What happens if we keep the constant of integration in the integrating factor?

Define \(D u(x) = \exp \left[\int p(x) \, dx + c \right] \)

Then \(\frac{d}{dx} \left[D u y \right] = D u q \)

\(D u y = \int D u q \, dx + F \)

\(y = \frac{1}{D u} \int D u q \, dx + \frac{F^*}{D u} \)

\(y(x) = \frac{1}{m(x)} \int m(x) q(x) \, dx + \frac{F^*}{m(x)} \)

\(F^* = \frac{F}{D} \) constant

Same as before.

This explicit formula depends on \(p(x), q(x) \) and can have singularities, etc. where \(p(x), q(x) \) have singularities \(\Rightarrow \)
For linear, 1st-order equations, there is a simpler thm. of existence & uniqueness

Thm of E & U for linear, 1st-order eqns.

Given

\[y'(x) + p(x) y(x) = q(x) \quad y(x_0) = y_0 \]

If \(p(x), q(x) \) are real continuous in
\[\alpha < x < \beta \] with \(\alpha < x_0 < \beta \)

Then there is a unique solution in (at least)
\[\alpha < x < \beta \]

Notes: The region of validity of the solution can be bigger than \((\alpha, \beta) \)

In the form
\[\frac{dy}{dx} = f(x, y) \]

now \(f(x, y) = -p(x) y(x) + q(x) \)

\[\frac{dF(x, y)}{dy} = -p(x) \]
* we look for an open interval where $p(x), q(x)$ are real continuous

* problem points are singularities in the coefficient $p(x)$ and the forcing function $q(x)$, etc.

* helps to understand why we check $\frac{df(x,y)}{df}$ in the general thm.
Example 1 \[xy' + 2y = 3x \quad y(1) = 1 \]

Standard Form \[y' + \frac{2}{x} y = 3 \quad y(1) = 1 \]

\(p(x) \) is singular at \(x = 0 \) so we might conclude \(x > 0 \),

but the solution is \(y = x \), \(-\infty < x < \infty \).

Example 2 \[xy' + 2y = 3x \quad y(1) = 5 \]

\[y = x + \frac{4}{x^2} \quad x > 0 \]
Autonomous systems; Population Dynamics; Critical Points; Stability

Autonomous ODEs have the form \(\frac{dy}{dx} = f(y) \).

In this case, graphical techniques are powerful illustration using a hierarchy of population growth models.

We will make sketches for 2 types of plots: (i) the direction field, and (ii) \(\frac{dN(t)}{dt} \) vs. \(N(t) \).

Where \(N(t) \) is the population of a species at time \(t \).

Model 1: The rate of change of \(N(t) \) is proportional to \(N(t) \) itself.

\[\frac{dN(t)}{dt} \propto N(t) \]

Small population \(\rightarrow \) small growth

Large population \(\rightarrow \) large growth
\[
\frac{dN(t)}{dt} = \alpha N(t) \quad \alpha > 0 \text{ constant growth rate}
\]

\[N(0) = N_0\]

* The slope \(\frac{dN}{dt}\) is positive for all \(N > 0 \Rightarrow\) the population grows for all time for \(N_0 > 0\)

* Critical points: are points at which \(\frac{dN(t)}{dt} = 0\) when you are at a critical point you stay at the critical point because the rate of change is zero. Also called equilibrium points.
* The only critical point is \(N=0 \). If the population is initially zero, it stays zero for all time. However, if the population is infinitesimally larger than zero, then it grows for all time.

\[
N(0) = E^+ \Rightarrow \text{growth for all time}
\]

Thus the critical point \(N=0 \) is \text{unstable}.

A rough sketch of the direction field:

\[
N = \text{exponential growth } N(t) = N_0 \exp(\alpha t)
\]
Model 2: Logistic Growth

Instead of a constant growth rate \(\alpha \), let the growth rate depend on \(N(t) \):

\[
\frac{dN(t)}{dt} = F(N)N
\]

Sensible to take \(F(N) \to r > 0 \) for \(N \to 0 \)

\(F(N) \) negative for \(N \to \infty \)

* exponential growth for small \(N(t) \)
* wars, famines, etc. will cause the species to reduce its numbers if \(N(t) \) becomes too large

Let \(F(N) = (r - aN) \) for \(r > 0, a > 0 \)

\[
= r(1 - \frac{a}{r} N) = r(1 - \frac{N}{K})
\]

with \(K = \frac{r}{a} > 0 \) constant.

The logistic growth model

\[
\frac{dN(t)}{dt} = r \left(1 - \frac{N}{K} \right) N
\]
We could solve this analytically using separation, but let's solve it graphically.

Consider \(\frac{dN(t)}{dt} \) vs. \(N(t) \)

* \(\frac{dN(t)}{dt} > 0 \) for \(N < K \), \(0 < N < K \) (growth)
* \(\frac{dN(t)}{dt} < 0 \) for \(N > K \) (decay)

* critical points are \(N=0 \), \(N=K \)

![Direction Field](image)

Curvature ignored here.
Stability

$N=0$ is unstable. If you move ε away from $N=0$, there is growth away from $N=0$.

$N=k$ is stable. If you move ε away from $N=k$, there is decay or growth back to the level $N=k$.

$N(t) = k$ is the saturation level.

Model 3: Model with a critical threshold
\[
\frac{dN(t)}{dt} = -r \left(1 - \frac{N}{T}\right) N
\]

- $\frac{dN}{dt} < 0$ for $0 < N < T$
- $\frac{dN}{dt} > 0$ for $T < N$

- Critical points are $N=0, N=T$
\[
\frac{dN}{dt} \text{ vs } N
\]

Direction Field

Stability: \(N = 0 \) is stable, \(N = T \) is unstable

If the initial population \(0 < N_0 < T \), then the species eventually dies out.

The species only exists indefinitely if \(N_0 \) is above the threshold \(T \).
Model 4) Logistic Growth with a Threshold

\[
\frac{dN(t)}{dt} = -r \left(1 - \frac{N}{T}\right) \left(1 - \frac{N}{K}\right) N
\]

\[K > T\]

- Critical points: \(N = 0\), \(N = K\), \(N = T\)

- \(0 < N < T\) \(-++\) \(\Rightarrow \frac{dN}{dt} \leq 0\)

- \(T < N < K\) \(-+-+\) \(\Rightarrow \frac{dN}{dt} > 0\)

- \(K < N\) \(---\) \(\Rightarrow \frac{dN}{dt} < 0\)

\[\frac{dN}{dt} \text{ vs } N\]
Direction Field

Stability:

- $N = 0$ stable
- $N = T$ unstable
- $N = K$ stable

$N = T$ is a threshold

$N = K$ is a saturation level

The most realistic model yet!