Math 320 (Smith): Practice Exam 1

1. Consider
\[\frac{dy}{dt} = (y - a)(y^2 - b^2), \quad y(0) = -a, \quad b > a > 0. \tag{1} \]
(a) Sketch, roughly, a direction field and classify all critical points.
(b) Determine (from your sketch), the asymptotic behavior of the solution as \(t \to \infty \).

2. The following augmented coefficient matrix results from elementary row operations on a \(3 \times 3 \) system of linear algebraic equations \(Ax = b \).
\[
\begin{pmatrix}
-1 & 1 & 1 & 2 \\
0 & 5 & -k & 4 \\
0 & 0 & k & p + 3
\end{pmatrix}
\tag{2}
\]
Consider 2 different values of the parameter \(p \): (a) \(p = -3 \), and (b) \(p = -2 \).
Determine for what values of \(k \) the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.
FOR PART (a) ONLY when \(p = -3 \): Find all solutions in cases (i) and/or (iii), and write the solution \(x \) in vector form.

3. Given
\[\frac{dy}{dx} = -\frac{y(x)}{(x - 1)} + \frac{\exp(-x)}{(x - 1)}, \quad y(0) = 2. \tag{3} \]
(a) Find the exact solution. For what values of \(x \) is the solution defined?
(b) Use one step of the Forward Euler method with step size \(h \) to find an approximation for \(y(h) \).

4. (20 points) Consider the initial value problem
\[\frac{dy}{dx} = -\frac{5}{2}x^4 y^3, \quad y(0) = -1. \tag{4} \]
(a) Find \(y(x) \) explicitly. For what values of \(x \) is the solution defined?
(b) Use one step of the Modified Euler (Improved Euler, RK2) method with step size \(h \) to find an approximation for \(y(h) \).

5. (5 points) TRUE or FALSE: The initial value problem
\[\frac{dy}{dt} = (y - 1)^{3/2}, \quad y(1) = 2 \tag{5} \]
is guaranteed to have a unique solution in a subrange of \(-\infty < t < \infty \).