
HIGHER-ORDER REVERSE TOPOLOGY

by

James Hunter

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2008

c© Copyright by James Hunter 2008

All Rights Reserved

i

ACKNOWLEDGMENTS

I would like to thank the following people for their invaluable assistance: Ulrich Kohlen-

bach, who was kind enough to invite me to speak at his university and to meet with him,

and who answered my questions over e-mail and in person; Jeremy Avigad, who was helpful

as well in explaining those aspects of his research that related to the subject of this disserta-

tion and in providing suggestions for further reading; my Ph.D. advisor Steffen Lempp; and

the other UW-Madison logic faculty, in particular Kenneth Kunen and Arnold Miller, who

patiently answered my repeated questions.

I would like to thank my wife for supporting me through five years of graduate school.

DISCARD THIS PAGE

ii

TABLE OF CONTENTS

Page

ABSTRACT . iv

1 Reverse mathematics . 1

1.1 Motivation . 1
1.2 Topology . 4

2 Base theory RCAω
0 and related theories . 7

2.1 Definitions . 7
2.1.1 Finite types . 7
2.1.2 The theory RCAω

0 . 8
2.1.3 Additional axioms yielding stronger theories 9

2.2 Conservation results for higher-order theories 12
2.3 Some reverse-mathematical results in RCAω

0 and related theories 24
2.3.1 Type-(1→ 1) functions vs. graphs of type-(1→ 1) functions 24
2.3.2 Set cardinalities . 29
2.3.3 Consequences of the existence of small type-2 sets and type-3 families 31
2.3.4 What topologies does one get from RCAω

0 + (E1)? 33
2.3.5 Axioms and topologies on the space of type-1 objects 36

3 Base theory RCAω
0 + (ATOMS) and related theories 41

3.1 Definitions . 41
3.1.1 Finite types . 41
3.1.2 The base theory RCAω

0 + (ATOMS) and stronger theories 42
3.2 Conservation results for RCAω

0 + (ATOMS) and related theories 43
3.3 Topology . 54

3.3.1 Topological spaces . 54
3.3.2 Product spaces . 55
3.3.3 Compact spaces . 57

3.4 Some reverse-mathematical results in RCAω
0 + (ATOMS) and related theories 58

3.4.1 The product of two compact spaces 58

iii

Page

3.4.2 RCAω
0 + (E1) + (ATOMS) + (A1) does not imply that the product of

two compact spaces is compact . 60
3.4.3 Compact T2 spaces . 81
3.4.4 RCAω

0 + (E1) + (ATOMS) + (A1) does not imply that every compact
T2 space is T3 . 85

3.4.5 Summary of reverse-mathematical results, and future work 93

LIST OF REFERENCES . 96

HIGHER-ORDER REVERSE TOPOLOGY

James Hunter

Under the supervision of Professor Steffen Lempp

At the University of Wisconsin-Madison

Reverse mathematics is the study of the relationships between logical axioms and math-

ematical theorems. Traditional reverse mathematics studies subsystems of second-order

arithmetic, which means that it can examine only theorems expressible in the language

of second-order arithmetic. To study a higher-order theorem, one must first find a way to

encode the theorem using only first- and second-order objects.

Ulrich Kohlenbach described [Koh05] a higher-order theory RCAω
0 , in all finite types,

that is conservative over the second-order theory RCA0 used as the base theory in traditional

reverse mathematics. Using RCAω
0 as a base theory, one can perform reverse-mathematics

on statements of mathematical analysis that either cannot be expressed in the second-order

language, or become trivial when expressed using second-order codes; see [Koh05].

We do some reverse mathematics, focusing on topology, over the base theory RCAω
0 ,

examining the consequences of certain higher-order analogues of comprehension axioms. We

also show that certain of these axioms are conservative over certain subsystems of second-

order arithmetic studied in traditional reverse mathematics.

To examine further the (higher-order) reverse mathematics of topology, we construct a

new base theory, extending and conservative over RCAω
0 . We prove some conservation results

for this new theory, in which we add a new base type for atoms, the space of which may

have any cardinality. Sets (of atoms) are second-order (over atoms) objects, while families

of sets—such as topologies—are third-order objects.

We examine two basic topological theorems and show that, over our new base theory,

they are implied by a uniform analogue, over atoms, of Π1
∞-comprehension and do not imply

a uniform analogue, over atoms, of arithmetical comprehension.

Steffen Lempp

iv

ABSTRACT

Reverse mathematics is the study of the relationships between logical axioms and mathe-

matical theorems. Traditional reverse mathematics studies subsystems of second-order arith-

metic, which means that it can examine only theorems expressible in the language of second-

order arithmetic. To study a higher-order theorem, one must first find a way to encode the

theorem using only first- and second-order objects.

Ulrich Kohlenbach described [Koh05] a higher-order theory RCAω
0 , in all finite types,

that is conservative over the second-order theory RCA0 used as the base theory in traditional

reverse mathematics. Using RCAω
0 as a base theory, one can perform reverse-mathematics

on statements of mathematical analysis that either cannot be expressed in the second-order

language, or become trivial when expressed using second-order codes; see [Koh05].

We do some reverse mathematics, focusing on topology, over the base theory RCAω
0 ,

examining the consequences of certain higher-order analogues of comprehension axioms. We

also show that certain of these axioms are conservative over certain subsystems of second-

order arithmetic studied in traditional reverse mathematics.

To examine further the (higher-order) reverse mathematics of topology, we construct a

new base theory, extending and conservative over RCAω
0 . We prove some conservation results

for this new theory, in which we add a new base type for atoms, the space of which may

have any cardinality. Sets (of atoms) are second-order (over atoms) objects, while families

of sets—such as topologies—are third-order objects.

We examine two basic topological theorems and show that, over our new base theory,

they are implied by a uniform analogue, over atoms, of Π1
∞-comprehension and do not imply

a uniform analogue, over atoms, of arithmetical comprehension.

1

Chapter 1

Reverse mathematics

1.1 Motivation

Reverse mathematics is the study of the relationships between logical axioms and math-

ematical theorems: reverse mathematics tries to find the minimal set of axioms required to

prove a particular mathematical fact. Mathematical logic allows one to examine implica-

tions between axioms and theorems; for example, the relationship between choice axioms

and various theorems has been widely examined. (For example, over the base theory ZF,

the Axiom of Choice is equivalent to Tychonoff’s Theorem, which states that the product of

arbitrarily many compact spaces is compact.) However, the ZF axioms that form the basis

for all of mathematics are sufficiently concise and general that weakening any of its axioms

has not traditionally led to an interesting theory.

As a consequence, when logicians sought to prove equivalences among axioms other than

choice they found ZF an unsuitable theory; in particular, what makes ZF so flexible—a

language consisting only of one binary relation, “∈”—also gives some difficulty when trying

to construct weaker subtheories. Instead, logicians studying reverse mathematics considered

subsystems of second-order arithmetic; see, for example [Sim99].

The language of second-order arithmetic has two sorts of variables—one ranging over

natural numbers, the other ranging over sets of natural numbers—along with the binary

relation “∈,” relating natural numbers to sets; the equality relation “=” for natural numbers;

and those functions and constants, including “0” and “S,” for successor, required for one to

describe the natural numbers, N. Subsystems of second-order arithmetic differ from what

2

Simpson, in his survey [Sim99] of the field, calls “full second-order arithmetic,” in that they

lack the full comprehension schema. Traditional reverse mathematics is inherently second-

order.

One advantage of second-order reverse mathematics is that many results from recursion

theory and its offshoots are relevant either immediately or after some effort to transfer

statements about, say, computable or arithmetical sets on ω to statements about sets on

a possibly non-standard version of ω (called “N”) that may satisfy only weak forms of

induction. Today, techniques from recursion theory, computable model theory, and proof

theory are all applicable to reverse mathematics.

However, the restriction that all statements considered in reverse mathematics be written

in the language of second-order arithmetic is unsatisfying—and, in some cases, severe. For

example, to express a function f on R in the language of second-order arithmetic (that is,

the language of traditional reverse mathematics) one may use only integers (in N) and real

numbers (using the correspondence between subsets of N and the real numbers). Note that

there are only 2ℵ0 reals, while there are (2ℵ0)2ℵ0 = 22ℵ0 functions on reals. At the very least

the language restriction prohibits us from considering statements concerning all functions on

R.

But the restriction, as Kohlenbach [Koh05] noted, is more severe. The traditional reverse-

mathematics workaround is to consider only continuous functions f on R, coded using f ’s

behavior on the countable dense subset Q ⊂ R. This means, first, that in reverse math-

ematics “continuous function” is a single unit: there are no discontinuous functions on R.

Worse, as Kohlenbach points out, the way one codes a continuous function on R in reverse

mathematics allows one to read from the code—via a uniform procedure, computably from

the code—for every real x and every ε > 0, a δ such that:

∀y(|x− y| < δ → |f(x)− f(y)| < ε).

In reverse mathematics, a “continuous function” is not simply a function that satisfies

the criteria for continuity, but rather a (code for a) package that, among other things, gives

3

δ’s corresponding to ε’s. A “continuous function” f tells you, for every input x, not only the

value f(x) but also how much f varies around x.

When considering the relative strength of mathematical statements one must be sensitive

to the definitions chosen—in this case, the definition includes additional information, and

this is an inherent limitation of trying to express a higher-order statement in second-order

arithmetic.

Kohlenbach [Koh05] noted that the higher-order theory E-PRAω
0 + QF-AC1,0 is conser-

vative over its second-order fragment, which is equivalent to the base theory RCA0 used in

reverse mathematics (except with function variables in place of set variables). Kohlenbach

named this higher-order base theory RCAω
0 , and proceeded to do reverse analysis over this

base theory. RCAω
0 allows for variables in all finite types, starting with the integers (type 0);

this allows one to formulate sentences involving, for example, functions on R.

In particular, Kohlenbach noted that various statements involving functions on R are

equivalent (over the base theory RCAω
0) to the existence of a discontinuous function on R,

which is in turn equivalent to a principle that he called (∃2) and I will call (E1):

(E1) : ∃E(0→0)→0
1 ∀x0→0 (∃n0((xn) 6=0 0)↔ ((E1 x) =0 1)).

The superscripts will be explained below—these are type designations for the variables. The

principle (E1) simply asserts the existence of a functional, E1, that given a real number x

returns the integer 1 if and only if x is not the infinite string of all 0’s. The functional E1 al-

lows one to determine whether two reals are equal. There are natural higher-order analogues

(En) as well (see [AF98], p. 350).

We show, in Theorem 2.5, that the theory RCAω
0 +(E1) is conservative over and implies

the reverse-mathematical theory ACA0; hence, the second-order part of a theory that implies

the existence of a discontinuous function on R is no weaker than ACA0.

4

1.2 Topology

The requirement that all statements be formulated in the language of second-order arith-

metic has restricted the development of reverse topology. To formulate topological state-

ments one usually wants to refer both to points in a topological space and to open subsets of

that space. Because traditional, second-order reverse mathematics is restricted to sentences

with only second-order variables, one can refer only to spaces of size ℵ0 or 2ℵ0 .

At the same time, open sets must correspond to second-order codes, which in practice

means that second-order reverse topology is restricted to spaces with countable bases. See

Carl Mummert’s recent work, [Mum05] and [Mum07], which advances the state of the art of

traditional reverse topology, using (codes for) maximal and unbounded filters on N.

The traditional work-around, as advanced in Mummert [Mum05], is to consider countably-

based spaces of size 2ℵ0 . Then one can code both points and open sets by sets of integers.

Because the predicate that determines whether a given point is in a given set is a third-order

object, one then defines a formula for “x ∈ U ,” where x is a (second-order code for a) point

and U is a (second-order code for an) open set. For a different approach, see the recent work

by Iraj Kalantari and Lawrence Welch on point-free topology, [KW98] and [KW04].

The restrictions of second-order reverse mathematics are particularly unsatisfying with

respect to topology. A basic topological theorem such as, “The product of two compact

spaces is compact,” cannot be expressed in the language of second-order arithmetic, and so

traditional reverse mathematics cannot examine the relative strength of this theorem. The

best one could hope for is a variant of the form:

“The product of two compact, countably-based spaces of size 2ℵ0 , where set membership is

defined by a particular fixed formula, is compact,”

which is not quite the same. Many basic topological theorems make no reference to the

cardinalities of the space.

Much reverse topology—although not called by that name!—has already been done using

ZF as a base theory and examining the topological consequences of various choice principles.

5

(See, for example, Jech’s 1973 book The Axiom of Choice [Jec73].) However, there are

many basic topology theorems that are provable in ZF and not expressible in traditional,

second-order, reverse mathematics. For example, Tychonoff’s Theorem, “The product of

(arbitrarily many) compact spaces is compact,” is equivalent to the Axiom of Choice, over

ZF.

However, the restriction of Tychonoff’s Theorem to finite products is provable in ZF and

not expressible in the language of second-order arithmetic. We show, in Section 3.4.1, that

the strength of the statement, “The product of two compact spaces is compact,” lies strictly

between a higher-order axiom conservative over RCA0 and a higher-order axiom conservative

over ACA0.

Note that once one leaves second-order codes behind many of the well-established and

powerful techniques of traditional reverse mathematics become useless. In this sense second-

order reverse mathematics is more powerful than its higher-order variant: if you can express

a theorem, in a reasonable way, as a sentence in the language of second-order arithmetic,

then you can often determine more precisely the logical strength of that theorem. Higher-

order reverse mathematics is currently a new field, and the techniques that we currently

know how to use are crude. However, to the extent that certain theorems have no reasonable

second-order analogue, there is no alternative to higher-order reverse mathematics.

We adopt and extend Kohlenbach’s base theory RCAω
0 and apply it to examine the higher-

order reverse mathematics of certain basic topological statements. The base theory RCAω
0 ,

while well-suited to examining functions on R or the Baire space NN, has certain issues when

applied to topology. For example, in RCAω
0 the cardinality of a topological space is built

into the type of the objects chosen as elements of the space. If one uses type-0 elements, the

topological space is countable. If one instead uses type-1 elements, the topological space has

size 2ℵ0 , in the sense of the model.

Further, the axiom that asserts the existence of a functional determining whether two

arbitrary sets of elements are equal—necessary for defining the family of all sets intersect-

ing a particular set—has strong consequences. In particular, if one uses type-1 elements

6

for a topological space, the corresponding axiom’s second-order consequences are Π1
∞-CA0:

second-order arithmetic with full comprehension.

To address to these two issues we define and consider, in Chapter 3, a new base theory

in which the elements of our topological spaces are atoms, rather than integers or reals. We

show that two basic topological theorems lie strictly between two natural comprehension

schemas.

7

Chapter 2

Base theory RCAω
0 and related theories

2.1 Definitions

2.1.1 Finite types

The language of traditional reverse mathematics includes variables of only two types: the

type of integers (N) and the type of sets of integers (some version of P(N)). For higher-order

reverse mathematics we use function variables, instead of set variables—e.g., NN instead of

P(N)—and we have variables of all finite types.

The finite types are defined inductively:

Definition 2.1. 0 is a finite type: the type of N.

If σ and τ are finite types, then so is (σ → τ): the type of a function with input σ and

output τ .

We also have the following abbreviations for the standard types:

Definition 2.2. 0 is a standard type.

If n is a standard type, then n+ 1 is the standard type (n→ 0).

The types used in traditional, second-order, reverse mathematics are roughly equivalent

to the standard types 0 and 1.

In section 3.1.1 we introduce a second atomic type, α, in addition to the standard atomic

type 0, and allow finite types to be built from 0, α, and arrows. Every variable in the theories

considered in this paper is of one of these types.

8

We sometimes denote a variable’s or term’s type by superscripts. For example, “xσ” de-

notes a variable x of type σ; however, to improve readability we frequently drop superscripts

where the type is clear from context.

2.1.2 The theory RCAω
0

We follow the definition from [Koh05]. The language of RCAω
0 includes variables xσ of all

finite types σ, quantifiers ∃σ and ∀σ for all finite types σ, and the type-0 equality relation =0.

The axioms of RCAω
0 consist of axioms defining the standard (typed) lambda calculus

combinators Σρ,σ,τ and Πσ,τ (known to computer scientists as “S” and “K,” respectively):

• (Σρ,σ,τx
ρyσzτ) = xz(yz), and

• (Πσ,τx
σyτ) =σ x,

where “xz” denotes the application of the function(al) represented by x to the parameter

represented by z. The ordinary left-to-right precedence rules apply, so “xz(yz)” is equivalent

to “(xz)(yz).” The Σ and Π combinators allow one to define λ-abstraction (see [Tro73],

pp. 41–42); one can think of Π as a projection operator, and Σ as an application operator.

In this paper we will find it easier to use λ in place of the combinators, outside of this section.

We use “=σ,” for all types σ 6= 0, as an abbreviation for extensional equality, defined

inductively: =0 is a relation, and if σ = (β → γ) then:

x =(β→γ) y abbreviates ∀zβ(xz =γ yz).

Note that we have omitted the subscript from the equality relation in the Σ-combinator rule.

Formally, in the Σ-combinator rule, we require that ρ = (τ → (β → γ)) and σ = (τ → β),

which means the equality relation is =γ. For Π, the equality relation is =σ, as shown in the

defining equation above.

We also include the basic equality axioms for =0, along with axioms defining the successor

function S on N and the constant 0 ∈ N. We include axioms defining the primitive-recursion

operator R0:

9

• (R0 x
0 y(0,0)→0 0) =0 x, and

• (R0 x
0 y(0,0)→0 S(z0)) =0 (y(R0 x y z)z).

For simplicity we write “(ρ, σ) → τ” for “ρ → (σ → τ).” (In other words, we sometimes

write the type as if the function had been “curried.”) Using 0, S, and R0 one can define all

primitive recursive type-1 functions on N.

Finally, we include the schema QF-IA of induction for quantifier-free formulas (with

parameters) and the quantifier-free choice schema (also with parameters) QF-AC1,0:

QF-AC1,0: ∀x1∃y0Φ(x, y)→ ∃F 2∀x1Φ(x, Fx),

where Φ is a quantifier-free formula. Note that adding QF-AC1,0 gives us all recursive (or

computable) type-1 functions—not just the primitive recursive functions.

Justifying Kohlenbach’s choice of higher-order base theory is the following, which is

Proposition 3.1 in [Koh05]:

Proposition 2.3. RCAω
0 is conservative over and implies RCA0.

(Note, further, that we could also add QF-ACσ,0, for any type σ, and still have the

resulting theory be conservative over RCA0.)

Formally, the theory RCA0 refers to set variables, not function variables. In fact Kohlen-

bach defined a function analogue to RCA0, which he called RCA2
0. In this paper, as in

[Koh05], we omit the superscript and treat RCA2
0 and RCA0 as interchangeable.

2.1.3 Additional axioms yielding stronger theories

Kohlenbach [Koh05] showed that several statements in mathematical analysis are equiva-

lent to the principle (E1), defined in section 1.1. One can think of (E1) as an axiom asserting

the existence of the functional E1 that determines whether a type-1 object is the infinite

string consisting only of 0’s:

∃n0 ((x1 n) 6=0 0) ⇐⇒ (E1x) =0 1.

10

From E1 one can define a type-((1, 1) → 0) equality functional F such that (Fxy) =0 1

if and only if x =1 y:

F :≡ (λx1.(λy1.(E1(λn0.((xn) .− (yn)) + ((yn) .− (xn))|)))),

where “ .−” is defined from 0, S, and R0. It often helps to think of E1 as the type-1 equality

operator.

Of course one can similarly define the type-(σ → 0) “equality operator” Eσ→0 for any

type σ:

(Eσ→0) : ∃E(σ→0)→0
σ→0 ∀xσ→0 (∃yσ((xy) 6=0 0)↔ ((Eσ→0 x) =0 1)).

The two such functionals to which we will refer are E1 and E2. Abusing notation some-

what, we write “σ + 1” for (σ → 0).

Proposition 2.4 (RCAω
0). For every finite type σ:

1. (Eσ+2) (i.e., (E(σ→0)→0)) implies (E1).

2. (Eσ+3) implies (E2).

3. For all n ≥ 3, (Eσ+(n+1)) implies (En).

In particular, (E3) =⇒ (E2) =⇒ (E1).

Proof. 1. Define E ′1 by the rule:

E ′1 :≡ (λx1. (Eσ+2(λyσ+1. x(yaσ)))),

where a is some fixed type-σ element.

(The idea is that we want to define a type-(1→ 0) functional that returns 1 if and only

if its type-1 input is not the constant-0 function. Any such functional must take a type-1

input—we use x–and return either 0 or 1. We want to use Eσ+2, which returns 1 if and only if

its type-(σ+2) input is not the constant-0 function, so we build a type-(σ+2) = ((σ+1)→ 0)

functional to which to apply Eσ+2.

11

(That type-(σ + 2) functional should depend on x, and in particular we want to use the

functional’s input—y, here—to generate a type-0 input for x. The result is the functional E ′1,

defined above, which returns 1 if and only if (x(ya)) 6=0 0 for some y. To show that E ′1 is, in

fact, E1, we need to show that every type-0 number n0 is (ya), for some y.)

Note that (E ′1x) =0 1 if and only if (Eσ+2(λy. x(ya))) =0 1, if and only if there is

some yσ+1 such that x(ya) 6=0 0.

For any n ∈ N, RCAω
0 proves the existence of the constant type-σ+ 1 functional (λzσ.n).

As a consequence, there is some yσ+1 such that x(ya) 6=0 0 if and only if there is some n0

such that (xn) 6=0 0, so E ′1 ≡ E1.

2. Define E ′2 by the rule:

E ′2 :≡ (λX2. (Eσ+3(λyσ+2. X(λm0.y(λzσ.m))))).

That is, E ′2 applies Eσ+3 to the functional that maps yσ+2 to the result of applying X to

the type-1 element (λm.y(λz.m))—which, for each m0, applies y to the constant functional

(λz.m). Note that E ′2 returns 1 if and only if (X(λm.y(λz.m))) 6=0 0 for some y.

For every type-1 element x, there is a type-(σ+ 2) element y that “codes” x, defined by:

y :≡ (λwσ+1.x(waσ)),

where a is some fixed type-σ element. As in the previous proof, this shows that E ′2 ≡ E2,

since:

(λy.X(λm.y(λz.m))) (λw.x(wa)) =0 (X(λm.((λw.x(wa))(λz.m))))

=0 (X(λm.x((λz.m)a)))

=0 (X(λm.(xm)))

=0 (Xx).

3. Define E ′n by the rule:

E ′n :≡ (λXn. (Eσ+(n+1)(λy
σ+n.X(λfn−2.y(λzσ+(n−2).f(za)))))),

12

where a is some fixed type-(σ + (n− 3)) element.

Note that (E ′nX) =0 1 if and only if (Eσ+(n+1)(λy.X(λf.y(λz.f(za))))) =0 1, if and only

if there is some y such that (X(λf.y(λz.f(za)))) 6= 0.

If (E ′nX) =0 1 then (EnX) =0 1; it remains for us to show the converse. Fix type-n

functional X such that for some type-(n − 1) input x, (Xx) 6=0 0. We want to show that

there is some type-(σ + n) functional y0 such that (λf.y0(λz.f(za))) =n−1 x. But this is

true, since we can define such a y0, in RCAω
0 , by the rule:

(y0w
σ+(n−1)) :=0 x(λmn−3.(w(λvσ+(n−2).m))).

Then, for all type-(n− 2) elements f :

(y0(λz.f(za))) =0 x(λm.(λz.f(za))(λv.m))

=0 x(λm.f((λv.m)a))

=0 x(λm.(fm))

=0 (xf).

One can similarly introduce schemas QF-ACσ,τ of choice axioms for any pair of types σ

and τ :

(QF-ACσ,τ): [∀xσ ∃yτ Φ(x, y)]→ [∃F σ→τ ∀xσ Φ(x, (Fx))],

where Φ(x, y) is quantifier-free. For example, QF-AC0,1 corresponds to Weak Countable

Choice. However, there does not seem to be an advantage in using RCAω
0 as a base theory

instead of ZF in considering the logical consequences of choice principles, and so we have

mostly avoided examining these schemas.

2.2 Conservation results for higher-order theories

In [Koh05], Kohlenbach refers to the theory RCAω
0 + (E1) and notes (Theorem 3.2, citing

[Fef77]) that it is conservative over the first-order theory of Peano Arithmetic (PA).

13

It is not difficult to show that, over RCAω
0 , (E1) implies arithmetic comprehension (and

hence ACA0). First, if Φ(n0) is a quantifier-free formula with only one free variable of type 0

then it is equivalent to:

f(n) =0 1,

where f is some function definable from RCAω
0 . Second:

∃n0(f(n) =0 1) ⇐⇒ (E1f) =0 1,

so quantifiers can be replaced by E1’s, yielding a quantifier-free formula equivalent to the

original.

If X is a set of integers defined by:

n0 ∈ X ⇐⇒ Φ(n),

where Φ is an arithmetical formula, then we also have:

n0 ∈ X ⇐⇒ f(n) =0 1,

so f is a characteristic function for X.

So the second-order part of RCAω
0 + (E1) includes ACA0. Jeremy Avigad and Solomon

Feferman, in [AF98], state (Theorem 8.3.4) that RCAω
0 + (E1) is conservative over ACA0 for

Π1
2 sentences. In fact, this holds for all sentences:

Theorem 2.5. RCAω
0 + (E1) is conservative over and implies ACA0.

One can think of E1 as a uniform version of arithmetical comprehension.

Proof. LetM be a (second-order) model of ACA0, where ACA0 is formalized using function

rather than set variables. We will construct, fromM, a new model N of RCAω
0 + (E1) whose

second-order part—the collection of all type-0 and type-1 elements—is isomorphic toM. If

a second-order sentence Φ is provable from RCAω
0 + (E1) then it holds in all models of RCAω

0

+ (E1), so it holds in N . Since Φ involves only second-order objects, it holds inM; sinceM

was arbitrary, Φ holds in all models of ACA0 and hence is provable from ACA0.

14

Our model N will be a term model: its elements will be equivalence classes of finite

strings, or terms. We start by including constant symbols for all elements of M—we call

the type-0 constant symbols “numerals”—and all functionals defined in RCAω
0 . Following

a comment by Avigad and Feferman in [AF98], instead of including a symbol for E1, we

include a symbol for µ, defined by:

µ(x1) =0

n+ 1, for n0 least such that (xn) 6=0 0, if such n exists,

0, otherwise.

Avigad and Feferman noted that the principle (µ), which asserts the existence of µ, is

equivalent to QF-AC1,0 + (E1). By including µ instead of E1 we avoid having to verify that

N satisfies QF-AC1,0.

The terms from which the model N is constructed consist of all finite strings built up

from variables and the constant symbols listed above, by λ-abstraction and application. We

require that applications respect types; so, for example:

(λx1.(xn))

is a valid term, for all n ∈ N, but:

(λx0.(xn))

is not. We use boldface to distinguish constant symbols: n is an element of the model M’s

collection N of type-0 elements, while n is the constant symbol, or numeral, corresponding

to n.

The equivalence relation ≈ on terms has two components: syntactic equivalence and

semantic equivalence. The syntactic rule is:

((λxσ.t1[x])t2) ≈ t1[t2/x],

where by “t1[t2/x]” we mean the finite string t1 with all (free) instances of x replaced by

the finite string t2. (Notice that we use “[x]” to list the variable free in t1; we use brackets

here instead of parentheses to avoid confusion.) This is the standard reduction relation for

15

the λ-calculus: the term ((λx.t1[x])t2) reduces to t1[t2/x]. Since we are using a finite-typed

λ-calculus, it is straightforward to show that all sequences of reductions must terminate

uniquely. The syntactic reduction rule applies to closed terms of all types.

In addition, for closed type-0 terms we add semantic rules for the intrinsic functionals—

µ, R0, S, and the second-order elements of M—for which constant symbols have been

included. (Our terms use λ’s instead of the combinators Π and Σ, so we do not add rules

for the combinators.) The rules are:

• (fn) ≈ f(n), where n and f are first- (type-0) and second-order (type-1) elements of

M, respectively. The application of the type-1 function constant f to a type-0 constant

is equivalent to the type-0 constant, or numeral, f(n).

• Similarly, (Sn) ≈ the numeral (n + 1).

• (µ t) is equivalent to the numeral 0 if and only if for all numerals p, (tp) ≈ 0, and is

equivalent to (p + 1) for the least numeral p such that (tp) 6≈ 0, otherwise.

• (R0 a t0) ≈ a, while (R0 a t (b + 1)) is equivalent to the numeral p if and only if there

is a numeral q such that (R0 a tb) ≈ q and (tq b) ≈ p.

Each of these rules explicitly relates a closed term of the specified form to at most one

numeral; however, we will still need to verify that distinct numerals yield distinct equivalence

classes. Also, all but the last rule, for R0, relates its term to at least one numeral. Handling

R0 is a special case: we must relate primitive recursion in N to primitive recursion in M.

Combining the syntactic and semantic rules, and taking their transitive closure, yields

an equivalence relation on closed type-0 terms of N . For terms of N of other types, we add

to the syntactic reduction rule the following extensional rule. First, two terms are equivalent

only if they have the same type (this is consistent with the existing syntactic and type-0

semantic rules). Second, if s and t have type (σ → τ) then s ≈ t provided that every closed

type-σ term u, su ≈ tu (this is also consistent with the existing rules). The equivalence

relation ≈ on all closed terms is the transitive closure of the union of these three sets of

rules.

16

The elements of N are the equivalence classes of closed terms—terms with no free vari-

ables. The relation =0 is just ≈, restricted to type-0 objects.

We first show that every closed type-0 term of N is equivalent to some numeral. Let t be

an arbitrary closed type-0 term. Applying the normal-form theorem from λ-calculus, there is

a unique closed term t′ such that any sequence of reductions starting from t terminates at t′.

Let t′ be the “normal form” of t, the unique term obtained from t by syntactic equivalence

such that no further reduction is possible. So t ≈ t′, and so without loss of generality we

may assume that t is in normal form.

Every variable occurring in t (not necessarily free in t) must be of type 0. This is because

if the type-σ variable y, where σ 6= 0, occurs in t then y is free in a some subterm of t. Since,

by assumption, y is not free in t, it must be captured by a λ—that is, y occurs in t as part

of a subterm of the form:

(λy.s[y]).

Notice that this subterm has type (σ → τ) for some τ , and that σ 6= 0. Since t is of type 0,

the subterm (λy.s[y]) must occur in t as part of an application. (Applying a term to another

term lowers the combined term’s type.)

None of the constants included in the term model N can be applied to terms of type

(σ → τ) for σ 6= 0. That means that if the application is:

(s′(λy.s[y])),

then s′ is itself a λ expression, so we can apply reduction—contradicting our assumption

that t is in normal form.

If, instead, (λy.s[y]) occurs on the left-hand side of an application:

((λy.s[y])s′),

then we can again apply reduction—a contradiction. So t contains only variables of type 0.

Let s be an arbitrary (not necessarily closed) type-0 subterm of t, with free type-0

variables x1, . . . , xk. Using induction, we will show that for every assignment m1, . . . ,mk of

17

numerals to x1, . . . , xk, the closed term:

s[m1/x1, . . . ,mk/xk],

is equivalent to some numeral n fromM. In particular, this will show that the closed term t

is equivalent to a numeral.

Our base cases are where s is either a variable x or a numeral m; in the first case, s[m/x]

is trivially equivalent to m, and in the second case s[] is also trivially equivalent to m.

Our induction cases correspond to our semantic rules. Suppose that for every m there is

some n such that s[m/x] ≈ n:

• (fs[m/x]) is equivalent to the numeral f(n).

• (Ss[m/x]) is equivalent to the numeral (n + 1).

• (µ(λx1.s[m2/x2, . . . ,mk/xk])) is equivalent to 0 if for all numerals m1, the correspond-

ing numeral n ≈ 0, and otherwise is equivalent to (m1+1) for the least m1 such that

the corresponding numeral n 6≈ 0.

(Note that every type-1 term is equivalent to a term of the form (λx.s), where s is of

type 0. This is because of our extensionality rule.)

• (R0 a t0) ≈ a. For (R0 a t (b + 1)), note that the type-(0 → (0 → 0)) term t is

equivalent to:

(λx1.(λx2.s[x])),

for some type-0 term s. So we can apply induction. We need to show that there are

numerals p and q satisfying:

(R0 a (λx1.(λx2.s[x1, x2,m3/x3, . . . ,mk/xk])) b) ≈ q, (2.1)

and:

((λx1.(λx2.s[x1, x2,m3/x3, . . . ,mk/xk])) q b) ≈ p. (2.2)

Using syntactic reduction, equation (2.2) is logically equivalent to:

s[q/x1,b/x2,m3/x3, . . . ,mk/xk] ≈ p,

18

so we can choose p to be the n corresponding to s[q/x1,b/x2,m3/x3, . . . ,mk/xk]—

assuming we have found a numeral q that satisfies equation (2.1). This is the special

case, and we prove the existence of q by applying induction in M.

The key point here is that M satisfies ACA, and hence induction for arithmetical for-

mulas. Simultaneously with the induction already described we will prove that for each

subterm s there is an arithmetical formula Φ(x1, . . . , xk, y) in the language of M such that:

(M |= Φ[m1/x1, . . . ,mk/xk, n/y]) =⇒ (s[m/x] ≈ n). (2.3)

and:

M |= ∀x ∃!yΦ(x, y). (2.4)

The idea is that the arithmetical formula Φ, built from the term s[x], tells us how to find n.

Equation (2.4) says that, in M, Φ is the graph of a function (x1, . . . , xk) 7→ y. (Notice that

we use parentheses to list variables free in the formula Φ, and brackets to list assignments

of elements of M to variables in Φ.)

If s ≡ x then Φ is “x = y”; if s is a numeral m then Φ is “m = y.” The induction cases,

where by assumption we have a Φ that works for s[x], are:

• For (fs[m/x]), use formula: ∃z(Φ(x, z) ∧ f(z) = y).

• For (Ss[m/x]), use formula: ∃z(Φ(x, z) ∧ (z + 1 = y)).

• For (µ(λx1.s[m2/x2, . . . ,mk/xk])), use formula:

[y = 0 ∧ ∀zΦ(z, x2, . . . , xk, 0)]

∨ [∃z′ 6= 0 (Φ(y − 1, x2, . . . , xk, z
′) ∧ ∀z < (y − 1) (Φ(z, x2, . . . , xk, 0)))]. (2.5)

(The second half of the disjunction just says that y is least such that (λx1.s)(y−1) 6= 0.)

• For (R0 a t0), use formula: y = a. For (R0 a t (b + 1)), use formula:

Ψ(z, y) ≡ ∃c [|c| = z + 1 ∧ (c)0 = a ∧ (c)z = y

∧ ∀(0 ≤ k < z) Φ[(c)k/x1, k/x2, (c)k+1/y]],

19

where |c| gives the length of the finite string encoded by c, (c)k gives the kth element

of c, starting with index 0, and Φ is the formula corresponding to t. (Recall that we

have already noted that t is equivalent to (λx1.(λx2.s)), for some type-0 term s.)

The formula Ψ[(b + 1)/z] just asserts the existence of a type-0 code c, in M, for the

primitive recursive computation corresponding to (R0 a t (b + 1)). (Note that Ψ[(b +

1)/z, n/y] holds for at most one n.)

If Ψ[(b+ 1)/z, n/y] holds for some n, then (R0 a t (b + 1)) ≈ n. To see this, note that

the code c gives a list, possibly infinite, of equivalences:

(R0 a t0) ≈ a ≈ n0

(R0 a t1) ≈ (tn0 0) ≈ n1

(R0 a t2) ≈ (tn1 1) ≈ n2

. . .

(R0 a t (b + 1)) ≈ (tnb b) ≈ nb+1.

Let n be nb+1. (The reason the list may be infinite is that the model M’s collection

N of all type-0 elements may include non-standard integers. This is why we need to

perform induction in M rather than expanding the term (R0 a t (b + 1)) in N—if we

try to expand we may end up with an infinitely long string, which is no a valid term.)

Finally, we apply arithmetical induction inM to prove that Ψ[(b+1)/z, n/y] holds for

some n ∈M:

M |= ∃!y(Ψ(0, y)),

since y = a works, and:

M |= ∀z(∃!y(Ψ(z, y))→ ∃!y(Ψ(z + 1, y))),

since we can just append the type-0 element ofM corresponding to “(t (c)z z)” to the

code c. Since M satisfies ACA, it satisfies the schema of arithmetical induction, and

hence:

M |= ∀z(∃!y(Ψ(z, y))),

20

and we are done.

Using the formula Ψ from the last comment, we get that there is a numeral q satisfying

equation (2.1). This completes both induction arguments: every closed type-0 term of N is

equivalent to a numeral.

In fact, every closed type-0 term of N is equivalent to a unique numeral. Suppose m ≈ n

via some finite sequence r0, . . . , rk of closed terms, where r0 is m, rk is n, and rj+1 results

from rj by a single application of one of the equivalence rules. To each of the closed terms rj

corresponds a formula Φj, defined above, that picks out a unique numeral. The formulas Φ0

and Φk are “m = y” and “n = y,” respectively.

We will show that for each j,M |= ∀y(Φj(y)↔ Φj+1(y)). By induction (in the metathe-

ory), this shows that m = n, so m is n. We have several cases; to avoid repeating “or vice

versa,” we note that all of the cases are symmetric in rj and rj+1:

• rj and rj+1 are related by syntactic reduction. Recall that in defining Φ we assumed

that its closed type-0 term was written in normal form; this means that Φj and Φj+1

are the same.

• rj is the closed term (f a) and rj+1 is the numeral f(a). Then Φj is “∃z(a = z ∧ f(z) =

y)” and Φj+1 is “f(a) = y”; these two formulas are equivalent in M.

• rj is (Sa) and rj+1 is (n + 1). Then Φj is “∃z(a = z ∧ z + 1 = y)” and Φj+1 is

“z + 1 = y”; these two formulas are equivalent in M.

• rj is (µt), with formula Φ corresponding to t, and rj+1 is either 0 or (p + 1). Then Φj

is the formula from equation (2.5) and Φj+1 is either “0 = y” or “p + 1 = y”—one of

these two is equivalent to Φj.

• rj is (R0 a t0) and rj+1 is a, or rj is (R0 a t (b + 1)) and rj+1 is some p. In the first

case, Φj and Φj+1 are both “a = y”; in the second case Φj is Ψ(b + 1, y) and Φj+1 is

“p = y.” In both cases, Φj is equivalent to Φj+1.

(In other words, if rj and rj+1 are related by a semantic type-0 rule, then the formula

Φ defined above shows that rj and rj+1 refer to the same numeral.)

21

• rj and rj+1 are related because subterms of rj and rj+1 are extensionally equivalent—

then by extensionality, Φj and Φj+1 are equivalent.

So every closed type-0 term in N is equivalent to a unique numeral; this shows that

the first-order part of N is isomorphic to the first-order part of M. As a consequence, the

implication in equation (2.3) is actually a logical equivalence:

(M |= Φ[n1/x1, . . . , nk/xk,m/y]) ⇐⇒ (s[n/x] ≡m).

It follows immediately that every closed type-1 term of N is equivalent to at most one

type-1 constant symbol. (In other words, closed type-1 terms are well-defined functions.) To

see that to each closed type-1 term t there is an equivalent type-1 constant symbol, construct

the formula Φ corresponding to the type-0 term (tx). Then:

{〈n,m〉 ∈ M : Φ[n/x,m/y]}

is (in M) the graph of the closed term t. Since Φ is arithmetical and M satisfies ACA, M

contains a type-1 function f with exactly this graph. So t ≡ f , and the second-order part of

N is isomorphic to M.

It remains for us to show that N |= RCAω
0 + (E1). For this, we need to check that

the combinator axioms are satisfied, that the axioms defining µ, R0, and S are satisfied,

and that QF-IA still holds. That the combinator axioms are satisfied follows from the way

we constructed our term model—we built in rules for λ-abstraction and application. The

axioms defining µ, R0, and S are satisfied because of their corresponding equivalence rules

and the fact that every closed type-0 term is equivalent to a numeral. (So the equivalence

rules apply to all terms in N .)

It remains only for us to check that QF-IA still holds. But this is true because if Φ is

a quantifier-free formulas with type-0 variable n free, then without loss of generality Φ is

equivalent to (fn) =0 1, where f is some type-1 function constant from M. (Note that Φ

may have parameters other than n, on which the choice of f may depend.) So QF-IA for N

follows from QF-IA for M, and N |= RCAω
0 + (E1).

22

A similar result, proved by a similar argument, holds for (E2):

Corollary 2.6. RCAω
0 + (E2) is conservative over and implies Π1

∞-CA0.

Traditional reverse mathematics studies subsystems of second-order arithmetic, where by

“second-order arithmetic” one typically means the theory Π1
∞-CA0. This corollary points out

that the second-order consequences of RCAω
0 + (E2) are strictly stronger than the theories

studied in traditional reverse mathematics.

Proof. The proof is essentially the same as the proof of Theorem 2.5, except that we also

include a constant symbol for E2. (We include µ as well, to avoid having to address QF-

AC1,0.) The rule for E2 is, of course:

(E2F
2) =0 1 ⇐⇒ ∃x1((Fx) 6=0 0).

The rest of the proof is the same, except that we add an additional equivalence rule,

for E2, and that, because of E2, a term t may now also contain variables of type 1. The

formula Φ corresponding to a type-0 term with free type-0 and type-1 variables is no longer

arithmetical but allows type-1 quantification. We use the fact that M satisfies Π1
∞-CA to

handle R0 (because the formula Φ used for R0 may be a Π1
∞ formula).

The proof of Theorem 2.5 implies the following corollary:

Corollary 2.7. RCAω
0 + (E1) + QF-AC0,1 is conservative over and implies Σ1

1-AC0.

Proof. Clearly QF-AC0,1 implies Σ1
1-AC, since the former is simply a higher-order general-

ization of the latter. The theory Σ1
1-AC0 also includes ACA, which is implied by (E1). (See

[Sim99], p. 297 for a definition of Σ1
1-AC0.)

LetM be a model of Σ1
1-AC0; construct a term model N fromM exactly as in the proof

of Theorem 2.5. Then N satisfies RCAω
0 + (E1), since M satisfies ACA0. It remains only

for us to show that N satisfies QF-AC0,1 (a.k.a. Weak Countable Choice).

Let Φ be a quantifier-free formula in the language of N and suppose for every n ∈ N there

is a type-1 function f such that Φ(n, f) holds. We will show that there is a type-(0 → 1)

functional F such that for all n, Φ(n, F (n)) holds.

23

As in the proof of Theorem 2.5 we note that for any assignment to Φ’s other parameters,

Φ(n, f) is equivalent to an arithmetical formula Φ′ in the language of M. Since M satisfies

Σ1
1-AC, there is inM a type-1 function g such that for all n, Φ′(n, gn) holds, where gn(x) =

g(〈x, n〉) using the standard pairing function 〈·, ·〉 on N.

Define F by the rule:

F (n)(x) = gn(x) = g(〈x, n〉),

and we are done.

This last corollary is interesting because while QF-AC0,1 is a version of Weak Countable

Choice, the second-order axiom Σ1
1-AC follows from a comprehension axiom. So Σ1

1-AC

holds, for example, in any model of ATR0, while QF-AC0,1 is a true choice principle and is

not implied by any comprehension axiom.

There is a natural uniform version of ATR, which states that for every type-1 countable

well-order W there is a corresponding transfinite-recursion functional RW defined by:

(RW s1 t1→1 n0) :≡ (t 〈(RW s tm0) : m <W n〉),

where 〈xm : m <W n〉 is the result of encoding (in a computable way) a countable list of

type-1 objects as a single type-1 object. In other words, the definition says that (RW s t n)

is the result of iterating the functional t along the well-order W , through all elements ≤W n.

Let “(Uniform ATR)” be the axiom asserting the existence of RW for every well-order W .

Then we have:

Corollary 2.8. RCAω
0 + (Uniform ATR) is conservative over and implies ATR0.

Proof. We classify this theorem as a corollary, because many of the techniques from Theorem

2.5 apply here as well—we just add constant symbols for each RW corresponding to a well-

order W in M.

The only wrinkle is that the axiom schema ATR is stated to allow only one arithmetical

formula at a time to be iterated along a given well-ordering, whereas the functional RW can

be nested. This does not pose a problem, since it is easy to show in RCAω
0 that the products

24

and sums of well-orders are also well-orders. This fact allows us to collapse multiple RW ’s

occurring in a term to a single, outermost, RW , at which point we have a correspondence

between a closed term in our term model N and a formula, in the language of the base

model M, that fits the ATR schema—so we can apply ATR.

Note that RCAω
0 + (Uniform ATR) does not imply Weak Countable Choice—any model

of ZF in which Weak Countable Choice fails satisfies the former but not the latter. So while

ATR0 is strictly stronger than Σ1
1-AC0, the corresponding (uniform) higher-order theories

are independent.

As the next section shows, RCAω
0 + (E2) seems to be the minimal theory required to do

much topology on the set of type-1 objects. (Without (E2), for example, you cannot prove

the existence of a finite family of sets.) This theory has strong second-order consequences.

2.3 Some reverse-mathematical results in RCAω
0 and related the-

ories

2.3.1 Type-(1→ 1) functions vs. graphs of type-(1→ 1) functions

In reverse mathematics, using one definition instead of another has certain consequences.

In [Koh05], Kohlenbach follows the traditional reverse-mathematical definition of R as the

space of all Cauchy sequences of rational numbers whose nth and (n+1)st elements are within

2−n of each other. (See, e.g., [Sim99].) He then defines functions on R to be type-(1 → 1)

objects that respect the natural equivalence relation ≡R on (type-1 codes for) elements of R.

A function, in this sense, is an object g, implementing a rule, that given input x yields

output g(x). Consider the space NN of all type-1 elements—that is, R without the equivalence

relation ≡R. One might ask what would happen if one defined a function on NN to be, instead

of a type-(1→ 1) rule g, a type-(1→ 0) graph G:

G := {〈x, y〉 : x ∈ NN},

such that:

∀x∃!y (〈x, y〉 ∈ G).

25

Here we assume that the operator 〈·, ·〉 is a suitable pairing operator for type-1 objects, such

as:

〈x, y〉 :=1

λn0.

(xk), if n =0 2k

(yk), if n =0 2k + 1.


So one can define a function to be either a rule or a graph; as Kohlenbach notes in

[Koh05], over RCAω
0 there is no difference between these two ways of defining functions on

N, the space of type-0 objects. Given a type-(0→ 0) graph G, one can define a type-(0→ 0)

rule g, recursively, by:

g(m) = the least n such that 〈m,n〉 ∈ G.

By QF-AC1,0 (in fact, QF-AC0,0 suffices), if G exists then g exists as well. (Here we assume

that the operator 〈·, ·〉 is a suitable pairing operator for type-0 objects.)

Conversely, one can define the graph G of a rule g by:

〈m,n〉 ∈ G ⇐⇒ g(m) =0 n.

So graphs and rules on N are equivalent. However, graphs and rules on NN are not necessarily

equivalent over RCAω
0 .

First, the existence of any graph G implies (E1) over RCAω
0 , since one can use G to define

E1 by first defining a type-2 functional F :

(Fy) :=0 (G 〈x0, y〉),

where x0 is some fixed type-1 object, and then using F to define E1:

(E1z) := (¬F (λn0.((zn) + (yn)))),

where “¬” is the (type-1) boolean negation operator. This means that RCAω
0 cannot prove

the existence of a graph on NN, whereas RCAω
0 proves the existence of type-(1 → 1) rules

for certain continuous functions, including the identity:

g(x) :=1 (λn.(xn)).

26

Conversely, (E1) proves that every type-(1 → 1) function rule g has a corresponding

type-2 graph G. Using E1, we can define G by:

〈x, y〉 ∈ G ⇐⇒ g(x) =1 y,

where we use E1 to define a functional that determines whether two type-1 objects are equal.

Going from a graph to a rule is more complicated. First, any model that does not

satisfy (E1) contains no graphs; in such models it is vacuously true that every graph has a

corresponding rule. So “every graph has a corresponding rule” does not imply (E1). Second,

there is a model of RCAω
0 + (E1) that contains a graph with no corresponding function; so

(E1) does not imply “every graph has a corresponding rule.”

To see this second fact we use a bit of computability theory. Start with the second-

order structure (ω,ARITH) whose second-order part consists of all functions corresponding

to arithmetical sets; this structure satisfies ACA0. (It is, in fact, the minimal ω-model

satisfying ACA0; see [Sim99].) Apply the proof of Theorem 2.5 to get a minimal term model

N of RCAω
0 + (E1). Note that for each type-1 set X ⊆ N in the model, the model also

contains all of X’s finite Turing jumps X(n), for n ∈ ω—this follows because the model

satisfies ACA0 and hence is closed under arithmetical definability. In particular, N contains

∅, ∅′, . . . , ∅(n),

However, N does not contain the ω-jump ∅(ω), defined by:

〈m,n〉 ∈ ∅(ω) ⇐⇒ m ∈ ∅(n),

since ∅(ω) is a type-1 object but not an arithmetical set, and the second-order part of N

consists only of arithmetical sets.

From E1 one can define the type-2 functional G:

(G 〈n0, x1, y1〉) :=0 1 ⇐⇒ y is the join of the first n Turing jumps of x.

Note that one can define, using E1, the Turing jump operator X 7→ X ′ as:

X ′ :=1 (λe0.(E1(λs0.Φ(e,X, s)))),

27

where Φ is a primitive-recursive functional that tells whether the eth Turing machine, when

given oracle X, halts within s steps on input e. One can then define G from the Turing

jump operator by primitive recursion on the code y’s index n. So G exists in any model of

RCAω
0 + (E1).

Note that if 〈x, y〉 ∈ G and 〈x, y′〉 ∈ G then y =1 y
′. For G to be a graph, it must

also contain, for every x, some 〈x, y〉; in an arbitrary model, it may not. However, since N

contains exactly the arithmetical sets, G is a graph:

N |= ∀n0 ∀x1 ∃!y1(〈n, x, y〉 ∈ G),

Now suppose, for a contradiction, that N contains a type-(1 → 1) rule g for G. From

that rule g one can define the ω-jump:

〈m,n〉 ∈ ∅(ω) ⇐⇒ ((g n ∅)m) =0 1,

a contradiction.

The axiom (E2) implies that every graph G on NN has a corresponding rule g—define g

by letting ((gx)m) be least such that for some type-1 y ⊃ 〈((gx) 0), . . . , ((gx)m)〉, we have

〈x, y〉 ∈ G. The functional E2 lets us determine whether there is such a y, and thus allows

us to make this definition.

At the same time, the choice principle QF-AC1,1 clearly suffices, over (E1), to prove that

every graph G on NN has a corresponding rule g, since:

∀x1 ∃y1(〈x, y〉 ∈ G).

In fact, this y is unique, which is why the existence of g can also be proved from the

comprehension principle (E2).

The statement “every graph has a corresponding rule” is not equivalent to QF-AC1,1,

since (E2) does not even imply Weak Countable Choice, QF-AC0,1.

Further, the conjunction of the statements “every graph has a corresponding rule” and

“a graph exists” is not equivalent to (E2). One can see this by a variation of Proposition

2.17, or by the following proposition:

28

Proposition 2.9 (RCAω
0 + (E1)). The conjunction of the statements “every graph has a

corresponding rule” and “a graph exists” is conservative over the second-order theory Σ1
1-

AC0.

Notice that we do not say that these statements imply Σ1
1-AC0—we say only that they

are conservative over Σ1
1-AC0, so their second-order consequences are strictly weaker than

the second-order consequences of (E2).

Note that our proof relies on the fact that the choice of y =1 g(x) in a graph G is unique;

we do not claim that (and have not determined whether) the higher-order schema QF-AC1,1

is conservative over Σ1
1-AC0.

Proof. Let M be a (second-order) model of Σ1
1-AC0; construct a term model N from M

as in the proof of Theorem 2.5, while also including, for every (term for a) graph G in N ,

a corresponding type-(1 → 1) constant symbol g. Since each term is finite, after adding

constant symbols g for rules at ω-many stages, the model N will have stabilized and will

satisfy “every graph has a corresponding rule.”

As in the proof of Theorem 2.5, N also satisfies RCAω
0 + (E1), so it contains at least one

graph. It remains only for us to show that the type-0 and type-1 parts of N are isomorphic

to the corresponding parts ofM. The only difference from the proof of Theorem 2.5 is that

a closed type-0 term t may contain one or more constant symbols g corresponding to graphs.

This means that for subterm s[x] of t, we must consider an additional case:

(g(λx1.s[m2/x2, . . . ,mk/xk]),

where g is one of the new type-(1→ 1) functionals we added to N . The equivalence rule is:

(g(λx1.s[m2/x2, . . . ,mk/xk]) =1 y,

for the unique y such that 〈x, y〉 ∈ G, the graph corresponding to g. Note that the definition

of G may itself refer to a rule h, so we also induct on the rank of the rule g.

29

Note also that this reduction rule relates type-1 terms, rather than type-0 terms. To get

the rule for type-0 terms, we just consider:

((g(λx1.s[m2/x2, . . . ,mk/xk])) s
′[m/x]),

where s′ is another type-0 subterm of t.

The key point is that the Σ1
1-AC schema proves that there is a type-1 sequence m 7→ ym

such that, for all m:

〈(λx1.s[m2/x2, . . . ,mk/xk]), ym〉 ∈ G.

Since G is a graph, this ym is unique, so ym =1 (g(λx1.s[m2/x2, . . . ,mk/xk])). SoM contains

a type-1 sequence:

m 7→ ym =1 (g(λx1.s[m2/x2, . . . ,mk/xk])).

The formula Φ for ((g(λx1.s[m2/x2, . . . ,mk/xk])) s
′[m/x]), assuming we have formula Ψ′

for s′, is just:

∃z0(Ψ′(x, z) ∧ (ym z) =0 y).

The rest of the proof is as before.

2.3.2 Set cardinalities

Definition 2.10. A type-(σ → 0) set of elements of type-σ is a type-(σ → 0) functional

X such that for all type-σ objects x, (Xx) =0 0 ∨ (Xx) =0 1.

In other words, we call a characteristic function a set. We sometimes write “x ∈ X” for

“(Xx) =0 1.”

Definition 2.11. A type-(σ → 0) set X of type-σ elements is countable if and only if there

is a type-(0→ σ) enumeration m 7→ xm of its contents:

x ∈ X ⇐⇒ ∃m (x =σ xm).

A type-(σ → 0) set X of type-σ elements has cardinality ≤ in if and only if there is a

type-(n→ σ) enumeration f 7→ xf of its contents:

x ∈ X ⇐⇒ ∃fn (x =σ xf).

30

A type-(σ → 0) set X of type-σ elements is finite if and only if it is countable and there

exists an N such that:

∀k > N ∃m ≤ N(xk =σ xm).

In the above definition the enumerations need not be injective.

Proposition 2.12 (RCAω
0). Every non-empty type-(n → 0) set X of type-n elements has

cardinality ≤ in.

Proof. Fix x0 ∈ X. If n = 0 then define the type-(0→ 0) enumeration m 7→ xm of X:

xm :=0

m, if m ∈ X

x0, otherwise.

If n > 0 then define the type-(n→ n) enumeration f 7→ xf :

xf :=n

λyn−1 .

(fy), if f ∈ X

(x0y), otherwise.

 .

Proposition 2.13 (RCAω
0). For all n, in+1 6≤ in.

Proof. Suppose, for a contradiction, that there is a type-(n→ (n+ 1)) enumeration f 7→ xf

of all the type-(n + 1) elements. We can use diagonalization to define a new type-(n + 1)

element x:

x :=n+1 (λfn.(xf f) + 1).

Then for every type-n object f , x 6=n+1 xf since the two disagree on input f . This is a

contradiction.

Proposition 2.14 (RCAω
0). i0 ≤ i1 ≤ i2.

Proof. The proof is similar to that of Proposition 2.4. For i0 ≤ i1, use the type-(1 → 0)

enumeration:

f 1 7→ (f0).

31

This map is surjective since it maps the constant-k function (λm0.k0) to k.

For i1 ≤ i2, use use the type-(2→ 1) enumeration:

F 2 7→ (λm0.(F (λk0.m))).

This map is surjective since it maps the type-2 functional (λx1.(f(x0))) to f .

2.3.3 Consequences of the existence of small type-2 sets and type-
3 families

Using the above definitions we have:

Proposition 2.15 (RCAω
0). 1. The existence of a countable type-2 set of type-1 objects

is equivalent to (E1).

2. The existence of a type-3 set of type-2 objects with cardinality ≤ i1 is equivalent to

(E2).

Proof. 1. Note that E1 is the singleton set consisting of the function (λm.0), which is

countable via the constant enumeration n 7→ (λm.0). To see the converse, let X be a type-2

set and let m 7→ xm be a countable enumeration of X. We first define a type-(1 → 1)

functional g by the rule:

g(x) :=1

λ〈m,n〉.
(x0 〈m,n〉), if (xn) =0 0

(xm 〈m,n〉) + 1, otherwise.


If (xn) =0 0, for all n, then g(x) =1 x0. Suppose that for some n, (xn) 6=0 0; then for every

m we have that g(x) 6=1 xm, since:

((gx) 〈m,n〉) =0 (xm 〈m,n〉) + 1 6=0 (xm 〈m,n〉).

Define E1 to be:

E1 :=2 (λx.(X(gx))).

32

2. Note that E2 is the singleton set consisting of the functional (λx.0), which trivially has

cardinality ≤ i1.. For the converse, let F be a type-3 set and let f 7→ Xf be an enumeration

of F , of cardinality ≤ i1. This case is similar to the previous case; define:

g(X) :=2

λ〈f, g〉.
(X0 〈f, g〉), if (Xg) =0 0

(Xf 〈f, g〉) + 1, otherwise,


and define E2 to be:

E2 :=3 (λX.(F(gX))).

The consequences of Proposition 2.15 for studying topology in RCAω
0 are significant. Since

the topology of countable spaces tends to be simple, we would want to consider topological

spaces consisting of objects of at least type 1 (if not higher)—that is, topologies on the

set NN. Proposition 2.15 says that the existence of any countable family of subsets of NN

implies (E2). In particular, if, in some model M of RCAω
0 , a topology has a countable basis

then it would seem that M |= (E2).

As noted in Corollary 2.6, the second-order consequences of (E2) include full second-order

comprehension. This means that the axiom (E2) is quite strong.

Note that Proposition 2.15 applies only when a sequence has a corresponding type-2 or

type-3 set. If one’s “countable basis” is in fact just a countable enumeration of sets, then

the existence of the countable basis does not necessarily imply (E2). However, the topology

generated by a countable enumeration of a basis would (under the usual definition) have a

type-(1→ 2) enumeration—so Proposition 2.15 would still apply and we would have (E2).

In fact, as discussed in Section 2.3.5, many seemingly trivial topological statements, when

applied to the set NN, are equivalent to (E2). The set NN is very flexible, and to avoid this

flexibility and try to capture the essence of reverse topology we introduce a new base theory

in Chapter 3.

33

2.3.4 What topologies does one get from RCAω
0 + (E1)?

Definition 2.16. A topology (on NN) is a type-3 family T of type-2 sets satisfying:

• ∅ ∈ T . (Here we define ∅ :=2 (λx1.0).)

• NN ∈ T . (Here we define NN :=2 (λx1.1).)

• If X, Y ∈ T then X ∩ Y ∈ T . (Here we define X ∩ Y :=2 (λx1.((Xx) · (Y x))).)

• If F ⊆ T is a type-3 family of type-2 sets, then
⋃
F , defined to be:

⋃
F :=2

λx1.

1, if ∃U2 ∈ F (x ∈ U)

0, otherwise,


exists and is in T . (Alternatively, we may drop the requirement that

⋃
F exist and

require only that if
⋃
F exists, then

⋃
F ∈ T . The results in this paper hold for either

definition.)

The axiom (E2) suffices to prove the existence of
⋃
F for every family F—in general,

the axiom (Eτ) implies Στ
∞-comprehension. However, in the absence of (E2) one cannot

necessarily assume that
⋃
F exists.

We could extend the definition of a topology to include topologies on proper subsets

of NN. However, the existence of a topology on a proper subset of NN implies (E2), so have

not examined these.

The theory RCAω
0 + (E1) suffices to prove the existence of certain topologies; however,

the only topologies whose existence it proves are essentially just topologies on a countable

space:

Proposition 2.17. If T is a topology on NN that exists in a model N of RCAω
0 + (E1),

as constructed in Theorem 2.5, then N contains a set S of elements of NN and a countable

enumeration 〈xn : n ∈ N〉 such that:

• S is a topology on N and

34

• T is {U ⊆ {xn : n ∈ N} : {n : xn ∈ U} ∈ S} × P
(NN \ {xn : n ∈ N}

)
.

In other words, the topology T corresponds to S on the sequence 〈xn : n ∈ N〉 (by the

correspondence n 7→ xn) and ignores NN \ {xn : n ∈ N}.

Proof. Let (λZ2.t[Z]) be a closed term defining T . Without loss of generality, assume that

the type-0 term t is in normal form (fully reduced); then all variables occurring in subterms

of t are of type 0.

Note that the variable Z occurs in subterms of t only on the left-hand side of an appli-

cation:

(Z si[mi, Z]),

since no constant symbols in our model take inputs of type 2. Let (Z s1), . . . , (Z sk) list all

applications in t involving the variable Z; let mi list the type-0 variables free in si.

We will prove that for every set X there is a countable sequence 〈xn : n ∈ N〉 of type-1

points such that for all sets Y :

(λn.(X xn)) =1 (λn.(Y xn)) =⇒ (T X) =0 (T Y).

In other words, any set that agrees with X on the sequence 〈xn : n ∈ N〉 is in T if and only

if X is.

For each parameter X and subterm si[mi, X], define the sequence 〈xn,i : n ∈ N〉 by the

rule:

xmi,i :=1 si[mi, X].

Fixing X, for each mi the subterm si[mi, X] is closed, so xmi,i is in our model. The definition

of xmi,i is uniform in mi and can be made in RCAω
0 , so the sequence 〈xn,i : n ∈ N〉 is in our

model.

Let 〈xn : n ∈ N〉 be a countable sequence consisting of all elements of 〈xm1,1〉, . . . , 〈xmk,k〉.

(This can be done via a computable pairing function on N, so the sequence 〈xn : n ∈ N〉 is

in our model.)

35

Now suppose that the set Y agrees with X on 〈xn : n ∈ N〉; then we will show, by

induction on subterms of t, that (T X) =0 (T Y). If not, then there is a subterm (Zsi[mi, Z])

such that for some value of mi:

(Xsi[mi, X]) 6=0 (Y si[mi, Y]).

Fix the innermost such si; since si is innermost, for all subterms sj of si and all mj:

(Y sj[mj, Y]) =0 (Xsj[mj, X]).

So, for every mi, since si[mi, Z] depends only on mi and the variable Z, we have that

si[mi, Y] =1 si[mi, X] =1 xmi,i. However, by assumption, X and Y agree on all xn and hence

on all xmi,i—a contradiction.

Now T is a topology so it contains both ∅ and NN. Let 〈zn : n ∈ N〉 be the countable

sequence for ∅, and let 〈yn : n ∈ N〉 be the countable sequence for NN. Since the sequence

〈zn : n ∈ N〉 comes from ∅, and each zn /∈ ∅, it must be the case that any set not containing

any of the zn’s is in T . Similarly, any set containing all of the yn’s is in T .

Let 〈xn : n ∈ N〉 be the sequence consisting of all yn’s and zn’s. Now if U ∈ T and V

agrees with U on 〈xn : n ∈ N〉 then V is also in T , since V is the union of the open set:

V \ {xn : n ∈ N}

(open because it excludes all zn’s), with the intersection of U and:

{xn : n ∈ N} ∪ (V \ {xn : n ∈ N})

(open because it includes all yn’s).

It remains for us to check that T yields a topology S on N. Let S be the set of all type-1

characteristic functions f such that:

{xn : (fn) =0 1} ∈ T .

Note that U ∈ T ⇐⇒ {n : xn ∈ U} ∈ S. To see that S is a topology on N, note that N

and ∅ are clearly in S, while if characteristic functions fA and fB are in S, then:

fA∩B := (λm.(fAm) · (fBm)) ∈ S,

36

since the type-2 sets corresponding to A and B are in T .

Finally, suppose F ⊆ S is a family of type-1 sets; we must show that
⋃
F exists and is

in S. Define F ⊆ T by:

F :=3 {U2 : (λm.(U xm)) ∈ F)};

this family is definable in RCAω
0 and hence exists in N . Since T is a topology, V :=2

⋃
F

exists and is open. Then: ⋃
F =1 (λm. (V xm))

is in S.

The second part of the proof of Proposition 2.17 relied on the fact that T was a topology

to show that T had a single countable sequence that it used to test all sets. However, the

first part of the proof works for all families F : if sets X and Y agree on the sequence used by

F to test X, then (F X) =0 (F Y). This fact yields another proof that (E1) does not imply

(E2). (The first proof comes from the conservation results.) Suppose, for a contradiction,

that E2 is definable from E1, and apply the first part of the proof of Proposition 2.17 to the

type-3 functional E2 and the type-2 parameter ∅.

Then we get a countable sequence 〈xn : n ∈ N〉 such that for every set X excluding all

xn’s, (E2X) =0 (E2 ∅) =0 1, a contradiction.

Further, the first part of proof works even if you add arbitrary type-2 (or lower) function-

als to N . (This is because the first part of the proof requires only that N have no functionals

that take type-2 inputs.) This fact shows that no third-order axiom can imply (E2), since

third-order axioms do not add functionals of types higher than 2.

2.3.5 Axioms and topologies on the space of type-1 objects

Using the definitions of (type-2) sets (of type-1 objects) given above, one can start to

perform reverse topology on the space NN of all type-1 objects. In this section we use

Definition 2.16 for topologies on NN, the space of all type-1 objects.

37

Proposition 2.18 (RCAω
0). (E1) is equivalent to the statement: Given a countable dense

enumeration 〈xn : n ∈ N〉 together with a type-(1 → 1) metric d, there is a countable

enumeration 〈Bn : n ∈ N〉 of a basis for the space.

Proof. ⇒: Suppose we have 〈xn : n ∈ N〉 and f . Define the enumeration 〈Bn : n ∈ N〉 of a

basis for the space by:

x ∈ B〈n,q〉 ⇐⇒ (d 〈x, xm〉) <R q,

where q is a positive rational number. The relation <R can be defined from E1; see [Koh05].

⇐: The standard metric d on R is definable in RCAω
0 , by:

(d 〈x, y〉) =1 (λn0.|(xn)− (yn)|).

One can define the sequence of rationals by:

q 7→ (λn0.q).

Suppose that there is a countable enumeration 〈Bn : n ∈ N〉 of a basis for the standard

topology on R. In particular, some BN contains 2R and is contained within the ball of radius

1R centered at 2R. Define the sequence n 7→ qn of dyadic rationals:

q0 := 2

qi+1 := qi − 2−mi+1 ,

for mi+1 > mi ≥ i least such that (λn.(qi − 2−mi+1)), a rational, is in BN . The fact that BN

is open (in the sense of the metric d) implies that there is always some such mi+1, so RCAω
0

proves that the recursively-defined sequence n 7→ qn exists.

Note that x0 :=1 (λi.qi) is a real, and that for every i, the distance between (λn.qi) and

x0 is no greater than 2−i. The rationals qi decrease monotonically to x0. Further, x0 /∈ BN ,

since if it were then BN would also contain all reals within some ε of x0—which would mean

that we would eventually choose some qi to the left of x0, a contradiction.

So BN is not everywhere ε − δ-continuous, and we can apply Proposition 3.12 from

[Koh05].

38

Proposition 2.19 (RCAω
0). The following are equivalent to (E2):

1. There exists a topology for a connected space. (I.e., the only clopen sets are ∅ and NN.)

2. There exists a topology with a dense, nowhere-dense set.

3. There exists a topology generated by a countable enumeration for a basis.

Proof. The proofs of these equivalences are all straightforward.

1. Using E2, one can define the indiscrete topology T by:

X ∈ T ⇐⇒ (X =2 ∅) ∨ (X =2
NN).

Conversely, from a connected topology T one can define E2 by:

(E2X) =0 0 ⇐⇒ (X ∈ T) ∧ ((NN \X) ∈ T) ∧ (x0 /∈ X),

where x0 is some fixed element of type 1. The set NN \X can be defined by:

(λx1.(NNx) ∧ ¬(Xx)).

2. Using E2, one can define the indiscrete topology, as well as a singleton set {x0}; then

{x0} is trivially dense and nowhere-dense. Conversely, suppose T is a topology and D ⊆ NN

is dense and nowhere-dense. Then one can define E2 by:

(E2X) =0 0 ⇐⇒ (X ∩D) ∈ T .

3. Using E2, one can define both the standard topology on R and an enumeration of

all open intervals with rational endpoints. Conversely, if T is generated from a countable

enumeration 〈Bn : n ∈ N〉 for a basis, then:

X ∈ T ⇐⇒ ∃f 1(X =2

⋃
{Bn : (fn) =0 1}),

which means that T has cardinality ≤ i1. By Proposition 2.15, the existence of T implies

(E2).

39

Proposition 2.20 (RCAω
0 + (E1)). The following are equivalent to (E2):

1. A separable topology exists.

2. A topology of first-category exists. (I.e., the space is a countable union of nowhere-

dense sets.)

3. QF-AC0,1 + a second-countable topology exists.

Proof. The proofs of these equivalences are all straightforward.

1. As in the previous proof, E2 allows one to define the indiscrete topology, which is

trivially separable. Conversely, if T has a countable dense enumeration 〈xn : n ∈ N〉 then

one can define E2 by:

(E2X) =0 0 ⇐⇒ (X ∈ T) ∧ (∀n0(xn /∈ X)).

Note that one can use E1 to handle this definition’s type-0 quantifier.

2. Over (E2), using the indiscrete topology, NN =2 {x0} ∪̇ (NN \ {x0}, a finite union

of nowhere-dense sets. Conversely, suppose we have a topology T and an enumeration

〈Dn : n ∈ N〉 of nowhere-dense sets such that NN =2

⋃
n∈NDn. Then one can define E2 by:

(E2X) =0 0 ⇐⇒ ∀n0 (X ∩Dn) ∈ T .

3. The standard topology on R is second-countable, over (E2). Conversely, suppose T

has a countable enumeration 〈Bn : n ∈ N〉 for a basis. Apply QF-AC0,1 to the formula:

∀n0∃x1(x ∈ Bn),

to get a countable dense enumeration 〈xn : n ∈ N〉. Then apply part (1), above.

The fact that the existence of so many basic topologies implied (E2) led us to consider

a new approach to higher-order reverse topology, which is outlined in the next chapter.

Intuitively, it is tricky to do topology in a theory in which does not have a set-equality

functional. That is, E2, which allows us to define functionals that distinguish between

different sets, seems like something we would want to have. However, (E2) implies the

40

second-order theory Π1
∞-CA0, and also allows us to quantify over spaces of size i1. The

axiom (E2) is very strong.

41

Chapter 3

Base theory RCAω
0 + (ATOMS) and related theories

For reverse topology, we would prefer to have a set-equality functional with weaker con-

sequences that (E2). Further, we would like to be able to consider topologies of arbitrary

cardinality—not just topologies of size i1. To that end, we apply an idea presented by

Victor Harnik in [Har87] and extend the base theory RCAω
0 by throwing in a new atomic

type, α. Elements of our topological space will be of type α; sets and families of sets will be

of appropriate higher types.

3.1 Definitions

3.1.1 Finite types

Our language is as before, with the addition of new finite types:

• 0 is an atomic type, as before.

• α is an atomic type, the type of “atoms.”

• If σ and τ are finite types, then (σ → τ) is a finite type as well.

As before, the finite types are defined inductively from the atomic types, now including α as

well as 0. We abuse notation somewhat by writing “(α+ 1)” for the type (α→ 0), “(α+ 2)”

for the type ((α + 1)→ 0), and so on.

With respect to topological statements, our elements or points will be of type α; our sets,

open or not, will be of type (α + 1); and our topologies will be of type (α + 2).

42

If τ is a finite type made up only of “0” and “→,” without “α,” then we say that τ is a

numerical type.

As before, our language consists of all variables of finite types, and for each variable type

we have ∃ and ∀ quantifiers of the corresponding types.

3.1.2 The base theory RCAω
0 + (ATOMS) and stronger theories

We define a new theory “RCAω
0 + (ATOMS),” which is conservative over and implies

RCAω
0 . The axioms of our new theory are the same as those of the old, with a few exceptions:

• The axioms for the combinators Σ and Π are extended to allow the definition of (se-

mantic) λ-abstraction for all finite types—not just those types built up from 0.

• In addition to the axioms defining type-0 equality, =0, we add axioms defining type-α

equality. Higher-order equality is treated extensionally, as before.

• We add a new axiom (A0) asserting the existence of the type-((α, α) → 0) functional

A0 (the type-α equality relation), as follows:

∀xα∀yα(x =α y ↔ ((A0 x, y) =0 1).

Note that no analogue to A0 is required for type-0 terms, since:

m =0 n↔ (1 .− [(m .− n) + (n .− m)] =0 1.

The boolean values 0 and 1 are already type-0 terms.

• We add new axioms defining a type-((α, α, 0)→ α) functional P, allowing us to build

finite, type-0-indexed lists:

∀xα∀yα∀n0[(n =0 0→ (Px y n) =α x) ∧ (n 6=0 0→ (Px y n) =α y)].

Intuitively, P allows for functionals that return different atoms based on a boolean

conditional; note that no analogue to P is required for type-0 terms, since pairing for

type-0 objects can be recursively defined.

43

• We add (infinitely many) new axioms stating that there are infinitely many distinct

atoms.

This is the base theory, RCAω
0 + (ATOMS). We have analogues An, where n > 0, to

the equality functions En for type-n elements, whose existence is asserted by corresponding

axioms (An):

(An) : ∃A(α+n)→0
n ∀Xα+n(∃yα(X(y) 6=0 0))↔ (An(X) =0 1),

(Note that, for reasons already discussed, A0 is of type ((α, α) → 0) rather than type

(α → 0).) As with En one can (in RCAω
0 + (ATOMS)) use An to define the characteristic

function of the type-(α + n) equality relation.

3.2 Conservation results for RCAω
0 + (ATOMS) and related the-

ories

Proposition 3.1. The theory RCAω
0 + (ATOMS) + (A1) is conservative over RCAω

0 .

This means that the interaction between the (A1) axiom and the numerical part of the

theory RCAω
0 + (ATOMS) is limited.

Proof. LetM be an arbitrary model of RCAω
0 . Construct a new term model, N fromM by

first including constant symbols (of the appropriate types) for all elements ofM. Also include

type-α constants for each element of some infinite set of size N: that is, include a type-α

constant corresponding to each type-0 constant. (We want A to have the same cardinality

as N, rather than just cardinality ω, to ensure that the resulting model N satisfies the

quantifier-free induction schema.)

Let N consist of all equivalence classes of (valid) closed terms using these constant

symbols as well as constant symbols defined in the new theory (e.g., R0, A0, A1, etc.). Note

that although the set of atoms has the same real-world cardinality as N, the model does

not necessarily know this: in particular, M does not contain a surjection from the set A of

atoms onto the set N of all type-0 objects. (If M contained a surjection f from A onto N,

44

then we could define E1 from A1 by:

E1 :=2 (λx1.(A1(λyα.(x(fy))))),

contradicting conservation.)

We will show that every closed term t of numerical type is equivalent to a closed term

t′ all of whose subterms are also numerical. This means that the term t′ uses only constant

symbols from M, and hence corresponds to an element of M. Further, we will show that if

t and t′ are closed terms of numerical type, both using only constant symbols fromM, that

are equivalent in N , then they are also equivalent in M. As in the proof of Theorem 2.5,

this will show conservation by showing that the numerical part of N is isomorphic to M.

As in the previous conservation proofs, once we have shown this fact it will be clear

that the resulting model N satisfies the new theory. That the resulting model N satisfies

QF-AC1,0 follows from the fact that terms of numerical type are equivalent to terms in M.

Suppose that Φ(f, n) is a quantifier-free formula, possibly with additional parameters, not

displayed, of numerical or non-numerical types, such that:

∀f 1∃n0(Φ(f, n)).

Without loss of generality, Φ is “t[f, n, . . .] =0 1” for some term t that shares Φ’s parameters.

(The parameters of Φ other than f and n are hidden in the ellipsis.) For each tuple of

parameters, t[f, n, . . .] is a closed term of type 0, which is a numerical type. By assumption,

for each tuple of undisplayed parameters, t is equivalent to a type-(1, 0) → 0 element G in

the original model, M. Since M satisfies QF-AC1,0, it contains a type-2 functional F such

that:

∀f 1((Gf (Ff)) =0 1).

So F ∈ N , as well, which means that N satisfies QF-AC1,0. That N also satisfies QF-IA

follows from the same argument—M satisfies QF-IA, and the terms involved in the QF-IA

schema are of numerical type.

Now let τ be an arbitrary numerical type, and let x be an arbitrary type-τ element of

the model N . Let t be a closed term defining x; we will show that there is a closed term s,

45

all of whose subterms are of numerical type, that also defines x. From this we can conclude

that x is defined by a constant from M, and hence that every element of N of numerical

type corresponds to an element of M.

To get such a term s, simply rewrite t using the following rules:

• Replace type-α constant ci occurring in t with a type-0 constant i.

• Replace type-α variable xi occurring in t with the type-0 variable ni; and adjust the

types of the combinators (that is, of λ-abstraction) accordingly.

Note that by the same argument used in the proof of Theorem 2.5, we may assume

that all variables occurring in t that are not of numerical type are of type α (since we

may assume that the term t is fully reduced).

• Replace (A0 (P t1 t2 t3) t4) with:

(E0 0 , t3) · (A0 t1 t4) + ¬(E0 0 t3) · (A0 t2 t4),

where E0 is the type-((0, 0)→ 0) characteristic function of the relation =0, defined by:

(E0 t1 t2) :=0 (1 .− [(t1
.− t2) + (t2

.− t1)]).

Note that any occurrence of the constant P in t must appear inside an application

involving either P or A0, so applying the above rule inductively (from the outside in)

eliminates all occurrences of P.

• Replace (A0 t1 t2) with the expression:

(E0 s1 s2),

where s1 and s2 are the type-0 terms corresponding to the type-α terms t1 and t2,

rewritten using these rules.

Now if we were to continue näıvely we would try to replace A1 with E1—which does not

work for proving conservation over the base theory RCAω
0 . However, note that the closed

terms defining type-(α + 1) elements of N are, in general, much simpler than the type-1

46

elements of M. (For example, N does not have addition and subtraction functions for

atoms.)

Replacing A1 is straightforward but requires a fair amount of string-wrangling. Given t,

we first eliminate all occurrences of P by the method given above; we then eliminate all

occurrences of A1 by the method described below; finally, we use the remaining rules above

to eliminate all subterms of non-numerical type.

Suppose t has a subterm of the form:

(A1(λyα.t′[yα, xα1 , . . . , x
α
k ; . . .])),

where the free variables of t′ may have include variables of numerical types, not displayed

(and hidden in the last ellipsis), in addition to the displayed type-α variables. By the

induction hypothesis, the constant A1 does not occur in t′.

• List all of the occurrences of A0 in t′ as (A0 s
α
1 t

α
1), . . . , (A0 s

α
n t

α
n). Note that there are

2n possibilities for values of (A0 s
α
1 t

α
1), . . . , (A0 s

α
n t

α
n). By assumption, since we have

eliminated all occurrences of P, each si and ti is either a type-α variable or a type-α

constant symbol. Replace (A1(λy.t)) by the term:∨
σ∈2n

(
A1

(
λy.

(∧
1≤i≤n

(σ(i)) · (A0 si ti) + (1− σ(i)) · ¬(A0 si ti))

)
∧ t′′

))
,

where t′′ is derived from t′ by replacing the subterm “A0(si, ti)” with either “0” or “1,”

depending on the value of σ(i). Here we are using “∨” and “∧” as boolean operators

on 0’s and 1’s:

(s1 ∨ s2) :=0 sign(s1 + s2),

and:

(s1 ∧ s2) :=0 s1 · s2,

while σ(i) is either the constant 0 or the constant 1, depending on σ and i.

Note that all subterms of the resulting term t′′ are of numerical type. To save space,

we will write:

(A
σ(i)
0 si ti)

47

to abbreviate:

(σ(i)) · (A0 si ti) + (1− σ(i)) · ¬(A0 si ti).

All we have done by rewriting (A1(λy.t′)) in this way is to separate the term into two

parts: the first of which is a finite conjunction of A0’s and ¬A0’s, and the second of

which contains subterms only of numerical types.

• Noting that t′′ does not depend on y (since it has no non-numerical subterms), we can

rewrite (A1(λy.t′)) again as:

∨
σ∈2n

[(
A1

(
λy.

∧
1≤i≤n

(
Aσ(i)

0 si ti

)))
∧ t′′

]
, (3.1)

pulling t′′ outside of the A1. We now concern ourselves solely with the finite conjunction

of A0’s and ¬A0’s and ignore t′′.

• If neither si nor ti is the variable y then we may pull the corresponding (A0 si ti) or

¬(Asi ti) outside of the A1. Without loss of generality, assume that for every variable

xj in x1, . . . , xk, exactly one of (A0 xj y) or ¬(A0 xj y) occurs in the first part of the

term in equation (3.1). Listing the pairs to which A0 is applied as:

(x1, y), . . . , (xk, y), (cik+1
, y), . . . , (cim , y), (xim+1 , xi′m+1

), . . . , (xin , xi′n),

we can rewrite (A1(λy.t′)) once again as:

∨
σ∈2n

[(
A1

(
λy.

∧
1≤j≤k

(
A
σ(j)
0 xj y

)
∧
∧

k<j≤m

(
A
σ(j)
0 cij y

)))
.

∧
∧

m<j≤n

(
A
σ(j)
0 xij xi′j

)
∧ t′′

]
.

• Finally, we will eliminate the constant A1 from (A1(λy.t′)) by replacing, for each σ,

the subterm: (
A1

(
λy.

∧
1≤j≤k

A
σ(j)
0 (xj, y) ∧

∧
k<j≤m

A
σ(j)
0 (cij , y)

))
, (3.2)

with an equivalent term in which A1 does not occur.

48

Note that the term in equation (3.2) equals 1 if and only if there is an atom y that

satisfies all of (A
σ(j)
0 xj y) and (A

σ(j)
0 cij y) simultaneously. And these are all satisfied

simultaneously if and only if:

– For all j, j′ ≤ k such that σ(j) = σ(j′) = 1, thus requiring that both xj and xj′

be equal to y, (A0 xj x
′
j) =0 1.

– For all j, j′ ≤ k such that σ(j) 6= σ(j′), thus requiring that exactly one of xj and

xj′ be equal to y, (A0 xj xj′) =0 0.

Note that the third possibility, σ(j) = σ(j′) = 0, may be ignored, since the set of

atoms is infinite. (So there is always a y that does not equal either xj or xj′ .

– For all j ≤ k and k < j′ ≤ m such that σ(j) = σ(j′) = 1, thus requiring that

both xj and cij′ be equal to y, (A0 xj cij′
) =0 1.

– For all j ≤ k and k < j′ ≤ m such that σ(j) 6= σ(j′), thus requiring that exactly

one of xj and cij′ be equal to y, (A0 xj cij′) =0 0.

Again, the third possibility, σ(j) = σ(j′) = 0, may be ignored, since the set of

atoms is infinite.

There are only finitely many of these conditions, and none of them depends on y. So

we may rewrite the first part of the conjunction using only these conditions. Then the

subterm to which A1 is applied in the resulting, rewritten, term, may be pulled outside

of A1. This allows us to eliminate A1, since if y does not occur in a term w then:

(A1(λy.w)) =0 w.

Since the closed term s resulting from rewriting t using the above rules contains no

subterms of non-numerical type, the element represented by s is in M. Since the rewriting

rules above clearly yield an equivalent term, s ≈ t, so the element represented by t is inM.

Finally, suppose that x and y are distinct elements of M; we will show that they are

distinct elements of N , completing the proof. Let s be a closed term for x and let t be a

closed term for y; suppose s ≈ t by some finite list of syntactic and semantic reductions.

49

Note that the only new constants we add, besides constants for atoms, are for the functionals

A0, A1, and P—so our only new semantic rules are for these three functionals. However,

each of A0, A1, and P yields exactly one output for every input, so the proof from Theorem

2.5 works and s ≈ t in M, contradicting x 6= y.

However, if we also throw in the axiom (A2), the resulting theory is not conservative over

RCAω
0 :

Proposition 3.2 (RCAω
0 + (ATOMS)). (A2) + (A1) implies (E1).

Proof. Let f be an arbitrary type-1 function. Let F be the type-(α + 2) functional defined

by:

F ∈ Ff ⇐⇒ ∀xα∀yα((Fx) =0 (Fy) ∧ (f(Fx)) 6=0 0).

That is, F ∈ Ff if and only if F is a constant function and f applied to that constant is not

zero.

The theory RCAω
0 + (ATOMS) + (A1) proves the existence of F , since it was defined

using only type-0 equality and type-α quantification. Note that the definition of F is uniform

in f , so in fact our theory proves the existence of the type-(1→ (α + 2)) map f 7→ Ff .

Suppose there is some number n ∈ N such that (f n) 6=0 0. Then RCAω
0 + (ATOMS)

proves the existence of a type-(α + 1) functional F defined by:

F :=α+1 (λxα.n).

Note that F ∈ Ff . If, instead, (f n) =0 0 for every n ∈ N then no type-(α+ 1) functional F

is in F , since no functional F could satisfy “(f(Fx)) 6=0 0,” for any x.

So we have:

∃n0((fn) 6=0 0) ⇐⇒ ∃Fα+1((Ff F) 6=0 0).

This means we can define the functional E1 from A2 and the functional f 7→ Ff by the rule:

(E1 f) :=0 (A2Ff),

thus implying (E1).

50

Note that the previous proposition assumed both (A2) and (A1): although (E2) implies

(E1), it is not the case that (A2) implies (A1).

Proposition 3.3 (RCAω
0 + (ATOMS)). (A2) does not imply (A1).

Proof. Let M be a minimal ω-term model for RCAω
0 + (ATOMS) + (E1) + (A2); we will

show that M does not contain the functional A1. (The model M is just a term model,

built from the second-order structure (ω,ARITH) by including constant symbols for E1 and

A2, as in the proof of Theorem 2.5. The first-order part of the structure (ω,ARITH) is

the standard ω; the second-order part consists of all functions corresponding to arithmetical

sets.)

Suppose not; then A1 is defined by a term of the form:

(λXα+1.t[X]),

where t is a type-0 term with only X free. By assuming that t is in normal form, we have

that no type-α variable occurs in t; this is the key fact.

This fact follows from the same argument used in the proof of Theorem 2.5: any type-α

variable x in t must occur freely in a subterm of t, and must be bound to a λ—which must

in turn be captured by a function constant of type ((α → σ)→ τ) for some types σ and τ .

However (since we do not include a constant for A1), there is no such function constant in

M, so no type-α variable occurs in t.

Note also that if X were to occur in t on the right-hand side of an application, then the

left-hand side would have to be a term of type ((α → 0) → τ) for some type τ . However,

we just noted thatM contains no function constant of any such type. So, by assuming that

t is in normal form we have that X must occur only on the left-hand sides of applications,

the right-hand sides of which must be type-α terms not involving variables.

Using the same technique we used in the proof of Proposition 3.1, we may assume that

no P’s occur in t. This means that the only occurrences of X in t are of the form (Xci)

where ci is some type-α constant. So any A2’s occurring in t are irrelevant: the functional

defined by (λX.t[X]) decides what number to output on input X based solely on the outputs

51

of finitely many (Xci)’s, where ci is one of finitely many atom constants c1, . . . , ck occurring

in t.

This yields a contradiction—(λX.t[X]) cannot define A1, since it cannot distinguish

between ∅ and the singleton set {x} for any x /∈ {c1, . . . , ck}.

Finally, the implication (A2) + (A1)⇒ (E1) is sharp:

Proposition 3.4. The theory RCAω
0 + (ATOMS) + (A2) + (A1) is conservative over RCAω

0

+ (E1).

Proof. Following the proof of Proposition 3.1, let M be an arbitrary model of RCAω
0 +

(E1); let N be the term model built up from constants for every element of M, new type-α

constants ci, for i ∈ N, and new type-(α + 1) constants for functionals with finite support,

as defined below.

We include type-(α+ 1) constant F in N if and only if there is, inM, a finite sequence of

pairs of integers, coded by σ ∈ N, defining a finite partial function from N into N such that:

F(ci) =0

σ(k + 1)(1), if ∃k0 < (|σ| − 1) (σ(k + 1)(0) =0 i)

σ(0)(1), otherwise.

Here |σ| denotes the length of the finite string coded by σ.

The code σ specifies the value of (F ci) for finitely many (in the sense of the model) i,

and specifies σ(0)(1) to be the value of (Fx) for all other x. We say that the support of

such a code σ is {σ(k + 1)(0) : k < |σ| − 1}. (Note that the support is a finite (in the sense

of the model) list of integers—not a finite list of atoms. Note also that N is not necessarily

aware of the correspondence between the type-0 index i and the type-α atom ci.)

Add the constant symbols A0, A1, and A2, and close N under definability. As in the

proof of Proposition 3.1, we will show that the submodel of N consisting of only (equivalence

classes for) closed numerical terms of N is isomorphic to M, using various rewriting rules;

this part is similar to the proof of Proposition 3.1. The basic idea is that we included in N

type-(α + 1) constants only for functionals that correspond to type-1 functions with finite

52

support. Quantifying over the set of all type-(α+1) objects should correspond to quantifying

over the set of all type-0 objects, since type-1 functions with finite support can be coded, in

RCAω
0 , by type-0 integers.

(The potential problem is that additional type-(α + 1) functionals might be definable.

As we show below, it turns out that this does not happen.)

Any closed numerical term t can be rewritten to have only numerical subterms, using

(E1) and the following rules:

• replace (A0 x
α yα) with (E0 i

0 j0);

• replace (A1 (λx.t)) with (E1 (λi.t′)), where t′ is rewritten using these rules;

• replace (Fx) with σ̃(i), where:

σ̃(i) :=

σ(j + 1)(1), if ∃j < (|σ| − 1) (σ(j + 1)(0) =0 i,)

σ(0)(1), otherwise,

and σ is the type-0 code corresponding to the type-(α + 1) constant F.

• replace (A2 (λF.t)) with (E1 (λσ.t′)), where t′ is rewritten using these rules. Here σ

ranges over all type-0 codes for (type-1) finite-support functions on N.

As in the proof of Proposition 3.1, once we have shown that the numerical part of N is

M, we will have shown that the axioms QF-AC0,1 and QF-IA hold in N . Also, as in the

proof of Proposition 3.1, once we have shown that each closed term of numerical type is

equivalent to some element ofM, we will have that that element is unique. This is because

the only new constants we add, besides constants for atoms, are A0, A1, A2, P, and constants

for type-(α+ 1) functionals—the semantic rules for all of which yield exactly one output for

every input, and which respect extensional equality. For example, we define the equivalence

relation ≈ so that if (Fx) =0 (Gx), for all type-α inputs x ∈M, then (A1 F) ≈ (A1G).

By its definition, N is closed under the combinators and satisfies (A2) and (A1). It

remains for us to show that every closed type-(α + 1) term is equivalent to a type-(α + 1)

53

constant—thus showing that:

(A2 (λF.t)) ≈ (E1 (λσ.t′)),

and thus that the last rewriting rule, above, is valid.

Let (λx.t[x]) be an arbitrary closed type-(α + 1) term; we will show, by induction, that

there is a finite sequence σ ∈ N corresponding to the term (λx.t[x]), thus showing that this

term is equivalent to a constant.

Applying the rewriting rules given above, we get a closed type-1 term (λn0.t′[n]), all

of whose subterms are of numerical type. We want to show that the type-1 term (λn.t′)

corresponds to a finite code—i.e., that the support of this term is finite.

In fact, the support of (λn.t′) is the union of (a) the supports of codes in t′ corresponding

to type-(α + 1) constants in t with (b) all indices i in t′ corresponding to type-α constants

ci in t. To see this, let y and z be arbitrary type-α constants whose indices are not included

in this set; we will show that t[y/x] =0 t[z/x].

Let ϕ be the permutation on the space A of type-α elements of N that swaps y and z

but fixes all other elements. Let Φ be the permutation on type-(α + 1) elements F of N ,

induced by ϕ:

(Φ(F)x) = (Fϕ−1(x)).

(Both ϕ and Φ are in M, although this fact is irrelevant for the proof.)

Now if s is any type-0 subterm of t containing various free type-α variables x1, . . . , xk, as

well as various type-(α + 1) variables X1, . . . , Xm and type-0 variables n, then:

s[x1/x1, . . . ,xk/xk; X1/X1, . . . ,Xm/Xm; n/n]

=0 s[ϕ(x1)/x1, . . . , ϕ(xk)/xk; Φ(X1)/X1, . . . ,Φ(Xm)/Xm; n/n]. (3.3)

(By assuming that s is a subterm of t we ensure that y and z occur neither as type-α

constants in s nor in the support of any constant occurring in s.) The proof is by induction

on terms. For simplicity we will sometimes write “t[x],” below, in place of “t[x/x].”

Note that variable xi occurs in s only in primitives of the form:

54

• (Fxi), where F is a type-(α + 1) constant: by assumption, neither y nor z are in F’s

support, so ϕ is the identity on F’s support, and so (Fxi) =0 (Fϕ(xi)).

• (A0 xi c), where c is a type-α constant: by assumption, c 6= y, z, so (A0 xi c) =0

(A0 ϕ(xi) c).

• (A0 xi xj), where xj is another type-α variable: since ϕ is a bijection, xi =α xj if and

only if ϕ(xi) =α ϕ(xj), so (A0 xi xj) =0 (A0 ϕ(xi)ϕ(xj)).

• (Xjxi), where Xj is a type-(α + 1) variable: by definition, (Xj xi) =0 (Φ(Xj)ϕ(xi)).

And variable Xi occurs in s only in primitives of the form:

• (Xixj), where Xj is a type-(α + 1) variable: this is the previous case.

• (A1Xi): since ϕ is a bijection, (A1 Xi) =0 (A1 Φ(Xi)).

• (Xic), where c is a type-α constant: by assumption, c 6= y, z, so (Xi c) =0 (Φ(Xi) c).

We have two induction cases: (A1 (λxi.s[x;X;n])) and (A2 (λXi.s[x;X;n])). The hy-

pothesis holds in the first case since ϕ is a bijection, and in the second case since Φ is a

bijection. Formally, in the first case we have:

(A1 (λxi.s[x; X; n])) =0 (A1 (λxi.s[ϕ(x1), . . . , ϕ(xi), . . . , ϕ(xk); Φ(X1), . . . ,Φ(Xm); n]))

=0 (A1 (λxi.s[ϕ(x1), . . . , xi , . . . , ϕ(xk); Φ(X1), . . . ,Φ(Xm); n])).

The second case is similar.

Applying equation (3.3) to t[x], we have that t[x] =0 t[ϕ(x)], for all x ∈ A, so t[y] =0

t[z].

3.3 Topology

3.3.1 Topological spaces

A topological space (X, T) is a type-(α+ 1) characteristic functional X together with

a type-(α + 2) characteristic functional T satisfying:

55

• If U ∈ T then U ⊆ X. (This is a nice requirement to have, and costs us nothing in

theories including (A1).)

• ∅ ∈ T and X ∈ T .

• If U, V ∈ T then U ∩ V ∈ T .

• If F ⊆ T then
⋃
F exists and

⋃
F ∈ T . (Alternatively, we may drop the requirement

that
⋃
F exist and require only that if

⋃
F exists,

⋃
F ∈ T . The results in this paper

hold for either definition.)

Note that, a priori, it is possible, in models not satisfying (A2), to have a family F of sets

without having
⋃
F := {x : ∃U ∈ F(x ∈ U}. Our definition of “topology” requires that the

unions of all open families exist; note that the existence of unions of open families does not

necessarily imply (A2).

That (A2) implies the existence of the set
⋃
F follows from using A2 to defining

⋃
F ,

as: ⋃
F :=α+1

λx.
1, if ∃Y α+1 ∈ F ((Y x) =0 1)

0, otherwise

 .)

3.3.2 Product spaces

Suppose we have topological spaces (X, TX) and (Y, TY). Suppose we also have:

1. a type-(α, α) → α bijection f from X × Y onto Z (i.e., for all x ∈ X and y ∈ Y ,

f(x)(y) ∈ Z);

2. a type-(α→ α) function gX from Z onto X; and

3. a type-(α→ α) function gY from Z onto Y .

Then we say that Z is the product set X × Y .

Note that the real product set X × Y is a subset of A×A; however, the pairing function

f and projection functions gX and gY give us in A, via Z, an isomorphic copy of X × Y

56

that is a subset of A. This is helpful, because the axioms we consider deal only with A and

not with finite products of A. For convenience, we use “〈x, y〉” to refer to f(x)(y); to avoid

confusion, we use “(x, y)” to refer to the corresponding element of A× A.

Suppose now that Z, the product set X×Y , has a topology TZ satisfying the two axioms:

∀W ∈ TZ ∀x ∈ W ∃U ∈ TX ∃V ∈ TY (x ∈ U × V ⊆α+1 W),

and:

∀U ∈ TX ∀V ∈ TY ∃W ∈ TZ(W =α+1 U × V),

where here “U × V ” refers to the subset of Z:

{〈x, y〉 : x ∈ U ∧ y ∈ V }.

Then we say TZ is the product topology on Z (= X × Y).

Note that by definition the product topology is generated by the basis of open rectangles

U ×V . Since “U ×V ,” as a subset of X×Y , is definable in RCAω
0 + (ATOMS), the product

topology must contain all open rectangles (in the sense of the model); it may also (and

usually will) contain additional open sets.

In the following sections we will take RCAω
0 + (ATOMS) + (A1) to be our base theory;

inside each model of this theory, a product topology is unique. To see this, suppose that

both TZ and T ′Z are topologies satisfying the two axioms above and generated by the same

open rectangles. To obtain a contradiction, let W ′ ∈ T ′Z be an set open in the topology T ′Z
but not in the topology TZ . Then the open family:

F := {W ∈ TZ : W ⊆α+1 W
′},

exists, since it can be defined using A1. Since both TZ and T ′Z are product topologies, they

both contain all open rectangles, so
⋃
F =α+1 W

′, and so W ′ ∈ TZ , which contradicts our

assumption that it was not.

57

3.3.3 Compact spaces

A sequence of sets is a type-(0→ (α+1)) functional 〈Xn : n ∈ N〉. A finite sequence

of sets is a sequence of sets, together with a number N ∈ N; we write this 〈Xn : n < N〉.

We interpret 〈Xn : n < N〉 to be the (finite) subsequence of 〈Xn : n ∈ N〉 consisting of the

first N sets.

Note that a sequence of sets is a type-(0→ (α+1)) functional and thus does not fit nicely

into our hierarchy of axioms (A1), (A2), etc. However, a finite sequence of sets is equivalent

to a type-(α + 1) functional FX,N—which does fit nicely into our axiom hierarchy—of the

form:

FX,N(x) := 〈X0(x), X1(x), . . . , XN−1(x)〉,

allowing us to use this latter formula as the definition. (Here we use 〈. . . 〉 to refer to some

type-0 pairing/finite-list functional definable in RCAω
0 .) In the former definition, given a

type-0 index n < N , the finite sequence of sets returns the nth set in the sequence; in the

latter definition, given a type-α element x, the finite sequence of sets returns an N -tuple of

zeros and ones giving the element x’s membership in all N sets.

One can pass between the two definitions via two functionals that can be defined in RCAω
0

+ (ATOMS). (This is just the standard trick of hiding a finite number (in the sense of the

model) in the output of a type-(σ → 0) functional.)

Lemma 3.5 (RCAω
0 + (ATOMS)). There are a type-(((0→ (α+1)), 0)→ (α+1)) functional

G and a type-((α + 1)→ ((0→ (α + 1)), 0)) functional H such that:

G(〈Xn : n < N〉) = FX,N ,

and:

H(FX,N) = 〈Xn : n < N〉.

Proof. Define G by primitive recursion, using helper function G′:

G′ (〈Xn : n < N〉) (x, 0) :=0 〈〉; (the empty string)

G′ (〈Xn : n < N〉) (x, n+ 1) :=0 G′(x, n)̂〈Xn(x)〉.

58

(The functional G′ can be defined using R0.) Then define:

G(〈Xn : n < N〉)(x) := G′(〈Xn : n < N〉)(x,N),

and note that FX,N is G(〈Xn : n < N〉).

Define:

H(FX,N)(n)(x) :=0 (〈Yn : n ∈ N〉,M),

where M = |(FX,N(x0))|, the length of the finite type-0 string (FX,N(x0)), for some fixed x0,

and 〈Yn : n ∈ N〉 is given by:

〈Yn : n ∈ N〉(m)(x) =

(FX,N(x))m if m < M ;

0 otherwise.

Since the operations on finite strings of numbers can be defined in RCAω
0 , RCAω

0 + (ATOMS)

proves the existence of the functional H.

A topological space (X, T) is compact if and only if for every open cover F ⊆ T there

is a finite sequence of sets 〈Un : n < N〉 such that:

• ∀n (Un ∈ F); and

• ∀x ∈ X ∃n (x ∈ Un).

In other words, (X, T) is compact iff every open cover has a finite subcover.

3.4 Some reverse-mathematical results in RCAω
0 + (ATOMS) and

related theories

3.4.1 The product of two compact spaces

It is a theorem of ZF that the product of any two compact spaces is compact. Tychonoff’s

Theorem, which requires the Axiom of Choice, further states that any product, possibly

infinite, of compact spaces is compact. The reverse-mathematical strength of the latter

theorem has been studied (it is equivalent, over ZF, to the Axiom of Choice; see, e.g., [Jec73],

59

problem 2.6.9, on p. 26), but to my knowledge no one has studied the former theorem in

the context of reverse mathematics.

In general, ZF has served as a suitable base theory for the reverse-mathematical examina-

tion of choice principles. However, the former theorem follows from a comprehension axiom,

which means that it holds in ZF. Traditional, second-order, reverse mathematics provides

a weaker base theory in which one can study the consequences of comprehension axioms.

However, “compactness” is a third-order (over atoms) concept and thus cannot be expressed

(let alone studied) in traditional, second-order reverse mathematics, except through indirect

codes. The former theorem is a good candidate for higher-order reverse mathematics.

The proof that the product of two compact spaces is compact given in Munkres’s Topology

[Mun75] goes through in RCAω
0 + (ATOMS) + (A2) + (A1).

Proposition 3.6 (RCAω
0 + (ATOMS) + (A2) + (A1)). The product of two compact spaces

is compact.

Proof. Let (X, TX) and (Y, TY) be compact spaces; let (X × Y, T) be a product space for

them. Let F ⊆ T be an arbitrary open cover of X × Y .

For each x ∈ X, the family Fx of open subsets of Y :

Fx := {V ∈ TY : ∃W ∈ F (x ∈ W ∧ V ⊆α+1 {y : 〈x, y〉 ∈ W}) },

definable using A2, is an open cover of Y . Since Y is compact, the cover Fx has a finite

subcover 〈Vn : n < N〉. By the definition of Fx, for every n < N there exists a subset

Wn ∈ T of the product space X × Y such that Vn is a subset of the intersection of Wn with

the fiber {x} × Y . Applying (A2) and QF-IA, given 〈Vn : n < N〉 there is a corresponding

finite sequence 〈Wn : n < N〉 of elements of F covering the fiber {x} × Y .

So we have:

∀x ∃〈Wn : n < N〉 ((∀n (Wn ∈ F)) ∧ (∀y ∃n(〈x, y〉 ∈ Wn))).

This says that every fiber {x} × Y is covered by a finite subcollection of F . Following

Munkres we now project 〈Wn : n < N〉 onto X and take the intersection of the projection.

60

The axiom (A2) is sufficient to prove that the intersection of finitely many open sets is open;

since the intersection contains x, it must also be non-empty. Formally, we have:

∀x ∃U ∈ TX ∃〈Wn : n < N〉 as above

(
U ⊆α+1

⋂
n<N

{z : ∃y (〈z, y〉 ∈ Wn)}

)
.

(Clearly (A1) and (A2) suffice to prove the above logical statement.) So the collection

F ′ ⊆ TX of all such open subsets U of X is an open cover of X. Since X is compact, F ′ has

a finite subcover 〈Un : n < M〉.

Then for each k < M there is a finite sequence 〈W k
n : n < Nk〉 the intersection of whose

projection onto X contains Vk and all of whose elements are in F . This gives us a finite

subcover of X × Y , proving compactness.

However, in the absence of (A2), the product of two compact spaces need not be compact.

3.4.2 RCAω
0 + (E1) + (ATOMS) + (A1) does not imply that the

product of two compact spaces is compact

We construct a minimal term model M (which is an ω-model) of RCAω
0 + (ATOMS)

+ (E1) + (A1), using the standard term model construction as in the conservation proofs.

As in the proof of Theorem 2.5, we include a constant symbol for µ (rather than E1); in

addition, we include the following constants:

• Countably many type-α constants di, for i ∈ ω, representing the elements of our

topological spaces and an “error” atom.

• Three type-(α+1) constants A, B, and C representing characteristic functions of three

disjoint, countably infinite sets of atoms.

The constants A and B are intended to represent disjoint copies of Q∩ (0, 1), between

which the model has no bijection. The constant C is intended to represent a copy of

of the product set A×B (as defined in section 3.3.2).

• Two type-(α → α) constants, πA and πB, representing projections from C onto A

and B, and one type-((α, α) → α) constant, 〈·, ·〉, representing the pairing function

61

from A × B onto C. These constants satisfy the axioms from section 3.3.2. When

given an invalid input, these three functions return the “error” atom. (E.g., (πB x) =α

error ⇐⇒ x /∈ C.)

• For each open interval contained in Q ∩ (0, 1) (with rational or irrational endpoints),

a type-(α + 1) constant for a copy ⊆ A and a copy ⊆ B. Similarly, for each open

rectangle contained in (Q ∩ (0, 1))2, a type-(α + 1) constant for a copy ⊆ C. These

constants will be the basic open sets for the respective topological spaces.

• Three type-(α + 2) constants TA, TB, and TC, with the interpretation that for every

type-(α + 1) functional U in the model, U ∈ TA if and only if (a) U ⊆α+1 A and (b)

U corresponds to an open subset of Q∩ (0, 1), in the standard topology; and similarly

for TB and TC. We will show, in Lemma 3.10, that all open sets U are finite unions of

open intervals or rectangles.

• One type-(α + 2) constant F whose interpretation is as follows. Let cn = 1− (1/πn),

for n ∈ ω, defined outside of the model. Then {cn : n > 0} is a sequence of irrational

numbers converging to 1. F represents the subfamily of TC consisting of, for each

n, the (equivalence classes of terms corresponding to the) three clopen rectangles:

(cn, cn+1)× (cn, cn+1), (cn+1, 1)× (cn, cn+1), and (cn, cn+1)× (cn+1, 1). (In other words,

for each n the family F contains all but the upper-right rectangle (cn+1, 1)× (cn+1, 1).)

Clearly F covers C, and just as clearly it does not contain a finite subcover. So, if we

can show that M |= “TC is a topology,” we have that M |= “TC is a topology that is

not compact.”

Note that if TA, TB, and TC are topologies then TC is the product topology on C = A×B,

since it is generated by open rectangles from A×B.

The term model consists of (equivalence classes of) closed terms involving the various

constants listed above. We have the following lemma, which is informative if not especially

relevant to the subsequent proof:

62

Lemma 3.7. In the resulting term model, if f is any type-(α→ α) function such that f � A

maps A into B, then f � A has finite range.

(Note that, by symmetry, the same holds with “A” and “B” swapped.) This lemma says

that although A and B represent copies of the same set, the model does not know this.

Proof. Let f be an arbitrary function satisfying the lemma’s hypotheses; let:

(λxα.P(s[x] t[x] Ax))

be a type-(α→ α) term defining f . (The idea here is that t[x] defines f on domain A, while

s[x] defines f outside of A. We care only about t[x].)

Recall that the constants included in our term model that output elements of type α are:

• the type-(α→ α) projection functions πA and πB,

• the type-((α, α)→ α) pairing function 〈·, ·〉, and

• the type-((α, α, 0)→ α) finite-list function P.

(Of these, only πB and P map into B, since A, B, and C are all pairwise disjoint.) If a

type-α term does not begin with one of these four constants, then it must be some type-α

constant d or some type-α variable y.

We first show that we may ignore the function πB. For (πB t
′[x]) to yield an output in

B the input t′[x] must be in C. (Otherwise, πB yields “error.”) If t′[x] ∈ C then one of the

following must be true:

• t′[x] ≡ c, for some constant c ∈ C,

• t′[x] ≡ 〈t1[x], t2[x]〉, or

• t′[x] ≡ (P t1[x] t2[x] t3[x]), where t1 and t2 are of type α, and t3 is of type 0.

In the first case we can replace “(πB c)” with “b,” where b is the type-α constant in B

such that b =α (πB c). (So b ≈ (πB c).) In the second case we can replace πB〈t1[x], t2[x]〉

with the equivalent subterm t2[x]. In the third case we can rewrite (πB (P t1[x] t2[x] t3[x]))

as (P (πB t1[x]) (πB t2[x]) t3[x]), at which point we can apply induction.

63

Since we may assume that t[x] is not of the form (πB t
′[x]), we have that t[x] is either

some constant b, the variable x, or of the form (P t1[x] t2[x] t3[x]).

Note that f(A) ⊆ B, so f is not the identity—which means that t[x] 6≡ x. If t[x] ≡ b

for some type-α constant b ∈ B then we’re done. Otherwise, we are left with exactly one

possibility: t ≡ (P t1[x] t2[x] t3[x]), where t1 and t2 are of type α, and t3 is of type 0. Applying

induction, we can repeat the above argument for both t1[x] and t2[x] to show that each of t1

and t2 is either a constant or of the form (P t′1[x] t′2[x] t′3[x])); this completes the proof.

The concepts used in the proof of the following technical lemma also appear in subsequent

proofs:

Lemma 3.8. Let G be one of the five type-(α+2) constants A1, TA, TB, TC, or F . Let t be a

type-0 term with type-α variables y and x1, . . . , xk free, as well as type-0 variables n1, . . . , nm

free, and suppose that none of the five type-(α + 2) constants occurs in t. Then the term:

(G (λy.t[y;x1, . . . , xk;n1, . . . , nm]))

is equivalent to a term in which none of the five constants occurs.

Note that this lemma relies on our choice of model—in particular, on the fact that we

include type-(α+ 1) constants only for open and clopen intervals in A and B and rectangles

in C.

Proof. Using the argument from Proposition 3.1, we may assume that P does not occur in t.

The constants, other than P, that take inputs of type α and return output of type α are

πA, πB, and 〈·, ·〉. Not all syntactically-valid combinations involving these constants are se-

mantically valid: for example, 〈x1, (πA y)〉 is invalid (that is, it always returns “error”). Also,

certain combinations are equivalent to simpler terms: for example, (πB 〈y, x2〉) is equivalent

to the simpler, normal-form, term x2; while (πA c), where c ∈ C is a type-α constant, can

be replaced by a type-α constant for an element of a.

64

The only combinations involving these three constants that we need to consider are: (1)

(πA x) and (2) (πB x), where x is a type-α variable; and (3) 〈s, s′〉, where s is a type-α

constant c, a type-α variable x, or πAx; and s′ is either c′, x′, or (πB x
′).

The only other constants that take inputs of type α are the type-(α + 1) constants A0

and those constants representing open intervals/rectangles.

We use “v,” below, to denote a type-α term that is (1) a constant, (2) a variable other

than y, or (3) πA or πB applied to a variable other than y. Without loss of generality y

occurs only in the following primitive subterms of t:

• Primitive subterms involving A0:

– (A0 y v).

– (A0 (πA y) v) or (A0 (πB y) v).

(Note that we need not consider (A0 〈s, t〉u), since it is equivalent to (A0 s (πA u)) ∧

(A0 t (πB u)).)

• Primitive subterms involving a type-(α + 1) constant D:

– (D y).

– (D (πA y)) or (D (πB y)).

– (D 〈y, v〉) or (D 〈v, y〉). (Note that in the first case v cannot be πA applied to a

variable; in the second case v cannot be πB applied to a variable.)

– (D 〈(πA y), v〉) or (D 〈v, (πB y)). (The same note applies here.)

Since, by assumption, no type-((α+ 1)→ σ) constants occur in t we may assume that every

type-α variable x that occurs in t is free in t. (If x were not free in t then it would be bound

to a λ, and that λ-expression would have to be captured by a constant of type-((α+1)→ σ),

for some type σ. But no such constant can occur in t.)

Although t is an arbitrary type-0 term, its dependence on the parameter y is captured

by a finite tuple of 0’s and 1’s, showing for each primitive subterm occurring in t whether

65

that primitive returns 0 or 1 on input y. If there are n such primitives occurring in t then

there are only 2n possible values for this tuple.

Let P1, . . . , Pn list all such primitives occurring in t; let σ ∈ 2n be an arbitrary finite

string of zeros and ones. As in the proof of Proposition 3.1, we write P 1
i for Pi and P 0

i for

¬Pi. Let sσ be the type-0 term corresponding to the finite conjunction of primitives:

sσ :=
∧

1≤i≤n

P
σ(i)
i .

(Here we define ∧ and ∨ as in the proof of Proposition 3.1—sσ is a type-0 term.)

Let tσ, corresponding to sσ, be derived from t by replacing each primitive Pi occurring

in t with the constant 0, if σ(i) = 0, and the constant 1, if σ(i) = 1. Since every type-α

variable in t is free in t, the only type-α variables occurring in sσ are y and x1, . . . , xk. So

we can rewrite the type-0 term t as:

t[y;x;n] ≡
∨̇
σ∈2n

(sσ[y;x] ∧ tσ[x;n]).

(Note that the disjunction
∨
σ∈2n is finite.)

Now y does not occur in tσ, while the ni’s do not occur in sσ. Also, for each assignment

y to y and x to x there is exactly one tuple σ such that sσ[y; x] =0 1 (which is why the

disjunction has a dot over it). So we have:

(G (λy.t[y;x;n])) ≡

(
G

(
λy.

∨̇
σ∈2n

(sσ[y;x] ∧ tσ[x;n])

))
.

Now our five type-(α + 2) constants distinguish only between the cases tσ =0 0 and

tσ 6=0 0. Let τ ∈ 2(2n) be an arbitrary tuple, where τ(σ) is intended to correspond to the

value of tσ. Abusing notation somewhat, we also use “τ(σ)” to denote the type-0 constant,

either 0 or 1, corresponding to τ(σ). Using the above technique, we can move tσ outside

66

of G:(
G

(
λy.

∨̇
σ∈2n

(sσ[y;x] ∧ tσ[x;n])

))

≡
∨̇

τ∈2(2n)

([∧
σ∈2n

tτ(σ)
σ [x;n]

]
∧

(
G

(
λy.

∨̇
σ∈2n

(sσ[y;x] ∧ τ(σ))

)))

≡
∨̇

τ∈2(2n)

[∧
σ∈2n

tτ(σ)
σ [x;n]

]
∧

G
λy. ∨̇

σ∈2n∧τ(σ)=1

sσ[y;x]

 .

(As above, we use t1σ to denote tσ and t0σ to denote ¬tσ.) What is left inside G is a finite

disjunction of sσ[y;x] terms. In other words, in the rewritten term G is applied to a finite

boolean combination of set constants and singletons {xi}.

Recall that there are two sort of primitives in sσ: the A0 primitives, which relate y to

type-α constants and variables, and the D primitives, which relate y to set constants for

open intervals and open rectangles. For each tuple σ, we may write the D-part of sσ as

the finite intersection of open intervals, open rectangles, and their complements. It makes

sense to combine the A0 primitives relating y to type-α constants and the D primitives—the

constant parts of the sσ’s—into grids of the form:

• For A, let A1, . . . ,AnA
⊆α+1 A be (constants for) open intervals and a1, . . . , amA

∈ A

be distinct (constants for) elements not in any Ai, such that:

A =
⋃̇

1≤i≤nA

Ai ∪̇ {ai : 1 ≤ i ≤ mA},

while any subset of A, as well as the projection onto A of any subset of C, described

by the constant part of any sσ, is the disjoint union of Ai’s and {ai}’s.

• For B, define B1, . . . ,BnB
⊆α+1 B and b1, . . . ,bmB

∈ B similarly.

• For C, partition the set into open rectangles Ai×Bj, points 〈ai,bj〉, and open segments

Ai×{bj} and {ai}×Bj, all sets pairwise disjoint, such that any subset of C described

by the constant part of any sσ is a disjoint union of certain of these sets.

67

We may now assume, without loss of generality, that any type-α or type-(α + 1) constant

occurring in t is one of the Ai’s, Bi’s, ai’s, or bi’s. This simplifies our cases.

(In the lemmas following we will repeatedly rewrite some fixed type-0 term t so that all

set constants appearing in t are components of a grid of this form; a term’s grid is its key

feature.)

Note that a primitive of the form (Di 〈y, v〉), where, for example, Di is Aj × Bk, is

equivalent to the conjunction (Aj y) ∧ (Bk v). We will address grid components Di ⊆ C

through their projected components—in this case, Aj and Bk.

We noted above that the term to which the type-(α + 2) constant G is applied is of the

form:

(λy.t′[y;x]) :=

λy. ∨̇
σ∈2n∧τ(σ)=1

sσ[y;x]

 ,

and we considered the constant part of each sσ separately from the part that depended on x.

The constant part, by assumption, identifies a particular component Di of the grid, where

Di may be a subset of A, B, or C. Fix grid component Di, and consider those finite strings

σ of zeros and ones such that:

(λy.sσ[y;x]) ⊆α+1 Di.

Let Σ(Di) be the set of all such σ’s; then the portion of (λy.t′[y;x]) that lies within the

component Di is: λy. ∨̇
σ∈Σ(Di)

sσ[y;x]

 .

So, within Di the set defined by the term (λy.t′[y;x]) is, for each assignment x of x, some

combination of singletons {xi} and complements of singletons Di \ {xi}.

That is, within each grid component Di ⊆ A or B, and for each x, the set Y ′ ⊆α+1 Di

defined by the term (λy.t′[y; x]) is empty, finite, or cofinite:

• If Di is a singleton, then Y ′ is finite unless Σ(Di) contains only σ’s specifying either

¬(A0 y xj), where Di =α+1 {xj}, or (A0 y xj), where Di 6=α+1 {xj}—in which case it is

empty.

68

• If Di is an open interval ⊆ A, then Y ′ is empty if Σ(Di) contains only σ’s specifying

(A0 y xj), where xj /∈ Di.

The set Y ′ is finite if Y ′ is not empty but Σ(Di) contains only σ’s of the sort listed in

the previous case, together with one or more σ’s specifying (A0 y xj), where xj ∈ Di.

Otherwise, it is cofinite.

If Di ⊆ C—say Di is Aj ×Bk—then we need to consider its two projected components Aj

and Bk simultaneously.

We now consider each of the five type-(α + 2) constants in turn:

1. G is A1: This is the easiest case, since A1 distributes across disjunctions, so:

(A1 (λy.t′[y;x])) =0 1

⇐⇒ for some Di, (A1 (λy.t′′[y;x])) :=

A1

λy. ∨
σ∈Σ(Di)

sσ[y;x]

 =0 1.

Fix component Di such that Σ(Di) is non-empty. Suppose Di ⊆ A; from the discussion

above there are only two cases: Di is a singleton, or Di is an open interval. In

either case, whether the set described by (λy.t′′[y;x]) is empty can be determined by

comparing the (finitely many) xj’s to Di. So we can eliminate the constant A1

2. G is TA: Assume that (λy.t′[y;x]) describes a subset of A. The set Y described by

the term (λy.t′[y;x]) is open if and only if (1) for every grid component Ai, the set Y ′

defined by: λy. ∨̇
σ∈Σ(Dj)

sσ[y;x]

 ,

is either empty or cofinite, and (2) for every grid component {ai}, if the corresponding

set Y ′ ⊆ {ai} is not empty then the sets corresponding to the two grid components

Aj and Aj+1 adjacent to {ai} are cofinite. (The idea behind the second requirement

is that for the set Y to be open, any point ai ∈ Y must be covered by an open interval

contained in Y .)

69

Whether these conditions hold can be determined by comparing the (finitely many)

xj’s to the finitely many Di’s, so we can eliminate the constant TA.

3. G is TB: This case is similar to the previous case.

4. G is TC: This case is similar to the previous case, but more complicated since we must

now consider the projection of a given component Di ⊆ the product space C onto both

A and B. Here, the set Y ⊆ C is open if and only if (1) for every rectangular component

Aj × Bk, the projections of the set Y ′ ⊆ Aj × Bk onto both A and B are cofinite;

(2) for every segment component {aj} ×Bk or Aj × {bk}, if the corresponding set Y ′

is not empty then the sets corresponding to the two rectangle components adjacent

to the segment are cofinite; and (3) for every singleton component {〈aj,bk〉}, if the

corresponding Y ′ is non-empty then it is abutted by four cofinite subsets of segments:

two with the same A-projections and two with the same B-projections.

(The idea here is that for Y to be open, any point 〈aj,bk〉 ∈ Y must be covered by an

open rectangle contained in Y , as must any open segment {aj} ×Bk or Aj × {bk}.)

Although this case is more complicated (it deals with two dimensions rather than one),

the argument is the same, so we can eliminate the constant TC.

5. G is F : Note that the set Y defined by (λy.t′[y;x]) is in F only if Y is an open

rectangle ⊆ C. So, (F (λy.t′[y;x])) =0 1 if and only if (1) there is some finite index set

I such that
⋃
i∈I Di ∈ F ; (2) for all i ∈ I, the set Y ′ ⊆ Di is cofinite (since it cannot

be finite, and by definition is not empty); and (3) in fact, for all i ∈ the set Y ′ is Di.

The last condition holds if and only if for each tuple σ ∈ Σ(Di) specifying ¬(A0 y xj)

for some xj ∈ Di, there is another σ ∈ Σ(Di) that permits or specifies (A0 y xj)—and

similarly for projections of y. In other words, if some tuple σ specifies that part of Di

should be excluded, then there must be another σ that fills that part in.

Whether these conditions hold can be determined from finitely many comparisons of

the xj’s to the projected components of the Di’s, so we can eliminate the constant F .

70

We will reuse several of the concepts introduced in the previous lemma. For convenience,

we formally define the following different types of grid components:

Definition 3.9. An open rectangle contained in C is a set of the form A′ × B′, where

A′ ⊆ A, B′ ⊆ B, and both A′ and B′ are open in their respective topologies.

An open segment contained in C is a set of the form {a′} × B′ or A′ × {b′}, where

a′ ∈ A, b′ ∈ B, A′ ⊆ A, and B′ ⊆ B, and A′ and B′ are open in their respective topologies.

An open slice contained in C is the full open segment {a′} ×B or A× {b′}.

An open tube contained in C is the full open rectangle A′ ×B or A×B′.

The definition of “open rectangle” used here is the abstract topological notion: A′ and

B′ need not be intervals; in practice, however, we will choose our grids so that A′ and B′

almost always are.

Using Lemma 3.8, we can show that all sets in the modelM are finite disjoint unions of

grid components:

Lemma 3.10. In the model M, all type-(α + 1) functionals X ⊆α+1 A or B are finite

disjoint unions of singletons and open (possibly clopen) intervals.

All type-(α + 1) functionals X ⊆α+1 C are finite disjoint unions of singletons, open

segments, and open rectangles.

Proof. Suppose X ⊆α+1 A; then X is defined by a closed term:

(λxα.(Ax) ∧ t[x]),

where t is a type-0 term with only x free. (As in the proofs of Lemmas 3.1 and 3.8, we use

∧ and ∨ as abbreviations for the appropriate numerical expression.)

Apply Lemma 3.8 inductively to t to get an equivalent term t′ that contains no type-

(α+ 2) constants and hence no type-α variables, and in which all type-(α+ 1) constants are

disjoint Ai’s contained in A and Bj’s contained in B. Then x occurs in subterms of t′ only

of the form:

71

• (A0 x ai), where ai is a type-α constant; or

• (Ai x), where Ai is a type-(α + 1) constant for an open interval ⊆ A.

Both of these subterms return, for each x, either 0 or 1. There are only finitely many such

subterms, and for each tuple of outputs from these subterms the term t′ returns either 0

or 1.

So X is a finite boolean combination of open intervals and singletons. Note that the

complement of an open interval U is the disjoint union of 0, 1, or 2 open intervals and 0, 1,

or 2 singletons (depending on whether U is also closed, half-closed, or not closed). So X is

a disjoint union of open intervals and singletons. The proof for X ⊆α+1 B is similar.

Finally, suppose X ⊆α+1 C; then X is defined by a closed term:

(λx.(Cx) ∧ t[x]).

Applying Lemma 3.8, as in the previous case, we may assume that t contains no type-α

variables and that the only type-(α+ 1) constants occurring in t are disjoint Ai’s and Bj’s.

Then x occurs in subterms of t only of the form:

• (A0 (πA x) ai), where ai is a type-α constant;

• (A0 (πB x) bi), where bi is a type-α constant;

• (Ai (πA x)), where Ai is a type-(α + 1) constant for an open interval ⊆ A; or

• (Bj (πB x)), where Bj is a type-(α + 1) constant for an open interval ⊆ B.

So X is a finite boolean combination of singletons {〈ai,bj〉}, slices {ai}×B and A×{bi},

and open tubes Ai×B and A×Bi—and hence a disjoint union of singletons, open segments,

and rectangles.

In particular, the only open sets in our model are finite disjoint unions of open intervals

or open rectangles. Note that the three families TA, TB, and TC trivially satisfy the axioms

to be a topology except perhaps closure under arbitrary unions.

72

Lemma 3.11. In M, TA, TB, and TC are closed under arbitrary unions—e.g., if H ∈ M,

H ⊆ TA then the set: ⋃
H := {xα : ∃Xα+1 ∈ H (x ∈ X)}

exists and is a finite disjoint union of open (possibly clopen) intervals and singletons.

So TA, TB, and TC are topologies.

Proof. We prove the lemma first for families H of subsets of A. The proof for families of

subsets of B is similar; however, the proof for families of subsets of C is more complicated.

Let:

(λX. ((X ⊆α+1 A) ∧ t[X]))

be a term defining the family H. As in the previous proof, partition the set and atom con-

stants occurring in t into a grid generated by the finitely many open intervals A1, . . . ,AMA
,

B1, . . . ,BMB
and the finitely many singletons {a1}, . . . {aNA

}, {b1}, . . . {bNB
}.

By Lemma 3.10, every set constant D appearing in this term defining H is a disjoint

union of components of the form Ai or {ai}, if D ⊆α+1 A; Bi or {bi}, if D ⊆α+1 B; or

Ai ×Bj, {ai} ×Bj, Ai × {bj}, or {〈ai,bj〉}, if D ⊆α+1 C. By rewriting t, we may assume

without loss of generality that these are the only type-α and type-(α+1) constants occurring

in t.

Suppose X0 ∈ H is an arbitrary subset of A defined by a closed term (λx.s[x]). We will

show that if X0∩Ai 6= ∅ then
⋃
H ⊇ Ai, by showing that H contains sets covering Ai. This

will show that
⋃
H is a finite union of intervals Ai and singletons {ai} from the grid.

We will do this by showing that there is a class of permutations ϕ on the type-α elements

of M, giving rise to a class of partial maps Φ on the type-(α + 1) such that:

t[X0] =0 t[Φ(X0)],

so X0 ∈ H ⇐⇒ Φ(X0) ∈ H. (Note that ϕ and Φ are defined outside the model. Note also

that Φ need not be a permutation—in general, the map Φ need not be defined for all inputs

Y ∈M, because the set induced by ϕ on Y need not be in M.)

73

We will also show that this class is large enough such that for every x ∈ Ai there is a Φ

in the class with x ∈ Φ(X0). We restrict the class so that ϕ and Φ preserve subterms t′ of

t, but we need to ensure that the class is large enough to allow us to cover Ai. Wo do the

same in the proof of Lemma 3.17, but in Lemmas 3.12 and 3.18 we will also want to cover

the particular grid component by only finitely many Φ(X0)’s, which is even more difficult.

We will use induction to show that ϕ and Φ preserve subterms of t. Provided that ϕ

does not map an element of one grid component into another, the base cases, where t′ ⊂ t is

an A0- or D-primitive, trivially hold. (The “D” in a D-primitive is a grid component, and

ϕ preserves grid components, while the fact that ϕ is a permutation means that it preserves

A0-primitives as well.)

The induction cases will be to handle the various type-(α+2) families for which constants

are included in the model. The idea here is that a subterm t′ ⊂ t will have one free type-

(α + 1) variable (for X0); the rest of its free variables will be of type α. Suppose ϕ and Φ

preserve t′′ ⊂ t′, and suppose t′ is:

(G (λy.t′′[y;X;x;n])).

Then ϕ moves x around and Φ takes X0 to Φ(X0), but y is not touched. So although, for

all parameters y, x, and n, we have:

t′′[ϕ(y); Φ(X0)/X;ϕ(x)/x; n/n] =0 t
′′[y;X0/X; x/x; n/n],

the set:

Y := (λy.t′′[y;X0/X; x/x; n/n])

differs from:

Φ(Y) = (λy.t′′[y; Φ(X0)/X;ϕ(x)/x; n/n])

because y is no longer permuted by ϕ.

In general, we will want to show that for our class of partial maps Φ, (GY) =0 (GΦ(Y))

for all of our type-(α + 2) constants G and every set Y corresponding to a subterm t′ of t.

Note that, since ϕ is a bijection, this trivially holds for G = A1.

74

For this lemma, we may let ϕ be in the class of all continuous deformations on Ai that

are the identity outside of Ai. Let Φ be the partial map on sets induced by ϕ, defined by:

x ∈ Φ(X) ⇐⇒ ϕ(x)−1 ∈ X.

Then Φ(X) is defined if and only if the set {x : ϕ−1(x) ∈ X} is in the model M. For this

lemma, the map Φ induced by the continuous deformation ϕ is a permutation on sets ofM.

Let t′ be an arbitrary type-0 subterm of t; we will use induction on terms to show that:

t′[X0/X; x/x; n/n] =0 t
′[ϕ(Φ(X0)/X;ϕ(x)/x; n/n].

As noted above, the base cases are trivial:

• t′ ≡ (A0 xi xj): Since ϕ is a bijection, for every xi and xj we have that (A0 xi xj) =0

(A0 ϕ(xi)ϕ(xj)).

• t′ ≡ (A0 ai xj): Since ϕ preserves all grid components, including singletons, for every

xj we have that (A0 ci xj) =0 (A0 ci ϕ(xj)).

• t′ ≡ (Ai xj): Since ϕ preserves all grid components, for every xj we have that (Ai xj) =0

(Ai ϕ(xj)).

• t′ ≡ (X xi): By the definition of Φ, for every xi we have that (X0 xi) =0 (Φ(X0)ϕ(xi)).

As in the proof of Lemma 3.8, the general induction step is:

(G (λy.t′[y;X;x;n])),

where G is one of our five type-(α+ 2) constants. Note that we cannot simply apply Lemma

3.8 here because t′ has a free type-(α + 1) variable, X, to which we will assign either X0 or

Φ(X0). However, as in Lemma 3.8 we can rewrite t′ so that we need to consider only:

(G (λy.t′[y;X;x])) :≡

G
λy. ∨̇

σ∈2n∧τ(σ)=1

sσ[y;X;x]

 ,

where each sσ is a finite conjunction of primitives involving A0, set and atom constants for

components from the grid, and the set variable X.

75

The only potential problem with the permutation ϕ concerns X-primitives involving y

and A0-primitives involving y and type-α variables xi. We have five cases:

• G is A1: As in the proof of Proposition 3.4, the hypothesis holds because ϕ is a

bijection. Suppose there is a y such that t′[y/y;X0/X; x/x] 6=0 0. Then, by induction

hypothesis, t′[ϕ(y)/y; Φ(X0)/X;ϕ(x/x)] 6=0 0. Letting y′ = ϕ−1(y), we get there there

is a y′ such that t′[y′/y; Φ(X0)/X;ϕ(x/x)] 6=0 0. The converse is similar.

• G is TA: As in the proof of Lemma 3.8, a set Y ⊆ A defined by (λy.t′[y;X0;x]) is open

if and only if (1) Y ∩Aj is open, for each component Aj, and (2) for every component

{aj} such that aj ∈ Y , Y contains a neighborhood of aj.

Notice that these criteria are affected by the permutation ϕ only inside the component

Ai, and that ϕ preserves open sets as well as neighborhoods of Ai’s endpoints (if any).

So the hypothesis holds.

• G is TB: The hypothesis holds trivially because ϕ is the identity on B, and, since ϕ is

a bijection outside of B, there is some y /∈ B such that t′[y/y;X0/X; x/x] =0 1 if and

only if there is some y′ /∈ B such that t′[y′; Φ(X0)/X;ϕ(x)/x] =0 1.

• G is TC: Let Y ⊆ C be the set defined by (λy.t′[y;X0;x]). Note that Y is open if

and only if (1) Y ∩ (Aj × Bk) is open, for each such rectangular component of the

product space; (2) the projection of Y ∩ ({aj} ×Bk) onto B is open, and similarly for

the projection of Y ∩ (Aj ×{bk}) onto A; (3) every singleton component {〈aj,bk〉} is

abutted by (relatively) open neighborhoods in the four adjacent segment components;

and (4) every (relatively) open subset of a segment component is abutted by two open

neighborhoods in its two adjacent rectangular components.

(Notice that this case is more complicated than in the proof of Proposition 3.4, since

we now have an arbitrary open set X0 in addition to the grid components.) Recall

that ϕ affects only the A-dimension of the product space C, leaving the B-dimension

alone. We have shown that the hypothesis holds for TA, so the hypothesis holds for

TC as well.

76

• G is F : First, by refining the grid we may assume without loss of generality that we

have chosen our grid components A1, . . . ,AMA
and B1, . . . ,BMB

such that if Y ⊆ C

is in F but is not contained in the upper-right rectangle AMA
× BMB

, then Y is the

disjoint union of certain grid components. So if Ai 6= AMA
then the hypothesis holds

since ϕ is a bijection on Ai and the identity everywhere else.

Suppose Ai = AMA
, so Ai × BMB

is the upper-right corner of the product set C.

Let Y ⊆ C be the set defined by (λy.t′[y;X0;x]). The hypothesis holds (trivially) if

Y ∩ (Ai×BMB
) = ∅, since ϕ is a bijection on Ai and the identity everywhere else, and

in this case Y ∈ F if and only if Y is the disjoint union of certain grid components.

If Y intersects some other component as well as the upper-right corner then Y /∈ F ,

so (trivially) Φ(Y) /∈ F , so the hypothesis holds.

Finally, suppose that Y is contained in the upper-right corner Ai×BMB
. Then Y /∈ F ,

because by assumption t′ contains no constants for proper subsets of BMB
—which

means that the projection of Y ∩ (Ai × BMB
) must be a finite or cofinite subset of

BMB
, so (F (λy.t′[y;X0/X; x/x])) =0 (F (λy.t′[y; Φ(X0)/X0;ϕ(x)/x])) =0 0.

This completes our proof for families H of subsets of the space A; the proof for families of

subsets of B is similar.

Now suppose that H is a family of subsets of the product space C. We use the same idea

as in the proof for families of subsets of A, except now we would like to let ϕ be in the class

of all permutations of the form:

(ϕ 〈x, y〉) =α 〈(ϕA x), (ϕB y)〉,

where ϕA and ϕB are continuous deformations on some Ai and Bj, respectively, and the

identity everywhere else. Note that, as in the previous cases, the induced map Φ is a

permutation on sets of the model M.

There are two new issues.

77

First, the permutation ϕ affects not only a single grid component, say Ai ×Bj, but also

the entire open tubes Ai ×B and A ×Bj. (If ϕ is defined for an open segment {ai} ×Bj

or Ai × {bj} then ϕ affects, respectively, the open tube A×Bj or Ai ×B.)

Second, the constant F has infinite support on the the upper-right corner AMA
×BMB

,

so we cannot just continuously deform the open tubes AMA
× B or A × BMB

. (Any such

deformation may cause a set to enter or leave F .) So we will require that ϕ be in the class

described above—unless Ai = AMA
or Bj = BMB

, which we will handle separately.

As before, we assume that the grid is sufficiently fine that if Y ∈ F then either Y ⊆

(AMA
×BMB

) or Y is the disjoint union of grid components.

Now suppose Ai = AMA
or Bj = BMB

; notice that both open tubes AMA
× B and

A × BMB
are actually clopen. Recall that F consists of, for each n ∈ ω, three clopen

rectangles (cn, cn+1)× (cn, cn+1), (cn+1, 1)× (cn, cn+1), and (cn, cn+1)× (cn+1, 1). (The fourth

rectangle, (cn+1, 1)× (cn+1, 1) is missing from F .)

If Ai = AMA
or Bj = BMB

, or both, then we take the class of all permutations ϕ that

are the identity function outside of Ai ×Bj, and such that:

1. ϕA and ϕB are continuous deformations of some intervals (cm, cm+1) or (cm+1, 1), and

(cn, cn+1) or (cn+1, 1), contained in Ai = AMA
and Bj = BMB

, respectively;

2. For every m,n ∈ ω, ϕA and ϕB may also swap any of the three rectangles (cm, cm+1)×

(cm, cm+1), (cm, cm+1)×(cm+1, 1), or (cm+1, 1)×(cm, cm+1) for any of the three rectangles

(cn, cn+1)× (cn, cn+1), (cn, cn+1)× (cn+1, 1), or (cn+1, 1)× (cn, cn+1).

If H contains some set X0 intersecting the upper-right corner of the grid, AMA
×BMB

, then

the first condition allows us to cover any element of F that is contained in AMA
×BMB

by

permutations Φ(X0); the second condition allows us to apply the first condition to any other

element of F that is contained in AMA
×BMB

, but which X0 may not intersect. These two

conditions allow us to show that if H contains an element X0 that intersects AMA
× BMB

,

then
⋃
H ⊇ (AMA

×BMB
). This completes our definition of the class of permutations ϕ.

78

Note that none of the permutations ϕ on C affects F . Also, since all of the permutations

are bijections, none affects A1. It remains for us to show that ϕ does not affect TA, TB, or

TC.

As before, the proof is by induction on terms. The base cases are the same as before; the

induction step is:

(G (λy.t′[y;X;x])) :≡

G
λy. ∨̇

σ∈2n∧τ(σ)=1

sσ[y;X;x]

 ,

where G is one of our five type-(α + 2) constants. We have five cases:

• G is A1: As before, the hypothesis holds because ϕ is a bijection.

• G is TA: As before, a continuous deformation ϕ inside of an open tube corresponding

to a grid component (or to a subinterval of a grid component) does not affect the

criteria for a set Y ⊆ A defined by (λy.t′[y;X0;x]) to be open.

Now suppose ϕ swaps two clopen rectangles in F , contained in AMA
× BMB

. Note

that, in general, if D1, . . . , Dn is a clopen partition of some set X then a set U ⊆ X

is open if and only if for all i, U ∩Di is open. So any such ϕ preserves open sets, and

the hypothesis holds.

• G is TB: Similar to the previous case.

• G is TC: Similar to the previous two cases, but more complicated. Note that a set

Y ⊆ C defined by (λy.t′[y;X0;x]) consists only of finitely many open rectangles, open

segments, and singletons. So Y is open if and only if the projections (onto A and B,

respectively) of all of its fibers are open. The previous two cases show that ϕ preserves

openness in A and B, so the hypothesis holds in this case as well.

• G is F : As noted above, continuous deformations of open tubes other than AMA
×B

or A × BMB
, continuous deformations of open tubes corresponding to elements of F

(contained in AMA
× BMB

), and maps swapping elements of F (contained in AMA
×

BMB
) do not affect F . So the hypothesis holds.

79

So the three families TA, TB, and TC are topologies. Finally, we show that the first two

are compact (the third is not, as witnessed by its open cover F):

Lemma 3.12. If H ∈ M, H ⊆ TA is an open cover of A then there is a finite subfamily

〈Un : n < N〉 of H that also covers A.

By symmetry, the same holds for B and TB.

Proof. Let H be an arbitrary open cover, and suppose H is defined by the closed term:

(λX.(X ⊆α+1 A ∧ t[X])).

As in the proof of Lemma 3.11, we may assume the only type-(α+ 1) constants occurring in

t are A1, . . . ,AMA
, B1, . . . ,BMB

, {a1}, . . . , {aNA
}, and {b1}, . . . , {bNB

}, where these con-

stants generate grids on the three spaces A, B, and C with the same properties as in that

lemma.

If we simply apply the proof of Lemma 3.11, we may require infinitely many sets in

H to cover A—the problem is that A has intervals without endpoints, and a continuous

deformation of an open set strictly contained inside one of these intervals can get arbitrarily

close to the missing endpoint, but cannot reach it. To prove this lemma we will need to

define a larger class of permutations ϕ.

Now H covers A, so for each 1 ≤ i ≤ NA there is an open set Ui ∈ H with ai ∈ Ui; fix

a finite sequence of Ui’s. We have a finite subcover of the set {a1, . . . , aNA
}, but it remains

for us to cover the Ai’s with finitely many elements of H.

Suppose Ai has endpoints aj and aj+1 in A; then the continuous deformations ϕ we used

in the proof of Lemma 3.11 suffice to show that we can cover {aj} ∪Ai ∪ {aj+1} by finitely

many elements of H. The problem is covering an interval Ai with an endpoint not in A.

(Recall that A is a version of Q ∩ (0, 1), so it lacks irrational endpoints as well as 0 and 1.)

If one of Ai’s endpoints is missing from A then to cover Ai by finitely many elements of

H there has to be an element of H containing an open neighborhood of that missing point.

80

For example, to cover AMA
, the rightmost component, by finitely many sets, H must contain

an open set with a neighborhood of 1. If a set X0 ∈ H does not contain a neighborhood of 1,

then no continuous deformation ϕ of AMA
can induce Φ(X0) to contain such a neighborhood.

The key is that H not only cannot distinguish between X0 and a continuous deformation

Φ(X0) of X0, as in Lemma 3.11, but also cannot distinguish between X0 and (X0 \ J) ∪ I

where I is any clopen interval contained in Ai, disjoint from and not adjacent to X0, and J

is any clopen interval contained in X0 ∩Ai.

Suppose Ai has one or two endpoints not in A, and suppose that X0 does not contain

an interval adjacent to one of Ai’s missing endpoints. We extend our class of permutations

ϕ to include, along with continuous deformations of Ai, maps that extract a small clopen

subinterval from the inside of an open interval U ⊆ X0 ∩Ai, and place it adjacent to one

of Ai’s missing endpoints, so that the extracted clopen subinterval does not intersect and is

not adjacent to X0.

This larger class of permutations still preserves type-0 subterms of t because, as noted

in Lemma 3.11, a set Y ⊆ A is open if and only if (1) Y ∩Ai is open, for all i, and (2) if

ai ∈ X then Y contains a neighborhood of ai. Clearly adding clopen subsets of Ai does not

affect the latter criterion; and of course (X0 \ J) ∪ I is open if and only if X0 is open, since

I and J are both closed and open.

So the induction argument from Lemma 3.11 works here as well. Note that the constant

F could possibly distinguish between X0 and (X0 \ J) ∪ I—if X0, I, and J were elements

of the product space C. But they are not, so the same argument from Lemma 3.11 holds

here as well: for a set Y defined by (λy.t′[y;X0;x]) to be in F , it cannot be contained in the

upper-right component AMA
× BMB

; so it must be a union of grid components, and hence

is unaffected by the permutation ϕ.

From the above we conclude:

Proposition 3.13 (RCAω
0 + (ATOMS)). The axiom (A1) does not prove that the product

of two compact spaces is compact.

81

Proposition 3.19 shows, in the other direction, that “the product of two compact spaces

is compact” does not imply (A2). Formally, as discussed in Section 3.4.5, there is a bit of

weirdness in the fact that the theory RCAω
0 + (A1) does not prove the existence of many

topologies (or even many sets). For example, in the model N defined in Proposition 3.1,

all type-(α + 1) functionals have finite support (so all sets are finite or cofinite), and all

type-(α+1) functionals differ from the identity on finite support. So every topological space

in N is compact, since either it is finite or it has only cofinite open sets.

So the strength of the statement that the product of two compact spaces is compact lies

strictly between that of (A1) and that of (A2).

3.4.3 Compact T2 spaces

It is a theorem of ZFC that every compact T2 space is both T3 and T4. (It is a theorem

of ZF that every space that is both T2 and T4 is also T3, since in every T2 space points are

closed.) One standard proof that every compact T2 space is T3 does not require the Axiom

of Choice and goes through in RCAω
0 + (ATOMS) + (A2) + (A1):

Proposition 3.14 (RCAω
0 + (ATOMS) + (A2) + (A1)). Every compact T2 space is T3.

Proof. Let (X, T) be a compact T2 space. Then for every x ∈ X and y ∈ X, there are open

sets U and V such that x ∈ U , y ∈ V , and U ∩ V =α+1 ∅.

Let F be an arbitrary closed set and fix y /∈ F . Form the collection F ⊆ T defined by:

U ∈ F ⇐⇒ (U ∈ T) ∧ (∃V α+1(V ∈ T ∧ y ∈ V ∧ V ∩ U =α+1 ∅)).

Note that this definition uses only A1, A2, and T , so the theory RCAω
0 + (ATOMS) + (A2)

+ (A1) proves that F exists. Since the space is T2, F covers F .

The collection {X \ F} ∪ F exists and is an open cover of X. By compactness, it has a

finite subcover 〈Un : n < N + 1〉; without loss of generality, assume that UN =α+1 X \ F .

Then, for each n < N , there is an open Vn 3 y such that Un ∩ Vn =α+1 ∅.

82

Our goal is to form a finite sequence of such Vn’s and then to show that their intersection

is an open set containing y. Then
⋂
〈Vn : n < N〉 and

⋃
〈Un : n < N〉 would separate y from

F .

The existence of such a sequence 〈Vn : n < N〉 follows from quantifier-free induction,

using A2. To see this, note that the empty sequence 〈Vm : m < 0〉 trivially exists, and that,

given 〈Vm : m < n〉, where n < N , we can define:

〈Vm : m < n+ 1〉 :=

V, if m =0 n

Vm, otherwise,

where V is an open set such that V 3 y and Un ∩ V =α+1 ∅. So, given a finite sequence up

to n < N , the finite sequence up to n+ 1 exists. So we have:

∃〈Vm : m < 0〉 ∀m < 0 Φ(〈Vm : m < 0〉)

and, for every n:

∃〈Vm : m < n〉 ∀m < nΦ(〈Vm : m < n〉)

→ ∃〈Vm : m < n+ 1〉 ∀m < n+ 1 Φ(〈Vm : m < n+ 1〉),

where Φ(〈Vm : m < n〉) is the quantifier-free formula:

(y ∈ Vm) ∧ (Vm ∩ Um =α+1 ∅),

which uses A1 to determine type-(α + 1) equality. The existence of a type-(α + 1) finite

sequence can be asserted, without quantifiers, by using A2, so quantifier-free induction proves

the existence of the finite sequence 〈Vm : m < n〉 for all n ≤ N . In particular, it proves it

for n = N .

Now V :=
⋂
〈Vn : n < N〉 exists—it can be defined using the primitive recursion operator

R0. And quantifier-free induction proves that it is open, completing our proof.

In another standard proof, which uses the Axiom of Choice, one defines the family F to

have exactly one Un corresponding to each Vn containing y; this proof goes through in RCAω
0

83

+ (ATOMS) + (A1) + QF-ACα,α+1 + QF-AC0,α. (The first choice principle, QF-ACα,α+1,

proves the existence of F ; the second choice principle, QF-AC0,α, proves the existence of

〈Vn : n < N〉.) So the fact that every compact T2 space is T3 can be proved from (A2) or

from choice principles.

We also have the following proposition, suggested by Kenneth Kunen:

Proposition 3.15 (RCAω
0 + (ATOMS) + (A1)). If every compact T2 space is T3, then every

compact T2 space is T4.

So, over RCAω
0 + (ATOMS) + (A1), the statement that compact T2 spaces are T3 is

equivalent to the statement that they are T4. In the next section we show that the first

statement is implied by (A2) + (A1) but does not imply (A1); Proposition 3.15 says that

the same is true of the second statement.

Proof. Fix compact T2 space (X, TX); we will show that this space is T4. Fix non-empty

closed subset F of X; fix some point x0 ∈ F . We define the quotient space (Y, TY) by

collapsing the set F to the point x0. The quotient space is compact and T2, so by hypothesis

it is T3. So x0 can be separated from closed sets by disjoint open sets; by pulling these open

sets back to (X, TX), we have open sets separating F from any disjoint closed subset of X.

This proves that (X, TX) is T4.

Formally, the set Y is (X \ F) ∪ {xo}, defined by the term:

(λxα.((A0 x x0) ∨ ((X x) ∧ ¬(F x)))),

where we use the logical symbols ∨, ∧, and ¬ to denote the corresponding boolean operation

on type-0 objects, as in the proof of Proposition 3.1. The theory RCAω
0 + (ATOMS) proves

that the set Y exists.

We define the family TY on subsets of Y by the rule:

U ∈ TY ⇐⇒ (U ⊆α+1 Y) ∧ ([(x0 /∈ U) ∧ (U ∈ TX)] ∨ [(x0 ∈ U) ∧ (U ∪ F ∈ TX)]).

The theory RCAω
0 + + (ATOMS) + (A1) proves that TY exists. (We need A1 for “⊆α+1.”)

The family TY is a topology:

84

• ∅ ∈ TY since x0 /∈ ∅ and ∅ ∈ TX ; Y ∈ TY since x0 ∈ Y and Y ∪ F = X ∈ TX .

• If U, V ∈ TY , then we have four cases, depending on whether each of the two sets

contains x0:

– x0 /∈ U and x0 /∈ V : Then U, V ∈ TX . So U ∩ V ∈ TX . Also, x0 /∈ U ∩ V , so

U ∩ V ∈ TY .

– x0 /∈ U but x0 ∈ V : Then U ∈ TX and V ∪ F ∈ TX . Note that U ∩ F = ∅, since

Y ∩F = {x0}. So U ∩V =α+1 U ∩ (V ∪F) ∈ TX , and x0 /∈ U ∩V . So U ∩V ∈ TY .

– x0 ∈ U but x0 /∈ V : similar to previous case.

– x0 ∈ U and x0 ∈ V : Then U ∪ F, V ∪ F ∈ TX , which means that (U ∪ F) ∩ (V ∪

F) =α+1 (U ∩ V) ∪ F ∈ TX . Now x0 ∈ U ∩ V , so U ∩ V ∈ TY .

• Finally, suppose F ⊆ TY . Define family G ⊆ TX by the rule:

U ∈ G ⇐⇒ ((U ∩ F =α+1 ∅) ∧ (U ∈ F)) ∨ ((F ⊆α+1 U) ∧ ((U \ F) ∪ {x0} ∈ F)).

The theory RCAω
0 + (ATOMS) + (A1) proves that G exists; that G ⊆ TX is clear from

the definition of TY . Since TX is a topology,
⋃
G exists and is open. Note that either⋃

F =α+1

⋃
G or

⋃
F =α+1 (

⋃
G \ F) ∪ {x0}, depending on whether some U ∈ F

contains x0.

Either way,
⋃
F exists and (by definition) is in TY .

The topology TY is T2—the fact that TX is T2 proves that points x, y 6=α x0 can be

separated by disjoint open sets, while the fact that TX is T3 proves that x0 can be separated

from any other element of Y . To see that TY is compact, let F ⊆ TY be an open cover of

Y . Then the family G defined, above, from F is an open cover of X. Since X is compact, G

has a finite subcover 〈Vn : n < N〉.

Define finite subcover 〈Un : n < N〉 of F by the rule:

Un :=α+1

Vn, if Vn ∩ F =α+1 ∅

(Vn \ F) ∪ {x0}, otherwise.

85

The definition can be made using A1, so 〈Un : n < N〉 exists, proving compactness.

By hypothesis, the space (Y, TY) is T3. Fix arbitrary closed set K ⊆ X, disjoint from F .

Then K ⊆ Y and x0 /∈ K. Since (Y, TY) is T3, there are disjoint open set U, V ∈ TY such

that x0 ∈ U and K ⊆ V . So V, U ∪ F ∈ TX , and these two open sets are disjoint. Trivially,

F ⊆ U ∪ F , so the arbitrary disjoint closed sets F and K are separated by disjoint open

sets, proving that (X, TX) is T4.

3.4.4 RCAω
0 + (E1) + (ATOMS) + (A1) does not imply that every

compact T2 space is T3

We again construct a minimal term modelM (which is an ω-model) of RCAω
0 + (ATOMS)

+ (E1) + (A1). In addition to the constant symbol µ, we include the following constants:

• Uncountably many type-α constants di, for i ∈ 2ℵ0 , representing the elements of our

topological space.

• One type-(α+1) constant A representing the characteristic function of an uncountable

set. The constant A is intended to represent a copy of the closed unit square [0, 1]2.

We can define A by the term (λxα.1)—A is the set of all atoms—but it is nice to have

a constant for this.

Although A is intended to represent a copy of [0, 1]2, we will not include copies of the

component spaces [0, 1] in M, so A will not be a product space.

• For each open rectangle in the standard topology on [0, 1]2, a type-(α+ 1) constant for

a copy ⊆ A. These constants, together with A \F, will be the basic open sets for the

space (A, T).

• A type-(α + 1) constant F representing the subset F of [0, 1]2 satisfying:

– For all x ∈ [0, 1], there is exactly one y ∈ [0, 1] such that 〈x, y〉 ∈ F ; for all

y ∈ [0, 1], there is exactly one x ∈ [0, 1] such that 〈x, y〉 ∈ F . (Recall that A is

86

not a product space: here x and y are elements of [0, 1] and 〈x, y〉 is an element

of [0, 1]2.)

– The set F is dense in [0, 1]2. Further, we require that if R is an open rectangle

(for which we have added a constant symbol R) then |R ∩ F | = 2ℵ0 .

For example, we can apply the Continuum Hypothesis, so that |[0, 1]2| = ℵ1, and then

use transfinite induction to place uncountably many elements of F inside each rectangle

with rational corners.

• A type-(α+2) constant T , with the interpretation that for every type-(α+1) functional

U in the model, U ∈ T if and only if U corresponds to an open set in the topology

generated by the open rectangles and the set A \F. (As in Section 3.4.2, we will show

that the only sets inM are finite disjoint unions of components: open rectangles, open

segments, singletons, and the intersections of F or A \ F with open rectangles and

open segments.)

The term model consists of (equivalence classes of) closed terms involving the various

constants listed above.

Assuming (in M) that the family T is a topology, it is clear that T is T2, since any two

distinct points may be separated by disjoint open rectangles. However, T is not T3 since the

set F is dense in the standard topology on [0, 1]2, so F cannot be separated from any x0 /∈ F.

(Suppose U is an open neighborhood of x0; then cl(U) ∩ F 6= ∅, so any open set covering F

intersects U .)

It remains for us to show that the model M |= “T is a topology” and that M |=

“T is compact.”. The proofs are similar to those from Section 3.4.2.

As in Section 3.4.2, we have:

Lemma 3.16. In the model M, all type-(α + 1) functionals X ⊆α+1 A are finite disjoint

unions of singletons; open segments; open rectangles; the intersections of open segments with

F or A \ F; and the intersections of open rectangles with F or A \ F.

87

Proof. Let (λx.t[x]) define an arbitrary set X ⊆ A. As in the proof of Lemma 3.8, form a

grid refining all constants (other than F) occurring in t. Here the space A corresponds to

the two-dimensional square [0, 1]2, so the grid will consist of open rectangles, open segments,

and singletons. However, A is not a product space—it has no components spaces inM—so

we do not have the projections of these components.

As in the proof of Lemma 3.8, we may assume that t is written so that we need consider

only subterms of t of the form:

(G (λy.t′[y;x])) :≡

G
λy. ∨̇

σ∈2n∧τ(σ)=1

sσ[y;x]

 ,

where “G” refers either to A1 or T . (Note that we have only two type-(α + 2) constants

here.) As in that proof, we will show that the type-(α + 2) constant represented by G can

be eliminated and the term (G (λy.t′[y;x])) replaced by an equivalent term in which the

type-(α + 2) constant represented by G does not occur. Let Y ′ be the set defined (for each

value x) by the term (λy.t′[y; x/x]).

As in the proof of Lemma 3.8, we assume (by induction) that for each non-singleton

component Ai of the grid, one of the following holds: either Y ′∩Ai or Y ′∩ (Ai \F) is finite,

or Y ′ ∩Ai is cofinite in Ai, or Y ′ ∩ (Ai \ F) is cofinite in Ai \ F.

The A1 case is the same as in the proof of Lemma 3.8—one can determine whether the

intersection of Y ′ with some component is nonempty via a finite boolean expression not

involving y.

For the T case, note that whether the set Y ′ defined by (λ.t′[y; x/x]) is open depends on

two things: whether the intersection of Y ′ with each of the grid’s open rectangles is open;

and whether Y ′ contains a neighborhood of each of its intersections with the grid’s open

segments and singletons.

Determining whether the intersection of Y ′ with one of the grid’s open rectangles Ai

is open is the same as in the proof of Lemma 3.8: the intersection is open if and only if

either Y ′ ∩Ai or Y ′ ∩ (Ai \ F) is cofinite in their respective sets. The second part is more

complicated.

88

Suppose {ai} is one of the grid’s singletons, and suppose ai ∈ Y ′. If ai ∈ F then, for

Y ′ to be open, the intersection of Y ′ with each of the two, three, or four open segments

adjacent to {ai} must be cofinite. If ai /∈ F then, for Y ′ to be open, for each open segment

Aj adjacent to {ai}, either Y ′ ∩Aj must be cofinite in Aj or Y ′ ∩ (Aj \F) must be cofinite

in Aj \ F. (If ai /∈ Y ′ then {ai} puts no restriction on its adjacent open segments.)

Now suppose Aj is one of the grid’s open segments, and suppose Y ′ ∩Aj is cofinite in

Aj. For Y ′ to be open, the intersection of Y ′ with the one or two open rectangles adjacent

to Aj, in the grid, must be cofinite in the respective sets.

If, instead, Y ′ ∩Aj ∩ (A \F) is cofinite in Aj \F, then, for Y ′ to be open, for each of the

one or two adjacent open rectangles, either its intersection with Y ′ or its intersection with

Y ′ ∩ (A \ F) must be cofinite in its respective set.

Finally, if either Y ′ ∩Ai or Y ′ ∩ (Ai \ F) is finite, then Y ′ is not open.

Note that all of these cases can be determined via a finite boolean expression not involving

y, so T can be eliminated. So t is equivalent to a finite boolean expression involving grid

components and F, proving the lemma.

And:

Lemma 3.17. In M, T is closed under arbitrary unions: if H ∈M, H ⊆ T then the set:⋃
H := {xα : ∃Xα+1 ∈ H (x ∈ X)}

exists in M.

Proof. Let (λX.t[X]) define H; let X0 ∈ H be arbitrary. As in the proof of Lemma 3.11, we

will define a class of permutations ϕ on the type-α elements of M that give rise to partial

maps Φ on M’s type-(α + 1) elements, such that for all type-0 subterms t′[X;x] of t, and

for all values x,

t′[X0/X; x/x] =0 t
′[Φ(X0)/X;ϕ(x)/x].

In particular, we will have t[Φ(X0)] =0 t[X0], so Φ(X0) ∈ H. The class of permutations

ϕ will be large enough that if X0 intersects Ai \ F, for some component Ai of the finite

89

grid generated from the constants occurring in the term t, then the collection of all Φ(X0)’s

covers Ai \F; and similarly, if X0 intersects Ai ∩F then the collection of all Φ(X0)’s covers

Ai.

Form a grid of open rectangles, open segments, and singletons from t, as in the previous

proof. Since F intersects each horizontal and vertical slice exactly once, by refining the grid

we may assume without loss of generality that F does not intersect any of the grid’s open

segments. (If F intersects some open segment Ai at some point c ∈ Ai, then we add an

orthogonal slice that intersects Ai at c. Since F intersects each slice exactly once, F does

not intersect any open segment of the two orthogonal slices.) So F intersects only the grid’s

open rectangles and (possibly) singletons.

Our permutations ϕ will be similar in spirit to the continuous deformations used in the

second part of the proof of Lemma 3.11. However, we must now preserve membership in the

set F. Fix grid component Ai—either an open rectangle or an open segment. Fix open set

X0 ∈ H intersecting Ai; by Lemma 3.16, X0 is a union of finitely many components: open

rectangles and intersections of open rectangles with A \F. We first describe the continuous

deformation ϕ′, and then use ϕ′ to present the restrictions on ϕ.

As in the proof of Lemma 3.11, we require that ϕ′ be the identity outside of the one or two

(depending on whether Ai is an open segment or an open rectangle) open tubes intersecting

Ai. Inside the tube(s), we let ϕ′ be a continuous deformation of X0, as in the proof of Lemma

3.11, except with an additional requirement. The boundaries of the finitely many rectangles

that make up X0 consist of only finitely many open segments (and intersections of open

segments with A \F) and singletons. Our additional requirement is that ϕ′ must take each

such segment or singleton that intersects F to another segment or singleton that intersects

F, while taking each such segment or singleton that does not intersect F to another segment

or singleton that does not intersect F.

(The idea here is that the intersection of F with any open rectangle is infinite, but the

intersection of F with a segment or singleton is finite (or empty). By refining our grid, we end

up with a grid that intersects F only at singletons (possibly) and at rectangles (definitely).

90

When deforming the set X0 to get Φ′(X0), we want to preserve the intersections with F of

the boundaries of X0’s components.)

Note that the class of permutations ϕ′ suffices to cover Ai by sets Φ′(X0), since F is

dense in A, while X0’s boundary consists of only finitely many open segments and singletons.

However, ϕ′ does not preserve all subterms of t; in particular, the primitive subterm (Fx)

need not equal (Fϕ(x)).

The permutation ϕ agrees with ϕ′ on the boundaries of X0’s component rectangles, and

is the identity outside the open tube(s) intersecting Ai. Everywhere else, the permutation

ϕ differs from ϕ′ by preserving membership in F:

x ∈ F ⇐⇒ ϕ(x) ∈ F,

and we require that Φ(X0) = Φ′(X0). (So ϕ preserves the interiors and exteriors of X0.)

This last condition ensures that (in general) ϕ is not a continuous deformation of X0—the

interiors of the open rectangles that make up X0 are jumbled to preserve membership in F.

(We can jumble the interiors because F ∩ R and R \ R have the same cardinality for every

open rectangle R.) The partial map Φ induced by ϕ is not, in general, a permutation onM:

if Y ⊆α+1 X0 there is no requirement that Φ(Y) satisfy Lemma 3.16. Since Φ(X0) = Φ′(X0),

the class of all such permutations ϕ suffices to cover Ai by deformations of X0.

As in the proof of Lemma 3.11, we prove that ϕ preserves type-0 subterms of t by

induction on terms. As before, the base cases are:

• (X0xj), which by definition equals (Φ(X0)ϕ(xj));

• (A0 xj xk), which trivially equals (A0 ϕ(xj)ϕ(xk));

• (F xj), which equals (Fϕ(xj)), since ϕ preserves membership in F;

• (Aj xk), where Aj is some grid component, which (since ϕ is the identity outside of

the open tube(s) intersecting Ai) equals (Aj ϕ(xk)); and

• (A0 aj xk), where {ai} is some grid component, which equals (A0 aj ϕ(xk)).

91

As before, the induction step is:

(G (λy.t′[y;X;x])) :≡

G
λy. ∨̇

σ∈2n∧τ(σ)=1

sσ[y;X;x]

 ,

where G is now one of the two type-(α + 2) constants A1 and T . The case where G ≡ A1 is

still trivial, since ϕ is a bijection.

The remaining case is where G ≡ T . For each tuple x of parameters, let Y ′ be the set

defined by (λy.t′[y;X0/X; x/x]). As in the proof of Lemma 3.11, we want to show that:

Y ′ ∈ T ⇐⇒ Φ(Y ′) ∈ T ,

where Φ(Y ′) = (λy.t′[y; Φ(X0)/X;ϕ(x)/x]).

Note that Y ′ is some finite boolean combination of X0, F, singletons {xi}, and grid

components for t; so Φ(Y ′) is the same finite boolean combination, but with Φ(X0) in place

of X0 and {ϕ(xi)} in place of {xi}. So Φ(Y ′) ∈M, since Φ(X0) ∈M.

Now the set Y ′ is open if and only if:

1. Aj ∩ Y ′ is open, for all open-rectangle grid components Aj;

2. the projection of Aj ∩ Y ′, where Aj is an open-segment component, onto the relevant

coordinate axis is open;

3. if {aj} ∩ Y ′ 6=α+1 ∅, for some singleton grid component {aj}, then Y ′ contains two,

three, or four, as relevant:

(a) adjacent open segments Ai, if aj ∈ F; or

(b) adjacent open segments Ai or Ai \ F, otherwise;

4. if Aj∩Y ′ 6=α+1 ∅ for some open-segment grid component Aj, then for each subsegment

of Aj ∩ Y ′, the set Y ′ contains one or two, as relevant:

(a) adjacent open rectangles Ai, if the subsegment includes F; or

(b) adjacent open rectangles Ai or Ai \ F, otherwise.

Note that all of these conditions are preserved by ϕ, so we are done.

92

And finally:

Lemma 3.18. In M, T is compact.

Proof. Let H ⊆α+2 T be an open cover of A; let (λX.t[X]) be a closed term defining H.

As in the proof of Lemma 3.17, construct a grid from the constants occurring in t and

assume (without loss of generality) that F does not intersect any of the grid’s open segments.

(So F intersects only open rectangles and singletons from the grid.)

Since H is an open cover, for every x ∈ A there is an open set U ∈ H such that x ∈ U .

Now the topology T is generated from open rectangles R (in the standard topology on

[0, 1]2) and R \ F. If x ∈ F then the U ∈ H containing x must also contain an open-

rectangle neighborhood R of x. Since [0, 1]2 is compact, the only problem is in covering

elements x /∈ F.

Each horizontal or vertical slice of A is relatively compact: every open cover of the slice

has a finite subcover. This is because each slice intersects F exactly once, and if x ∈ F then

any set covering it must contain an open-rectangle neighborhood of x. Fix finitely many sets

in H covering all open segments and all singletons in the grid.

Look at the portion of the grid consisting of one open rectangle Ai, the four open segments

forming the rectangle’s four sides, and the four singletons forming the rectangle’s corners.

Each of these corners may be in F, or not; and, by assumption, none of the four open

segments intersects F. If a corner is in F then there is an open set U ∈ H containing an

open-rectangle neighborhood R of x. By deforming U as in the proof of Lemma 3.17 we can

ensure that R covers arbitrarily much of Ai.

If all four of Ai’s corners are in F then there is no problem—applying the proof of Lemma

3.11, Ai can be covered by finitely many open sets in H. The problem arises when one or

more of Ai’s corners are not in F; in that case, it may be that no open set U ∈ H containing a

particular corner {aj} includes an open-rectangle neighborhood of aj. In this case, deforming

any such U , using the permutations ϕ from Lemma 3.17, yields a set Φ(U) that fails to include

an open-rectangle neighborhood of aj—thus failing to witness compactness.

93

As with Lemma 3.12, we need a larger class of permutations ϕ; we reuse the idea from

that lemma and add to U an open rectangle in Ai adjacent to {aj}.

Let X0 be any open set inH that intersects Ai and F; then X0 contains an open rectangle.

If X0 contains an open rectangle R ⊆α+1 Ai adjacent to the corner {aj} then we are done.

Suppose not; let ϕ deform X0 by adding to X0 an open rectangle R adjacent to the corner

such that:

• R does not contain any open rectangle S ⊆α+1 X0 or (S \ F) ⊆α+1 X0;

• for each side T of Ai, R is not adjacent to the whole T; and

• the boundary of R does not intersect F.

That the last condition can be satisfied follows from the facts: (1) F is dense in A; (2) by

choice of grid, F does not intersect any of the grid’s open segments; and (3) by assumption,

the corner {aj} does not intersect F.

The proof of Lemma 3.17 applies to the class of permutations ϕ defined here, so we are

done.

So RCAω
0 + (ATOMS) + (A1) does not prove that every compact T2 space is T3. Also,

as Proposition 3.19 shows, “every compact T2 space is T3” does not imply (A2). So this

theorem is strictly weaker than (A2) and is not implied by (A1).

3.4.5 Summary of reverse-mathematical results, and future work

We have shown that the theory RCAω
0 + (ATOMS) + (A2) + (A1) implies the two basic

topological theorems:

• the product of two compact spaces is compact;

• every compact T2 space is T3;

and that these theorems are not implied by the theory RCAω
0 + (ATOMS) + (A1). In fact,

neither theorem implies (A2) over RCAω
0 + (ATOMS) + (A1); this follows from an argument

94

similar to that used in the proof of Proposition 2.17. So the two basic topological theorems

lie strictly between (A1) and (A2).

Proposition 3.19 (RCAω
0 + (ATOMS) + (A1)). If Φ is either of the two (third-order, over

α) topological theorems mentioned above, then Φ does not imply (A2).

Proof. Let M be a term model of RCAω
0 + (ATOMS) + (A1) + Φ, with constant sym-

bols only for A1, the type-(α + 2) families and type-(α + 1) sets mentioned in Φ, and the

basic functionals mentioned in the axioms RCAω
0 + (ATOMS). Note that M contains no

functionals of types higher than (α + 2), except for the combinators Σ and Π.

Suppose, for a contradiction, that M satisfies (A2). Let A2 be defined by a closed term

(λF .t[F]). Without loss of generality, t is in normal form, so its subterms have free variables

only of types 0 and α. As in the proof of Proposition 2.17, the type-(α+2) variable F occurs

in subterms of t only on the left-hand side of an application; let (F S1), . . . , (F Sk) list all

applications in t involving F . Let mi and xi list all type-0 and type-α variables, respectively,

free in Si. Note that Si has type (α + 1).

The rest of the proof is the same as in Proposition 2.17, except that the sequence of

elements now depends both on mi and on xi. In the end, we have a sequence (n, x) 7→ Yn,x

such that if F and G agree on all Yn,x’s, then (A2F) =0 (A2 G).

Letting F be ∅, we have that for any family G that excludes all Yn,x’s, (A2 G) =0 0. It

remains only for us to show that such a G exists—for example, the family defined by:

G :=α+2

λX.
1, if ∃(x1, . . . , xk)∃n (X =α+1 Yn,x)

0, otherwise.


Since t is finite, it has only finitely many type-α variables xi. The type-α quantification

and the type-(α + 1) equality can be handled by A1, while the type-0 quantification can be

handled by E1. (Note that t contains type-0 variables only if we have included a constant

for E1 in our term model.) But this is a contradiction.

Concerning the lower-order consequences of these two topological theorems, one quirk

that seems to arise is that a model M need not contain a varied selection of topologies. I

95

suspect that one can build models of RCAω
0 + (ATOMS) + (A1) in which one of the theorems

holds and the other fails. It might be interesting to include additional third-order, over α,

axioms asserting the existence of certain classes of topologies. It seems that Proposition 3.19

would still apply to such a theory, and so (A2) would not be implied.

96

LIST OF REFERENCES

[AF98] Jeremy Avigad and Solomon Feferman. Gödel’s functional (“dialectica”) inter-
pretation. In Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of
Studies in Logic and the Foundations of Mathematics, pages 337–406. Elsevier
Science, 1998.

[Fef77] Solomon Feferman. Theories of finite type related to mathematical practice.
In J. Barwise, editor, Handbook of Mathematical Logic, pages 913–972. North-
Holland, Amsterdam, 1977.

[Har87] Victor Harnik. Set existence axioms for general (not necessarily countable) stabil-
ity theory. Annals of Pure and Applied Logic, 34:231–243, 1987.

[Jec73] Thomas J. Jech. The Axiom of Choice, volume 75 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1973.

[Koh05] Ulrich Kohlenbach. Higher order reverse mathematics. In Stephen G. Simpson,
editor, Reverse Mathematics 2001, volume 21 of Lecture Notes in Logic, pages
281–295. A.K. Peters, 2005.

[KW98] Iraj Kalantari and Lawrence Welch. Point-free topological spaces, functions and
recursive points: Filter foundation for recursive analysis I. Annals of Pure and
Applied Logic, 93(1–3):125–151, 1998.

[KW04] Iraj Kalantari and Larry Welch. Density and baire category in recursive topology.
Mathematical Logic Quarterly, 50(4–5):381–391, 2004.

[Mum05] Carl Mummert. On the Reverse Mathematics of General Topology. PhD thesis,
Pennsylvania State University, 2005.

[Mum07] Carl Mummert. Reverse mathematics of MF spaces. Journal of Mathematical
Logic, 6(2):203–232, 2007.

[Mun75] James Raymond Munkres. Topology: a First Course. Prentice-Hall, Englewood
Cliffs, New Jersey, 1975.

97

[Sim99] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag,
Berlin, 1999.

[Tro73] A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1973.

