Chapter 4: Classical Aerofoil Theory
Chapter 5: Vortex Motion

Acheson mentions already in Chapter 1, the Kutta-Joukowski Theorem (1.35) pertaining to the lift force on a 2D aerofoil.

The set-up in the following

![Diagram of an aerofoil with flow](image)

Uniform Flow at $x \rightarrow -\infty$

2D aerofoil: constant density ρ, angle of attack α

The theorem says that $L = \rho u_0 |M|$

where L is lift and M is circulation

L is the force perpendicular to the Freestream direction \hat{z}.
What exactly is α?

Define the chord length as the longest distance for a straight line within the aerofoil.

Then α is the angle from the free-stream direction \hat{x} to this line.

$\Gamma = \Gamma(\alpha)$

Γ also depends on the shape of the aerofoil.
\[\Gamma \text{ is circulation about a closed curve } C \text{ lying in the fluid region } \]
\[\Gamma = \oint_C \mathbf{u} \cdot d\mathbf{x} \]

So, for example, consider the following three scenarios:

\[\Gamma_1 \]

\[\Gamma_2 \]

\[\Gamma_3 \]

\(\circ \) indicates a stagnation point \(\mathbf{u} = 0 \)
The inviscid, irrotational, incompressible ADAC theory tells us

\[\mathbf{F} = -p \mathbf{n} \]

but does not give us \(F \). To determine the circulation, we need to invoke viscosity and

The Kutta condition says that there should be no sharp gradients in the velocity (viscosity does not allow sharp gradients), therefore the value of \(F \) is such that the stagnation point is at the sharp trailing edge of the aerofoil.

The inviscid, irrotational, incompressible, ADAC theory also gives drag

\[D = 0 \]

what drag is the force on the aerofoil in the direction of the freestream.
Let's start with a more modest goal: try to understand flow around a circular cylinder with and without circulation.

\[u = u_0 \hat{x} \]

Case \(\gamma = 0 \)

Then we will map the circle to the aerofoil shape.

Why start with rotational flow?

- We already discussed the fact that we can solve a linear pde for the stream function \(\Psi \).

- Consider the vorticity equation

\[
\frac{d\omega}{dt} + (u \cdot \nabla) \omega = (\omega \cdot \nabla) u + \nu \Delta \omega
\]

- Completely general: find by taking the curl of the equation; fixed \(u \) and using chain rule.

- And we consider the incompressible problem \(\nu = 0 \).
2D-2C Flow in Cartesian coordinate

\[
\begin{vmatrix}
\frac{\partial \hat{x}}{\partial x} & \frac{\partial \hat{y}}{\partial x} & \frac{\partial \hat{z}}{\partial x} \\
\frac{\partial \hat{x}}{\partial y} & \frac{\partial \hat{y}}{\partial y} & \frac{\partial \hat{z}}{\partial y} \\
\frac{\partial \hat{x}}{\partial z} & \frac{\partial \hat{y}}{\partial z} & \frac{\partial \hat{z}}{\partial z}
\end{vmatrix}
\begin{bmatrix}
\hat{x} \\
\hat{y} \\
\hat{z}
\end{bmatrix}
\begin{bmatrix}
\hat{u} \\
\hat{v} \\
\hat{w}
\end{bmatrix}
= \hat{z} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)
\]

\[
u = u(x,y)\hat{x} + v(x,y)\hat{y} + \hat{z} \hat{w}
\]

\[
w = w\hat{z} \implies (\hat{u} \cdot \nabla) w = 0
\]

and the same result for polar coordinates.

\[
\frac{\partial w}{\partial t} + (\hat{u} \cdot \nabla) w = 0
\]

Now for steady flow such as an aerofoil problem:

\[(\hat{u} \cdot \nabla) w = 0\] and there is no change of \(w\) in the direction of a streamline (tangent to \(\hat{u}\)) \(\implies\) no change in \(w\) along a streamline.
Now since \(\omega = 0 \) at \(x \to -\infty \), then \(\omega = 0 \) everywhere.

For the inviscid problem

Our set up is now

\[\hat{e}_z = \hat{z} \text{ out of page} \]
Recall that for incompressible flow (2D-2C)
\[\nabla \cdot u = 0 \text{ satisfied if } u = \nabla \times \psi \hat{k} \text{ where } \psi \text{ is the streamfunction} \]

\[[u \cdot \nabla] \psi = 0 \Rightarrow \psi \text{ constant along streamlines} \]

Then if the flow is also irrotational with

\[\nabla \times u = 0 \Rightarrow \nabla \times (\nabla \times \psi \hat{k}) = 0 \Rightarrow \nabla^2 \psi = 0 \]

For irrotational flow, \(\nabla \times u = 0 \) satisfied

\[\text{if } u = \nabla \psi, \text{ where } \psi \text{ is a potential.} \]

Then if the flow is also incompressible with

\[\nabla \cdot u = 0 \Rightarrow \nabla \cdot (\nabla \psi) = 0 \Rightarrow \nabla^2 \psi = 0 \]

Notice here the + sign convention for the potential flow following Acheson Chapter 4!
So we can solve Laplace's Eqn. for ϕ or ψ with appropriate boundary conditions!

In Cartesian coordinates $u = (u, v) = (u\hat{x}, v\hat{y})$

$$u = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial x}, \quad v = -\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial y}$$

In Polar coordinates $u = (u_r \hat{r}, u_\theta \hat{\theta})$

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{\partial \psi}{\partial r}, \quad u_\theta = -\frac{\partial \psi}{\partial r} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$$

Some "building block" or "toy" flows:

1) Uniform Flow $\Rightarrow u = u_0 \hat{x}$

in an unbounded domain

$\phi(x, y) = u_0 y \quad \psi(x, y) = u_0 x$

unbounded so no boundary conditions necessary
(2) Source Flow

\[u_r = \frac{q}{2\pi} \frac{1}{r}, \quad u_\theta = 0 \]

velocity is radial with a singularity at \(r = 0 \)

\[\psi = \frac{q \theta}{2\pi}, \quad \varphi = \frac{q}{2\pi} \ln r \]

\(q \) is the area flow rate \([q] = \left[\frac{\text{in}^2}{\text{sec}} \right] \)

with \(q = \int_0^{2\pi} u_r r d\theta \)

(3) The irrotational vortex

\[u_r = 0, \quad u_\theta = \frac{q}{2\pi r} \]

\[\psi = -\frac{q}{2\pi} \ln r, \quad \varphi = \frac{q \theta}{2\pi} \]
The irrotational vortex

\[M = \oint_{\Gamma} \mathbf{u} \cdot d\mathbf{r} = \oint_{\Gamma} u_\theta \, r \, dr \]

is circulation; \(r = 0 \) is a singularity again.

It is easy to check that all these flows have \(\psi, \Psi \) that satisfy

\[\nabla^2 \psi = \nabla^2 \Psi = 0 \]

Since the equations for \(\psi, \Psi \) are linear, we can add solutions and the result must also satisfy the differential equation.

e.g., let's add a sink + irrotational vortex

\[\Psi = -\frac{1}{2\pi} \ln r - \frac{g}{2\pi} \theta \]

vortex sink
\[\psi = \frac{\rho}{\eta} \theta - \frac{\rho}{\beta_{11}} \ln r \]

We can verify that flow over a cylinder with circulation \(\Gamma \) has streamfunction

\[\psi = u_0 r \left(1 - \frac{a^2}{r^2} \right) \sin \theta - \frac{r}{\alpha_1} \ln r \]

\[u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{1}{r} u_0 \left(r - \frac{a^2}{r} \right) \cos \theta \]

\[u_\theta = -\frac{1}{r} \frac{\partial \psi}{\partial r} = -u_0 \sin \theta \left(1 + \frac{a^2}{r^2} \right) + \frac{r}{\alpha_{11}} \frac{1}{r} \]

\(u_0, a, \Gamma \) are parameters; \(u_0 \) is the freestream velocity; \(a \) is the radius of the cylinder; \(\Gamma \) is circulation.
\[
\begin{align*}
M = 0 & \quad u_r = U_0 \left(1 - \frac{a^2}{r^2}\right) \cos \theta \\
& \quad u_\theta = -U_0 \left(1 + \frac{a^2}{r^2}\right) \sin \theta
\end{align*}
\]

\[
\begin{align*}
\text{Stagnation points} & \quad r = a, \theta = \pm \theta_0 : \quad u_r = 0, \quad u_\theta = 0 \\
& \quad r = a, \theta = 0 : \quad u_r = 0, \quad u_\theta = 0 \\
& \quad r = a : \quad u_r = 0, \quad u_\theta = -2U_0 \sin \theta \\
& \quad (\text{check } \theta = \frac{\pi}{2}, \frac{3\pi}{2}) \\
& \quad r \to \infty, \theta = \frac{\pi}{2} : \quad u_r = 0, \quad u_\theta = -U_0 \\
& \quad r \to \infty, \theta = \pi : \quad u_r = -U_0, \quad u_\theta = 0 \\
& \quad r \to \infty, \theta = 0 : \quad u_r = \frac{U_0}{r}, \quad u_\theta = 0 \\
\end{align*}
\]

e tc. \quad \text{Symmetric Flow with no circulation}
\[\theta > 0 \Rightarrow \text{some counterclockwise circulation} \]

\[M < 0 \Rightarrow \text{some clockwise circulation} \]
Calculate lift and drag using Bernoulli for steady, inviscid flow.

\[
\text{drag} = \text{force in horizontal direction } (x) \quad \text{lift} = \text{force in vertical direction } (y)
\]

\[
\frac{p_1}{\rho} + \frac{1}{2} u_1 \cdot u_1 + gy_1 = \frac{p_2}{\rho} + \frac{1}{2} u_2 \cdot u_2 + gy_2 = \text{c}
\]

Neglect gravity and take \(r = \infty \) and \(r = a \):

\[
\mathbf{u} = u_r \mathbf{\hat{e}}_r + u_\theta \mathbf{\hat{e}}_\theta
\]

\[
= u_0 \left(1 - \frac{a^2}{r^2} \right) \cos \theta \mathbf{\hat{e}}_r + \left(-u_0 \sin \theta (1 + \frac{a^2}{r^2}) + \frac{r}{a \pi r} \right) \mathbf{\hat{e}}_\theta
\]

\[
p_\infty + \frac{\rho}{2} \left\{ -u_0^2 \cos^2 \theta + u_0^2 \sin^2 \theta \right\} =
\]

\[
p_a + \frac{\rho}{2} \left\{ -2u_0 \sin \theta + \frac{1}{2\pi a} \right\} \theta^2
\]
\[p_a = p_0 + \frac{1}{2} \rho u_0^2 - \frac{1}{2} \rho \left(-2 u_0 \sin \theta + \frac{\dot{V}}{2 \pi a_0} \right)^2 \]

\[\text{Drag } D = \int_A p_a (-\hat{n}) \, dA = i \]

where \(A \) is the surface of the cylinder at fixed \(r = a \)

\[\hat{n} \cdot \hat{z} = -\cos \theta \]

\[dA = a \, d\theta \, dz \quad \hat{z} \text{ out of the page} \]

but \(b \) = width of the cylinder out of the page

\[D = b \int_0^{2\pi} p_a (-\cos \theta) \, a \, d\theta = 0 \]
D'Alembert's paradox: \(D = 0 \) is the first reason why we need to include viscosity!

\[
L = b \int_0^{2\pi} p_a (-\hat{n}) \, dA \cdot \hat{j} \\
\text{at } r = a \text{ fixed}
\]

\[
L = b \int_0^{2\pi} p_a (-\sin \theta) a \, d\theta = -\rho u_0^2 b
\]

\[
\Rightarrow \frac{L}{b} = -\rho u_0^2 \text{ (lift per unit width)}
\]

Do the calculations yourself!

Now we need to deduce the stream function...