic \(a, b \in M_\alpha \).

Now \(R^{M_\alpha} \) has rank 2 iff \(M_\alpha \models R(a, b) \), so in that case we replace \(R \) by \(\neg R \) (which is at most rank 1).

Ternary \(\mathcal{L} \): If \(M_\alpha \) for some \(\alpha \geq 3 \) is computable, then fix three mutually generic \(a, b, c \in M_\alpha \).

First reduce to rank at most 2 as in the binary case.
Step 1: Reduce to rank 1:

Binary \mathcal{L}: If \mathcal{M}_α for some $\alpha \geq 2$ is computable, then fix two mutually generic $a, b \in \mathcal{M}_\alpha$. Now $R^{\mathcal{M}_\alpha}$ has rank 2 iff $\mathcal{M}_\alpha \models R(a, b)$, so in that case we replace R by $\neg R$ (which is at most rank 1).

Ternary \mathcal{L}: If \mathcal{M}_α for some $\alpha \geq 3$ is computable, then fix three mutually generic $a, b, c \in \mathcal{M}_\alpha$. First reduce to rank at most 2 as in the binary case. Then $\mathcal{M}_\alpha \models \exists^\infty w R(w, y, z)$ iff at least two of $\mathcal{M}_\alpha \models R(a, y, z)$, $\mathcal{M}_\alpha \models R(b, y, z)$, and $\mathcal{M}_\alpha \models R(c, y, z)$ hold,
Step 1: Reduce to rank 1:

*Binary $L\!$: If M_α for some $\alpha \geq 2$ is computable, then fix two mutually generic $a, b \in M_\alpha$. Now R^{M_α} has rank 2 iff $M_\alpha \models R(a, b)$, so in that case we replace R by $\neg R$ (which is at most rank 1).

*Ternary $L\!$: If M_α for some $\alpha \geq 3$ is computable, then fix three mutually generic $a, b, c \in M_\alpha$. First reduce to rank at most 2 as in the binary case. Then $M_\alpha \models \exists^\infty w \ R(w, y, z)$ iff at least two of $M_\alpha \models R(a, y, z)$, $M_\alpha \models R(b, y, z)$, and $M_\alpha \models R(c, y, z)$ hold, so this is computable (as are $\exists^\infty w \ R(x, w, z)$, $\exists^\infty w \ R(x, y, w)$).
Step 1: Reduce to rank 1:

Binary L: If M_α for some $\alpha \geq 2$ is computable, then fix two mutually generic $a, b \in M_\alpha$.

Now R^{M_α} has rank 2 iff $M_\alpha \models R(a, b)$, so in that case we replace R by $\neg R$ (which is at most rank 1).

Ternary L: If M_α for some $\alpha \geq 3$ is computable, then fix three mutually generic $a, b, c \in M_\alpha$.

First reduce to rank at most 2 as in the binary case. Then $M_\alpha \models \exists^\infty w R(w, y, z)$ iff at least two of $M_\alpha \models R(a, y, z)$, $M_\alpha \models R(b, y, z)$, and $M_\alpha \models R(c, y, z)$ hold, so this is computable (as are $\exists^\infty w R(x, w, z)$, $\exists^\infty w R(x, y, w)$).

Now all of $\exists^\infty w R(w, y, z)$, $\exists^\infty w R(x, w, z)$, $\exists^\infty w R(x, y, w)$, $R(x, y, z) \setminus [\exists^\infty w R(w, y, z) \lor \exists^\infty w R(x, w, z) \lor \exists^\infty w R(x, y, w)]$, $[\exists^\infty w R(w, y, z) \lor \exists^\infty w R(x, w, z) \lor \exists^\infty w R(x, y, w)] \setminus R(x, y, z)$ have rank at most 1 and are effectively interdefinable with $R(x, y, z)$.
Step 2: Going “down”, easy case:
Step 2: Going “down”, easy case:

For a basis B of a strongly minimal disintegrated model \mathcal{M}_α, we have

$$M_\alpha = acl(\emptyset) \sqcup \bigsqcup_{b \in B} iacl(b)$$

where all $iacl(b)$ are pairwise isomorphic.
Step 2: Going “down”, easy case:

For a basis B of a strongly minimal disintegrated model \mathcal{M}_α, we have

$$M_\alpha = \text{acl}(\emptyset) \sqcup \bigsqcup_{b \in B} \text{iacl}(b)$$

where all $\text{iacl}(b)$ are pairwise isomorphic.

Suppose

- $\mathcal{M}_\beta \subset \mathcal{M}_\alpha$ for $\beta < \alpha \leq \omega$,
- \mathcal{M}_α is a computable model,
- M_β is a Δ^0_2-subset of M_α, and
- M_β contains an infinite Σ^0_1-subset S.

Then \mathcal{M}_β has a computable copy:
Step 2: Going “down”, easy case:
For a basis B of a strongly minimal disintegrated model M_α, we have

$$M_\alpha = acl(\emptyset) \sqcup \bigsqcup_{b \in B} iacl(b)$$

where all $iacl(b)$ are pairwise isomorphic.

Suppose

- $M_\beta \subset M_\alpha$ for $\beta < \alpha \leq \omega$,
- M_α is a computable model,
- M_β is a Δ^0_2-subset of M_α, and
- M_β contains an infinite Σ^0_1-subset S.

Then M_β has a computable copy:
Let $\dim(M_\beta) = k + \beta$, fix $k + \beta$ many mutually generics \bar{a} in M_α and construct $acl(\bar{a})$, “discarding mistakes” into S.
Step 3: Complexity of $\text{acl}(\emptyset)$ and $\text{iacl}(a)$:

If all relations in M_α are at most rank 1, then both $\text{acl}(\emptyset)$ and $\text{iacl}(a)$ (for every generic $a \in M_\alpha$) are Σ_0^2-subsets of M_α (nonuniformly in a); so they are Δ_0^2-subsets if $\alpha < \omega$.

Proof: Define the n-neighborhood $Nbh_n(a)$ of $a \in M_\alpha$ by recursion:

$Nbh_0(a) = \{a\}$

$Nbh_{n+1}(a) = \{b \in M_\alpha | \exists c \in Nbh_n(a) [c, b \text{ directly connected}]\}$

where c and b are "directly connected" if the binary projection of an m-ary relation $R \in L$ holds (or fails) between c and b but not between c and cofinitely many elements of M_α, nor between b and cofinitely many elements of M_α.

Then $0'$ can compute canonical indices for $Nbh_n(a)$ (uniformly in n but nonuniformly in a).
Step 3: Complexity of $\text{acl}(\emptyset)$ and $\text{iacl}(a)$:

If all relations in \mathcal{M}_α are at most rank 1, then both $\text{acl}(\emptyset)$ and $\text{iacl}(a)$ (for every generic $a \in \mathcal{M}_\alpha$) are Σ^0_2-subsets of \mathcal{M}_α (nonuniformly in a); so they are Δ^0_2-subsets if $\alpha < \omega$.
Step 3: Complexity of \(\text{acl}(\emptyset) \) and \(\text{iacl}(a) \):

If all relations in \(M_\alpha \) are at most rank 1, then both \(\text{acl}(\emptyset) \) and \(\text{iacl}(a) \) (for every generic \(a \in M_\alpha \)) are \(\Sigma^0_2 \)-subsets of \(M_\alpha \) (nonuniformly in \(a \)); so they are \(\Delta^0_2 \)-subsets if \(\alpha < \omega \).

Proof:
Define the \(n \)-neighborhood \(\text{Nbh}_n(a) \) of \(a \in M_\alpha \) by recursion:

\[
\text{Nbh}_0(a) = \{a\}
\]
\[
\text{Nbh}_{n+1}(a) = \{b \in M_\alpha \mid \exists c \in \text{Nbh}_n(a) [c, b \text{ “directly connected”}]\}
\]

where \(c \) and \(b \) are “directly connected” if the binary projection of an \(m \)-ary relation \(R \in L \) holds (or fails) between \(c \) and \(b \) but not between \(c \) and cofinitely many elements of \(M_\alpha \), nor between \(b \) and cofinitely many elements of \(M_\alpha \).
Step 3: Complexity of $\text{acl}(\emptyset)$ and $\text{iacl}(a)$:

If all relations in \mathcal{M}_α are at most rank 1, then both $\text{acl}(\emptyset)$ and $\text{iacl}(a)$ (for every generic $a \in \mathcal{M}_\alpha$) are Σ^0_2-subsets of \mathcal{M}_α (nonuniformly in a); so they are Δ^0_2-subsets if $\alpha < \omega$.

Proof:
Define the n-neighborhood $\text{Nbh}_n(a)$ of $a \in \mathcal{M}_\alpha$ by recursion:

$$\text{Nbh}_0(a) = \{a\}$$
$$\text{Nbh}_{n+1}(a) = \{b \in \mathcal{M}_\alpha \mid \exists c \in \text{Nbh}_n(a) [c, b \text{ “directly connected”}]\}$$

where c and b are “directly connected” if the binary projection of an m-ary relation $R \in \mathcal{L}$ holds (or fails) between c and b but not between c and cofinitely many elements of \mathcal{M}_α, nor between b and cofinitely many elements of \mathcal{M}_α.

Then $0'$ can compute canonical indices for $\text{Nbh}_n(a)$ (uniformly in n but nonuniformly in a).
Step 4: “Down”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and $k \in \text{SCM}(T) \cap [2, \omega)$, then $k - 1 \in \text{SCM}(T)$:
Step 4: “Down”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and $k \in \text{SCM}(T) \cap [2, \omega)$, then $k - 1 \in \text{SCM}(T)$:

Assume \mathcal{L} is “closed under permutation of variables”. Define the set of “bad elements”

$$B = \{b \in M_k \mid \exists i \exists^\infty y \exists \bar{z} R_i(b, y, \bar{z})\}$$
Step 4: “Down”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and $k \in \text{SCM}(T) \cap [2, \omega)$, then $k - 1 \in \text{SCM}(T)$:

Assume \mathcal{L} is “closed under permutation of variables”. Define the set of “bad elements”

$$B = \{ b \in M_k \mid \exists i \exists^\infty y \exists z R_i(b, y, z) \}$$

Case I: B is finite: Then for any generic $a \in M_k$, $\text{iacl}(a)$ is a Σ^0_1-subset of M_k (finite or infinite).
Step 4: “Down”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and $k \in \text{SCM}(T) \cap [2, \omega)$, then $k - 1 \in \text{SCM}(T)$:

Assume \mathcal{L} is “closed under permutation of variables”. Define the set of “bad elements”

$$B = \{ b \in M_k \mid \exists i \exists^\infty y \exists z R_i(b, y, z) \}$$

Case I: B is finite: Then for any generic $a \in M_k$, $\text{iacl}(a)$ is a Σ^0_1-subset of M_k (finite or infinite).

Case II: B is infinite: Then $\text{acl}(\emptyset)$ contains an infinite Σ^0_1-subset B in \mathcal{M}_k.
Step 4: “Down”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and $k \in \text{SCM}(T) \cap [2, \omega)$, then $k - 1 \in \text{SCM}(T)$:

Assume \mathcal{L} is “closed under permutation of variables”. Define the set of “bad elements”

$$B = \{ b \in M_k \mid \exists i \exists^\infty y \exists z R_i(b, y, z) \}$$

Case I: B is finite: Then for any generic $a \in M_k$, $\text{iacl}(a)$ is a Σ^0_1-subset of M_k (finite or infinite).

Case II: B is infinite: Then $\text{acl}(\emptyset)$ contains an infinite Σ^0_1-subset B in M_k.

In either case, we can apply the previous steps to see that M_{k-1} is computable.
Step 5: “Up”: If all relations in $M_\alpha \models T$ are at most rank 1 and of bounded arity, and if $k \in SCM(T) \cap [2, \omega)$, then $k + 1 \in SCM(T)$ (uniformly in k; so $\omega \in SCM(T)$ as well):
Step 5: “Up”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and of bounded arity, and if $k \in \text{SCM}(T) \cap [2, \omega)$, then $k + 1 \in \text{SCM}(T)$ (uniformly in k; so $\omega \in \text{SCM}(T)$ as well):

Again, assume \mathcal{L} is “closed under permutation of variables”.

Case I: For generic $a \in M_k$, there are infinitely many disjoint tuples \bar{b} in M_k such that

$$\mathcal{M}_k \models \exists i \left(R_i(a, \bar{b}) \land \exists^{< \infty} x R_i(x, \bar{b}) \right)$$
Step 5: “Up”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and of bounded arity, and if $k \in \text{SCM}(T) \cap [2, \omega)$, then $k + 1 \in \text{SCM}(T)$ (uniformly in k; so $\omega \in \text{SCM}(T)$ as well):

Again, assume \mathcal{L} is “closed under permutation of variables”.

Case I: For generic $a \in M_k$, there are infinitely many disjoint tuples \bar{b} in M_k such that

$$\mathcal{M}_k \models \exists i \left(R_i(a, \bar{b}) \land \exists^{<\infty} x R_i(x, \bar{b}) \right)$$

Then we can generate a Σ^0_1-set of such disjoint tuples and then construct \mathcal{M}_{k+1} as $\mathcal{M}_k \sqcup \text{iacl}(g)$ for a new generic element g.

Step 5: “Up”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and of bounded arity, and if $k \in \text{SCM}(T) \cap [2, \omega)$, then $k + 1 \in \text{SCM}(T)$ (uniformly in k; so $\omega \in \text{SCM}(T)$ as well):

Again, assume \mathcal{L} is “closed under permutation of variables”.

Case I: For generic $a \in M_k$, there are infinitely many disjoint tuples \overline{b} in M_k such that

$$\mathcal{M}_k \models \exists i \left(R_i(a, \overline{b}) \land \exists^{<\infty} x R_i(x, \overline{b}) \right)$$

Then we can generate a Σ^0_1-set of such disjoint tuples and then construct \mathcal{M}_{k+1} as $\mathcal{M}_k \sqcup \text{iacl}(g)$ for a new generic element g.

Case II: Otherwise there is a finite set $\{h_0, \ldots, h_n\}$ of elements involved in all R_i:...
Step 5: “Up”: If all relations in $\mathcal{M}_\alpha \models T$ are at most rank 1 and of bounded arity, and if $k \in \text{SCM}(T) \cap [2, \omega)$, then $k + 1 \in \text{SCM}(T)$ (uniformly in k; so $\omega \in \text{SCM}(T)$ as well):

Again, assume \mathcal{L} is “closed under permutation of variables”.

Case I: For generic $a \in M_k$, there are infinitely many disjoint tuples \bar{b} in M_k such that

$$\mathcal{M}_k \models \exists i \left(R_i(a, \bar{b}) \land \exists^{< \infty} x R_i(x, \bar{b}) \right)$$

Then we can generate a Σ_1^0-set of such disjoint tuples and then construct \mathcal{M}_{k+1} as $\mathcal{M}_k \sqcup \text{iacl}(g)$ for a new generic element g.

Case II: Otherwise there is a finite set $\{h_0, \ldots, h_n\}$ of elements involved in all R_i: We can then generate a new language \mathcal{L}' of lower arity consisting of all R_i with fixed h_j, and iterate Case I vs. Case II for \mathcal{L}', etc., until we reach Case I or a binary language.
Binary \mathcal{L}: We also need to show

$$\{0, 1\} \cap \text{SCM}(T) \neq \emptyset \text{ and } \omega \in \text{SCM}(T) \implies 2 \in \text{SCM}(T)$$
Binary \mathcal{L}: We also need to show

$$\{0, 1\} \cap SCM(T) \neq \emptyset \text{ and } \omega \in SCM(T) \implies 2 \in SCM(T)$$

Ternary \mathcal{L}: Can only prove

$$[3, \omega) \cap SCM(T) \neq \emptyset \implies [1, \omega] \subseteq SCM(T)$$
Binary \mathcal{L}: We also need to show

$$\{0, 1\} \cap SCM(T) \neq \emptyset \text{ and } \omega \in SCM(T) \implies 2 \in SCM(T)$$

Ternary \mathcal{L}: Can only prove

$$[3, \omega) \cap SCM(T) \neq \emptyset \implies [1, \omega] \subseteq SCM(T)$$

Finally: Several priority arguments to establish new spectra.
Thanks!