Green's Function for Poisson's Eqn.

$\nabla^2 u(x) = f(x)$ with possibly non-homogeneous boundary conditions.

Define $\nabla^2 G(x; x_0) = \delta(x - x_0)$.

Note that the Green's function is the electrostatic potential for a point charge at $x = x_0$.
\[\int_Y G(x; x_0) \nabla^2 u(x) - f(x) = 0 \int_Y \, dx \]

Integrate by parts twice:

\[\int_Y u(x) \nabla^2 G(x; x_0) \, dx = \int_Y G(x; x_0) f(x) \, dx \]

\[-\int_A \left[G(x; x_0) \nabla u(x) - u(x) \nabla G(x; x_0) \right] \cdot n \, dA \]

With \(\nabla^2 G(x; x_0) = \delta(x - x_0) \) we find an explicit formula for \(u(x_0) \):

\[u(x_0) = u_p(x_0) + u_n(x_0) \]

or if we interchange the labels \(x, x_0 \):

\[\Rightarrow \]
\[u(x) = \int_{V_0} G(x_0; x) f(x_0) \, dV_0 \]

\[-\int_{A_0} \left[\left(\frac{\partial G(x_0; x)}{\partial x} \right) \frac{\partial u(x_0)}{\partial x} + u(x_0) \frac{\partial G(x_0; x)}{\partial x} \right] n_0 \, dA_0 \]

Be careful! These are derivatives wrt \(x_0 \), \(n_0 \), \(dA_0 \), \(dV_0 \), etc.

*Need to solve \(\nabla^2 G(x_0; x) = \delta(x - x_0) \)

\[\text{[helpful if } G(x_0; x) = G(x_0; x) \text{ symmetric]} \]

* Need to choose appropriate basis

\[\text{For } G(x, x_0) \]

As for the ODE case, choose basis for \(G(x_0; x) \) such that the RHS above is completely known
Simplest cases

1. If $u(x)$ is given on Ω ("Dirichlet")

 \Rightarrow choose $G(x, x_0) = 0$ on Ω

2. If $\nabla u(x) \cdot \hat{n}$ is given on Ω

 ("Neumann") \Rightarrow choose $\nabla G(x, x_0) \cdot \hat{n} = 0$

 on Ω

In 2D, the volume integrals become zero.
Integrals, and the boundary terms are closed loop line integrals.

Let's compute the infinite space Green's function in 2D corresponding to the electrostatic potential of a single point charge in a plane (no boundaries).
\[V^2 G(x, x_0) = \delta(x - x_0) \]

\[x = (x, y) \]
\[x_0 = (x_0, y_0) \]

Physically, \(G(x, x_0) \) depends on the distance from the charge/source but not the angle.

\[\Rightarrow G(x, x_0) = G(r, \theta) = G(r) \]

where \(r = |x| = |x - x_0| = \sqrt{(x - x_0)^2 + (y - y_0)^2} \)

\[x - x_0 = r e^{i\theta} \]

\[x-x_0 = r \cos \theta \quad ; \quad y-y_0 = r \sin \theta \]

2 steps to find \(G(x, x_0) \)

1. Solve \(V^2 G(x, x_0) = 0 \) \(\forall x \neq x_0 \)
2. Integrate around the singularity at \(x = x_0 \)

\[\text{[like integrating across the singularity in 1D]} \]
Step 1

No θ-dependence \Rightarrow

\[\frac{1}{r} \frac{d}{dr} \left(r \frac{dG(r)}{dr} \right) = 0 \quad \Rightarrow \quad r \frac{dG(r)}{dr} = C \]

\[\Rightarrow \quad G(r) = C \ln r + D \]

Step 2

\[\int_A \nabla^2 G(x; x_0) \, dA = \int_A G(x-x_0) \, dA = 1 \]

\(\exists x_0 \text{ in } A \)

By divergence theorem

\[= \oint_S \nabla G(x; x_0) \cdot \hat{n} \, dS \]

with \(\nabla = \frac{1}{r} \frac{d}{dr} \hat{r} + \frac{1}{r \sin \theta} \frac{d}{d\theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{d}{d\phi} \hat{\phi} \)

Since \(G = G(r) \) we find

\[= \oint_0^{2\pi} \frac{dG(r)}{dr} \hat{r} \cdot \hat{r} \, r \, d\theta = 1 \oint_0^{2\pi} \frac{dG(r)}{dr} \, r \, d\theta \]

\(\nabla G \) is in the \(\hat{r} \)-direction, \(\hat{n} \) is in the \(\hat{r} \)-direction.
\[2\pi r \frac{d6(r)}{dr} = 1 \]

or \[\frac{d6(r)}{dr} = \frac{1}{2\pi r} \] as we had before with \[C = \frac{1}{2\pi} \]

Thus \[G(x, x_0) = \frac{\ln r}{2\pi} + D \text{ is the} \]

infinite space Green's function in 2D determined up to an arbitrary additive constant

[like the electrostatic potential is determined up to a constant]

How can we use this to solve problems in

Bounded Domains?

Method of Images

Check symmetry: \[G(x, x_0) = G(x_0, x) = \frac{1}{2\pi} \ln \sqrt{(x-x_0)^2 + (y-y_0)^2} \]
Method of Images for a semi-infinite domain

\[\nabla^2 u(x) = f(x) \quad u(x, y=0) = h(x) \]

\[0 < y < \infty, \quad -\infty < x < \infty \]

We want to solve \(\nabla^2 G(x; x_0) = f(x - x_0) \)

with \(G(x, 0; x_0, y_0) = 0 \) the homogeneous version of the b.c.s for \(u(x) \).

To satisfy the homogeneous b.c.s for \(u \), introduce an image charge.
In infinite space \(\nabla^2 G(x, x_0) = \delta(x - x_0) - \delta(x - x_0^*) \)

in \(-\infty < x < \infty, \quad -\infty < y < \infty \)

which still satisfies \(\nabla^2 G(x, x_0) = \delta(x - x_0) \)

in the upper half plane

The problem is linear \(\Rightarrow \)

\[
G(x, x_0) = \frac{1}{2\pi} \ln |x - x_0| - \frac{1}{2\pi} \ln |x - x_0^*|
\]
\[\frac{1}{2\pi} \ln \left\{ \frac{|x-x_0|^2}{|x-x_0|^2 + (y+y_0)^2} \right\} \]

\[= \frac{1}{2\pi} \ln \left\{ \frac{(x-x_0)^2 + (y-y_0)^2}{(x-x_0)^2 + (y+y_0)^2} \right\}^{1/2} \]

Then using \(\ln x = n \ln x \Rightarrow \)

\[G(x, x_0) = \frac{1}{4\pi} \ln \left\{ \frac{(x-x_0)^2 + (y-y_0)^2}{(x-x_0)^2 + (y+y_0)^2} \right\} \]

Is it true that \(G(x, x_0) \bigg|_{y=0} = 0 \)?

\[G(x, x_0) \bigg|_{y=0} = \frac{1}{4\pi} \ln \left\{ \frac{(x-x_0)^2 + y_0^2}{(x-x_0)^2 + y_0^2} \right\} \]

\[= \frac{1}{4\pi} \ln 1 = 0 \checkmark \]

Furthermore, \(V^2 G(x, x_0) = 0(x-x_0) \) in the upper half plane.
Now the formula is:
\[u(x) = \int_{A_0} g(x_0, x) f(x_0) \, dA_0 \]

\[- \left[\int_{S_0} \nabla_v G(x_0, \hat{x}) \cdot \hat{n}_0 \, dS_0 \right. \]
\[- \left. \int_{S_0} u(x_0) \nabla_v G(x_0, \hat{x}) \cdot \hat{n}_0 \, dS_0 \right] \]

\[\int_{A_0} \, dA_0 = \int_{-\infty}^{\infty} dx_0 \int_{-\infty}^{\infty} dy_0 \]

\[\int_{S_0} \, dS_0 = \int_{-\infty}^{\infty} dx_0 \quad \text{with} \quad y_0 = 0 \]

\[\hat{n}_0 = -\hat{y}_0 \]

\[\nabla_v G(x_0, \hat{x}) \cdot \hat{n}_0 = \frac{\partial}{\partial y_0} (x_0, \hat{x}) (-1) \]

The boundary term is:
\[\int_{-\infty}^{\infty} \, dx_0 \ h(x_0) \left. \frac{\partial}{\partial y_0} (x_0, \hat{x}) \right|_{y_0 = 0} (-1) \]
Now plug in:

\[C(x_0, y_0; x, y) = \frac{1}{4\pi^2} \ln \frac{(x_0-x)^2 + (y_0-y)^2}{(x_0-x)^2 + (y_0+y)^2} \]

\[
\frac{\partial C}{\partial y_0} = \frac{1}{4\pi} \frac{2(y_0-y)}{(x_0-x)^2 + (y_0-y)^2} \]

\[
= \frac{1}{4\pi} \frac{2(y_0+y)}{(x_0-x)^2 + (y_0+y)^2} \]

\[
= -\frac{2y}{4\pi} \frac{1}{(x_0-x)^2 + y^2} \]

\[
= -\frac{2y}{4\pi} \frac{1}{(x_0-x)^2 + y^2} \]

\[
= -\frac{1}{\pi} \frac{y}{[(x_0-x)^2 + y^2]^2} \]
\[u(x) = \int_{-\infty}^{\infty} dx_0 \int_{-\infty}^{\infty} dy_0 \, G(x_0 \mid x \mid) f(x_0) \]

\[+ \int_{-\infty}^{\infty} h(x_0) \frac{1}{\pi} \left[\frac{y}{(x_0-x)^2 + y^2} \right] dx_0 \]