Chapter 3: Equivalent Statements

* A is row equivalent to I
* A^{-1} exists
* $\det(A) \neq 0$
* $Ax = b$ has a unique solution for any b

Chapter 4: Extension for $A_{m \times n}$ (includes the $n \times n$ case)

* $Ax = b$ has one or more solutions if b is in the "column space" of A
* $Ax = b$ has one or more solutions if b is a linear combination of the columns of A.

A
These are the same, and we need to understand

What is a column space? More generally, what is a vector space? (The columns are vectors)

What is a linear combination of vectors?

[Previewing] Important characteristics of a vector space are that it is:

(i) Closed under addition
(ii) Closed under scalar multiplication
(iii) Contains the zero vector

Important concepts pertaining to vectors:

(a) Linear combination
(b) Linear independence
(c) Linear dependence
Two familiar vector spaces are \mathbb{R}^2 and \mathbb{R}^3.

\mathbb{R}^2 is the vector space of all ordered pairs of real numbers, e.g.,

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

\mathbb{R}^3 is the vector space of all ordered triplets of real numbers,

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

(\mathbb{R}^2) and \mathbb{R}^3 contain the zero vector: $\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Closure under addition: when we add two vectors, we obtain a new vector in (\mathbb{R}^2) or \mathbb{R}^3.

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}$$

Closure under scalar multiplication: when we multiply a vector in (\mathbb{R}^2) or \mathbb{R}^3 by a scalar, we obtain a new vector in (\mathbb{R}^2) or \mathbb{R}^3.

\[\]
\[a \mathbf{u} = a \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} au_1 \\ au_2 \\ au_3 \end{bmatrix} \]

The length of a vector in \(\mathbb{R}^3 \):
\[|\mathbf{u}| = \sqrt{u_1^2 + u_2^2 + u_3^2} = (\mathbf{u} \cdot \mathbf{u})^{1/2} = (\mathbf{u}^T \mathbf{u})^{1/2} \]
\[
\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = u_1^2 + u_2^2 + u_3^2
\]

Linear Dependence of Vectors in \(\mathbb{R}^2 \)

Two vectors \(\mathbf{u}, \mathbf{v} \) in \(\mathbb{R}^2 \) are linearly dependent if
\[a \mathbf{u} + b \mathbf{v} = \mathbf{0} \quad \text{for} \quad a, b \text{ not both zero} \]

This makes sense since \(a = \frac{-b}{a} \cdot \mathbf{v} \)

\(a, b \) not both zero

means \(\mathbf{u} \) is a scalar multiple of \(\mathbf{v} \), i.e.

they are on the same line
Linear Dependence of Vectors in \mathbb{R}^3

Three vectors u, v, w in \mathbb{R}^3 are linearly dependent if $au + bv + cw = 0$ for a, b, c not all zero.

Then one is a linear combination of the other two, e.g.,

$$u = -\frac{1}{a}v - \frac{c}{a}w, \quad a \neq 0$$

Linear Independence

\mathbb{R}^2: 2 vectors in \mathbb{R}^2 are linearly independent if $au + bv = 0 \Rightarrow a = b = 0$

\mathbb{R}^3: 3 vectors in \mathbb{R}^3 are linearly independent if $au + bv + cw = 0 \Rightarrow a = b = c = 0$
Example: \(u = (3, -1, 2) \) \(v = (5, 4, -6) \) \(w = (2, 3, -4) \)

Are these vectors linearly dependent or independent?

Let's use the definition:

\[a u + b v + c w = 0 \quad \text{same as} \]

\[
\begin{bmatrix}
u & v & w
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

Check it!

or we might write \(Ax = 0 \)

Each column of \(A \) is one of our given vectors, \(x \) is a vector of unknown coefficients.

We need to know: what is the solution for \(x \)?
Since this system is square, then if \(\det(\mathbf{A}) \neq 0 \), then \(\mathbf{c} = 0 \) is the unique solution. \(\Rightarrow \) linear independence of the columns of \(\mathbf{A} \) (the given vectors)

but if \(\det(\mathbf{A}) = 0 \), then there are infinitely many solutions to \(\mathbf{A}\mathbf{c} = 0 \) \(\Rightarrow \) linear dependence of the columns of \(\mathbf{A} \)

\[
\det(\mathbf{A}) = \begin{vmatrix} 3 & 5 & 8 \\ -1 & 4 & 3 \\ 2 & -6 & -4 \end{vmatrix}
\]

\[
= 3 \begin{vmatrix} 4 & 3 \\ -6 & -4 \end{vmatrix} - 5 \begin{vmatrix} -1 & 3 \\ 2 & -4 \end{vmatrix} + 8 \begin{vmatrix} -1 & 4 \\ 2 & -6 \end{vmatrix}
\]

\[
= 0
\]

\(\Rightarrow \) linear dependence
Let us use GE to find $c = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

\[
\begin{bmatrix}
3 & 5 & 8 & 0 \\
-1 & 4 & 3 & 0 \\
2 & -6 & -4 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 4 & 3 & 0 \\
3 & 5 & 7 & 0 \\
2 & -6 & -4 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 4 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{bmatrix}
\]

$0a + 0b + 0c = 0$
let $c = s$

$\mathbf{b}_2 = -s$, $-a + 4b + 3c = 0$

$-a = -4b - 3c$

$\mathbf{c} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -s \\ -s \\ s \end{bmatrix}$

$4s - 3s = s$
\[C = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \]

Let's check for \(s = 2 \)

\[C = \begin{bmatrix} -2 \\ -2 \\ 2 \end{bmatrix} \]

\[A \cdot C = \begin{bmatrix} 3 & 5 & 8 \\ -1 & 4 & -2 \\ 2 & -6 & -4 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

\[3(-2) + 5(-2) + 8 \cdot 2 = 0 \quad \checkmark \]

\[-1(-2) + 4(-2) + 3 \cdot 2 = 0 \quad \checkmark \]

\[a(-2) - 6(-2) - 4 \cdot 2 = 0 \quad \checkmark \]
Example \(\mathbf{u} = (0, 3, 2), \mathbf{v} = (1, 5, 4), \mathbf{w} = (-1, -2, 3) \)

Are these vectors linearly dependent or independent?

Use definition: \(a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0} \)

Is \(a = b = c \), or not?

\[\begin{align*}
\text{independence} & \quad \text{dependence} \\
a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = & \quad \mathbf{0} \\
\begin{bmatrix} u \\ v \\ w \end{bmatrix}
& \begin{bmatrix} a \\ b \\ c \end{bmatrix} =
\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\
\end{align*} \]

\[A \mathbf{c} = \mathbf{0} \quad \text{with} \]

\[A =
\begin{bmatrix}
0 & 1 & -1 \\
3 & 5 & -2 \\
2 & 4 & 3
\end{bmatrix}
\]

\[\mathbf{c} =
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix}
\]

Since \(A \) is square, we can check the determinant
\[\text{det}(A) = 0 \begin{vmatrix} 5 & -2 & 3 \ 4 & 3 & 1 \end{vmatrix} -1 \begin{vmatrix} 3 & -2 & 3 \ 2 & 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 3 & 5 & 3 \ 2 & 3 & 1 \end{vmatrix} = -1(9+4) - (12-10) = -13 - 2 = -15 \]

So we know \(a = b = c = 0 \) and the given vectors are linearly independent.

Please check with GE!

A basis for \(\mathbb{R}^3 \) is any three linearly independent vectors \(x, y, z \) (or \(u, v, w \)).

Any other vector in \(\mathbb{R}^3 \) can be written as a linear combination of basis vectors.

The most common basis is \((1,0,0), (0,1,0), (0,0,1) \) but we could just as well use \((0,3,2), (1,5,4), (-1,-2,3) \).
Let's show that \(p \) can be written as a linear combination of the basis vectors \(u = (0, 3, 2) \), \(v = (1, 5, 4) \), \(w = (-1, -2, 3) \).

\[a u + b v + c w = p \quad \text{same as} \]
\[\begin{bmatrix} u & v & w \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \quad \text{same as} \]
\[\begin{bmatrix} a \\ b \\ c \end{bmatrix} = p \quad A \quad \text{square} \]

We already showed that \(\det(A) \neq 0 \) \([-15]\).

\[\Rightarrow \quad \begin{bmatrix} a \\ b \\ c \end{bmatrix} = p \quad \text{has a unique solution} \]

for any \(p \).

Given a specific \(p \), use GE to find the unique coefficients \(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \).
Summary

* 3 vectors \(u, v, w \) in \(\mathbb{R}^3 \) are linearly independent if

\[
au + bv + cw = 0 \Rightarrow a = b = c = 0
\]

Then \[
\begin{bmatrix}
 u \\
v \\
w
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

or \(A^T c = 0 \) has a unique soln. \(c = 0 \)

and \(\det(A) \neq 0 \)

It follows that \(u, v, w \) are a basis for \(\mathbb{R}^3 \)

and \(A^T c = p \) has a unique soln \([\text{stand by 6E}] \)

\(p \) is a linear combination of the columns

of \(A \) : \(u, v, w \)

Notice that this is the same as \(A x = b \)!
One of the statements we started with:

\[Ax = b \]

has one or more solutions if

\[b \]

is a linear combination of the columns of \(A \).

In our example, \(A \) is square, \(\text{det}(A) \neq 0 \)
and so there is one unique solution.
3 vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) in \(\mathbb{R}^3 \) are linearly dependent if \(a \mathbf{u} + b \mathbf{v} + c \mathbf{w} = \mathbf{0} \),\(\Rightarrow a, b, c \) not all zero.

Then \[\begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \]

or \(A \mathbf{c} = \mathbf{0} \) has an infinite number of solutions and \(\det (A) = 0 \).

It follows that \(A \mathbf{c} = \mathbf{p} \)

has either no solution or an infinite number of solutions.

\[\text{an infinite number of } \mathbf{p} \text{ is a linear combination of the columns of } A \]