We noticed that simple shear flows (1D-1C) Couette and Plane Channel Flows have straight streamlines but nonzero vorticity.

Streamlines are everywhere tangent to the velocity vector \(\mathbf{u}(x, t) \).

In Cartesian coordinates, a streamline \(x = x(s), y = y(s), z = z(s) \) is obtained from

\[
\frac{dx}{ds} = \frac{dy}{ds} = \frac{dz}{ds}
\]

where

\[
\alpha = (u, v, w) \quad \text{and} \quad s \quad \text{is arc length}.
\]

In steady 2D flow

\[
\tan \theta = \frac{dy}{dx} = \frac{V}{u}
\]

\[
\left\{ \frac{\Delta x}{\Delta s} = \cos \theta, \quad \frac{\Delta y}{\Delta s} = \sin \theta \right\}
\]
A toy model for solid body rotation in 2D: $u(x,y) = -By\hat{x} + Bx\hat{y}$ has circular streamlines: \[
dy = -\frac{x}{y} \partial x \Rightarrow x^2 + y^2 = C\]

Is this an acceptable flow?

Calculate the vorticity $\omega = \nabla \times u = 2B\hat{z}$

But the "irrotational vortex"

$u(r,\theta) = \omega \hat{r} + u_0 \hat{\theta} = \frac{\rho}{2\pi r} \hat{\theta}$

Is this an acceptable flow?
\[\nabla \times \mathbf{u} = 2 \left[\frac{1}{r} \frac{1}{r} (ru_\theta) - \frac{1}{r} \frac{du}{d\theta} \right] = 0 \]

Lesson: straight streamlines \(\Rightarrow \) zero vorticity

Circular streamlines \(\Rightarrow \) nonzero vorticity

Because vorticity is local spin

\[
\begin{align*}
\text{viscosity} & \Rightarrow \text{no-slip condition} \Rightarrow \text{shear flow} \\
\text{near solid boundaries} & \Rightarrow \nabla \times \mathbf{u} \neq 0
\end{align*}
\]

Zero vorticity (irrotationality) is thus associated with inviscid flow \((\nu = 0)\).

Note that \(\nu = 0\) is not the same as \(\nu \to 0\)!

Irrotational Flow \(\nu = 0\)

\[\nabla \times \mathbf{u} = 0 \]

\[\Rightarrow \mathbf{u} = -\nabla \psi \text{ because } \nabla \times (\nabla \psi) = 0 \]

Then if the flow is also incompressible \(\nabla \cdot \mathbf{u} = 0\)

\[\Rightarrow \nabla \cdot (-\nabla \psi) = 0 \Rightarrow \nabla^2 \psi = 0 \]

So for irrotational, incompressible flow,

one can solve the linear equation
\[\nabla^2 \phi = 0 \text{ with appropriate boundary conditions.} \]

Then find \(u = -\nabla \phi \)

Instead of solving the nonlinear system \(\left\{ \begin{array}{l} \nabla \cdot u = 0, \\
\frac{du}{dt} + (u \cdot \nabla) u = -\frac{1}{\rho_0} \nabla p
\end{array} \right\} \)

2D-2C Incompressible Flow (Cartesian)

There is a scalar streamfunction \(\psi(x, y) \)

such that \(u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \)

since \(\nabla \cdot u = 0 = \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0 \)

Then if the flow is also irrotational \(\nabla \times u = 0 \)

\[\Rightarrow \nabla^2 \psi(x, y) = 0 \text{ with appropriate boundary conditions.} \]
There is a famous equation called Bernoulli's Equation pertaining to inviscid, incompressible flow of a Newtonian fluid:

\[\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\frac{1}{\rho_0} \nabla p + \mathbf{g} \]

Using \((u \cdot \nabla) u = \frac{1}{2} \nabla (u^2) + \omega \times u \Rightarrow \)

\[\frac{\partial u}{\partial t} + \omega \times u = \nabla \left(\frac{-u^2}{2} - \frac{P}{\rho_0} + g z \right) \]

where \(\mathbf{g} \) is the direction of gravity.

Now assume flow along a streamline with line element \(ds \) (\(ds \) along a streamline):

\[ds \cdot \left[\frac{\partial u}{\partial t} + \omega \times u = -\nabla \left(\frac{u^2}{2} + \frac{P}{\rho_0} + g z \right) \right] \]

Also since \(ds \parallel u \) and \(\omega \times u \perp u \),

then \(ds \cdot (\omega \times u) = 0 \Rightarrow \)

\[\frac{\partial u}{\partial t} \cdot ds = -\nabla \left(\frac{u^2}{2} + \frac{P}{\rho_0} + g z \right) \cdot ds \]

with \(ds \) along a streamline.
Integrate:
\[\int \frac{d\mathbf{u}}{dt} \cdot d\mathbf{r} = -\int \nabla \left(\frac{u^2}{2} + \frac{p}{\rho_o} + g z \right) \cdot d\mathbf{r} \]

\[= -\left(\frac{u^2}{2} + \frac{p}{\rho_o} + g z \right) + C \]

along a streamline, where \(C \) is a different constant for each streamline; unsteady Bernoulli.

In the special case of irrotational flow with \(\mathbf{w} = \nabla \times \mathbf{u} = 0 \) so that \(\mathbf{w} \times \mathbf{u} = 0 \),

then \(d\mathbf{r} \) can be any line element (not necessarily along a streamline); then

\[\int \frac{d\mathbf{u}}{dt} \cdot d\mathbf{r} = -\left(\frac{u^2}{2} + \frac{p}{\rho_o} + g z \right) + C^* \]

where \(C^* \) is the same constant everywhere in the flow.
Steady Bernoulli for inviscid, incompressible, irrotational flow:

\[\frac{u_1^2}{2} + \frac{p_1}{\rho_0} + g z_1 = \frac{u_2^2}{2} + \frac{p_2}{\rho_0} + g z_2 \]

For all points in the flow given a velocity, one can find the pressure.

Come back to this question of: "Is it reasonable to assume irrotational flow?"

\[\text{Yes if the flow is axisymmetric...} \]

Elementary Airfoil Theory:

1. Assume inviscid, incompressible, irrotational, 2D DC flow

2. Solve \(\nabla^2 Y = 0 \) or \(\nabla^2 Y = 0 + b \cos \theta \)

3. Find \(u \) from \(Y \) or \(Y \)

4. Find \(p \) from Bernoulli

5. Find lift and drag from \(p \)
We've learned that simple 1D-1C, steady shear flows have vorticity associated with viscosity and the no-slip condition at solid boundaries.

Let's see what we can learn about vorticity from a simple, time-dependent shear flow.

Consider semi-infinite flow above a flat plane. At time $t=0$ we impulsively set the plane into motion so that $u = u(y,t) \hat{x}$.

![Diagram of flow](image)

$u(y,0) = 0 \quad y > 0$

$u(0,t) = u_0 \quad t > 0$

$u(\infty, t) = 0 \quad t > 0$

Automatically satisfies $\nabla \cdot u = 0$.

Math 705
\[\dot{y}, \dot{z} \text{ momentum} \Rightarrow \frac{df}{dy} = \frac{df}{dz} = 0 \]

\[\dot{x} \text{ momentum: } \frac{du}{dt} + (u \cdot \nabla) u = -\frac{1}{
ho} \nabla p + \nu \nabla^2 u \]
(neglect gravity)

Thus \(p = p(x,t) \), \(u = u(y,t) \) and

\[-\frac{1}{\rho} \frac{dp(x,t)}{dx} = \frac{d}{dt} \frac{d}{dy^2} u(y,t) = c(t) \]

Then \(p(x,t) = -\rho c(t) x + D \)

but with \(p(\infty) = p(-\infty) \) \(\frac{dp(x,t)}{dx} = 0 \)

\[\Rightarrow \ p = D = p_\infty \]

\[\Rightarrow \ \frac{d}{dt} \frac{d}{dy^2} u(y,t) = \nu \frac{d^2}{dy^2} u(y,t) \]

and this is just the heat equation, and we know that there are special similarity solutions

\[u(y,t) = F \left(\frac{y}{\sqrt{t \nu}} \right) \] where \(\xi = \frac{y}{\sqrt{t \nu}} \)

is a similarity variable
Remind that \(\frac{du}{dt} = \nu \frac{du}{dy} \) is invariant under the change of variables \(y = \alpha x', t = \alpha^2 t' \) which motivates the similarity variable \(\xi = \frac{y}{t^{1/2}} \).

In fact we can look for a solution of the form

\[u(y, t) = \xi(y), \quad \xi = \frac{y}{(2t)^{1/2}} \]

\[\frac{du}{dt} = \xi'(y) \frac{dy}{dt} = \xi'(y) \int \left[-\frac{1}{2} \frac{dy}{(2t)^{1/2}} + \frac{1}{t^{3/2}} \right] \]

\[\frac{d^2u}{dy^2} = \xi''(y) \frac{1}{2} \]

Plugging in \(\Rightarrow \)

\[\xi''(y) + \frac{1}{2} \left(\frac{y}{(2t)^{1/2}} \right) \xi'(y) = 0 \]

\[\xi''(y) + \frac{1}{2} \xi'(y) = 0 \]

which has solution

\[\xi(y) = A + B \int_0^y \exp \left(-\frac{s^2}{4} \right) ds \]
What happens to the boundary conditions?

\[u(y,0) = 0 \quad \text{and} \quad u(\infty, t) = 0 \quad \Rightarrow \quad f(\infty) = 0 \]

\[u(0, t) = u_0 \quad \Rightarrow \quad f(\eta = 0) = u_0 \quad \Rightarrow \quad A = u_0 \]

Then \[f(\eta = \infty) = 0 \quad \Rightarrow \]

\[0 = u_0 + B \int_{\infty}^{\infty} \exp \left(-\frac{s^2}{4} \right) ds = u_0 + B \sqrt{\pi} \]

\[\Rightarrow \quad f = u_0 \left[1 - \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \exp \left(-\frac{s^2}{4} \right) ds \right] \]

\((\text{pictures})\)
\[
\frac{u}{u_0} = 1 - \frac{1}{\sqrt{\pi}} \int_0^t e^{x^2} \frac{e^{-x^2}}{4} dx
\]

\[
\eta = \frac{y}{(y + t)^{1/2}}, \quad \nu = 1
\]
What happens to vorticity?

\[\omega = \omega_x \]

\[\omega = -\frac{du}{dy} = -\left(-\frac{u_0}{\sqrt{\pi t}} \right) \exp \left(-\frac{y^2}{4t} \right) \left(\frac{1}{\sqrt{\pi t}} \right)^2 \]

\[= -\frac{du}{dy} \frac{\partial y}{\partial y} = \frac{u_0}{\sqrt{\pi vt}} \exp \left[-\frac{1}{4} \frac{y^2}{v t} \right] \]

which is exponentially small when \(\frac{1}{4} \frac{y^2}{v t} = O(1) \), or when \(y = O((vt)^{1/2}) \).

Initially there is a "vortex sheet" at \(y = 0 \); all the vorticity \(\omega = -\frac{du}{dy} \) is concentrated at the boundary \(y = 0 \) (a sheet at \(y = 0 \)).

Then in time, the vorticity spreads a distance \(y = O((vt)^{1/2}) \); vorticity "diffuses" or distance of order \((vt)^{1/2} \) in time \(t \); the diffusion time is \(t = O(\frac{y^2}{v}) \) or \(t = O(\frac{L^2}{v}) \).
Conclusion: Viscosity acts to diffuse (spread) vorticity in time $t = O \left(\frac{L^2}{\nu} \right)$ over distance $L = O \left(\sqrt{v t} \right)$.

Shear flows have vorticity, and vorticity is associated with walls and viscosity.

Taking the curl of the eqn. for u (no gravity):

$$\frac{d\omega}{dt} + \left(u \cdot \nabla \right) \omega - \left(\omega \cdot \nabla \right) u = \nu \nabla^2 \omega$$

* In the 1D shear flow just discussed, there is diffusion of vorticity generated by viscosity at a wall: $\nu \nabla^2 \omega$

* In 2D, there can also be advection of vorticity by the term $(u \cdot \nabla) \omega$.

* In 3D, there can also be stretching of vorticity by $(\omega \cdot \nabla) u$.
The stretching term \((\omega \cdot \nabla)u\) is what may lead to possible singularities in 3D. Adding a top wall