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Abstract. We show that discrete Wm lattices are bi-Hamiltonian, using geo-
metric realizations of discretizations of the Adler-Gel’fand-Dikii flows as lo-

cal evolutions of arc length-parametrized polygons in centro-affine space. We
prove the compatibility of two known Hamiltonian structure defined on the

space of geometric invariants by lifting them to a pair of pre-symplectic forms

on the space of arc length parametrized polygons. The simplicity of the expres-
sions of the pre-symplectic forms makes the proof of compatibility straightfor-

ward. We also study their kernels and possible integrable systems associated

to the pair.

1. Introduction

This article is motivated by the study of geometric evolution equations for con-
tinuous and discrete curves, that are invariant under a given group of symmetries
and that induce completely integrable flows on the space of geometric invariants,
viewed as coordinates of the moduli space of curves under the action of the symme-
try group. Many well-known completely integrable partial differential equations,
including the sine-Gordon, KdV, MKdV, and NLS equations, have geometric re-
alizations as curve flows in different geometries (e.g. hyperbolic for sine-Gordon,
centro-affine for KdV, spherical for mKdV, and Euclidean for NLS) [3, 14, 5, 7, 8].

In the discrete setting, the connection between surfaces and integrable systems
has been fairly well explored, as discussed in the monograph by Bobenko and
Suris [2], where discrete surfaces are regarded as two-dimensional layers of multi-
dimensional lattices, and the consistency of the underlying equations and geometric
properties leads to complete integrable systems and their associated Bäcklund-
Darboux transformations.

A general framework for integrable (discrete and continuous) evolutions of dis-
crete curves, that is not a byproduct of surface theory, is not yet available, al-
though some notable examples have been studied in depth, including the Penta-
gram Map [13], and promising approaches have been proposed, including the use
of discrete moving frames to generate Hamiltonian pairs for continuous evolutions
of polygons [11, 12].
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2 INTEGRABLE EVOLUTIONS OF TWISTED POLYGONS

The work presented here focuses on a discrete analogue of the so-called m−1/m-
Adler-Gel’fand-Dikii (AGD) flows, generalizations of the KdV hierarchy first in-
troduced in [9] and studied in [1]. These flows have realizations as local projective

flows of curves in RPm−1; within this context, the moving frame approach leads to a
natural description of its associated Hamiltonian structures, defined on the moduli
space of projective curves [10]. Recently, Maŕı-Beffa and Wang introduced certain
discretisations of the m−1/m-AGD flows as well as their realizations as local evolu-

tions of twisted projective polygons in RPm−1 [12]. By reducing a twisted Poisson
structure and a second, not compatible, bracket (see [15]) to the moduli space of
twisted (i.e. quasi-periodic with fixed monodromy) projective polygons, coordina-
tised in terms of the entries of the Maurer-Cartan matrix of an appropriately chosen
moving frame, they also generated two Hamiltonian structures (candidates for dis-
crete Wm-algebras). However, a proof of whether these structures were compatible
or not remained elusive for general dimension.

In this article, we prove that the pair of Hamiltonian structures defined in [10] are
compatible in any dimension (Theorem 4.6), and thus the related discrete m−1/m-
AGD flows are bi-Hamiltonian. We achieve this by lifting the Poisson brackets
to a pair ω1, ω2 of pre-symplectic forms defined on the moduli space of arc-length
parametrized twisted polygons in centro-affine Rm. The expressions for the pre-
symplectic forms are remarkably simple and the general proof of compatibility of
the Hamiltonian structures for the m − 1/m-AGD is straightforward.

At the heart of why shifting the point of view from flows on geometric invariants
(curvatures) to geometric flows (polygonal evolutions, invariant under the action
of the symmetry group) can help simplify the study of integrability, are several
observations that are central to this work. First, Proposition 3.6 shows that the
symplectic leaves of the twisted Poisson bracket are classified by the conjugacy
classes of the monodromy of the associated polygon. Thus, any invariant vector
field on the space of polygons will induce a vector field on the geometric invariants
that is automatically tangent to the symplectic leaves of the Poisson structure.
(Note, however, that the converse is not true: not every flow on periodic geometric
invariants will lift to an invariant—monodromy preserving—geometric flow). Sec-
ond, as both ω1 and ω2 are trivially reducible to the moduli space, they will induce
Poisson structures on the submanifolds of fixed monodromy conjugacy class. Third,
Theorem 5.1 and Corollary 5.2 show that the kernel of ω1 is generated by the in-
finitesimal symmetries and thus ω1 becomes symplectic when restricted to these
submanifolds, suggesting the possibility of generating additional integrable hierar-
chies beginning with appropriate “seed” vector fields. Notice that, as we pointed
out in [12], the pentagram map and its generalizations do not seem to be Hamil-
tonian with respect to the structures we work with in this paper. It is unclear if
there is any connection to other projective polygonal dynamics in the literature.

Outline. In more detail, we summarize the body of the article. In §2 we illustrate
the geometric background, using the 3-dimensional case to introduce notation and
key definitions. In §3 we describe a pair of Poisson brackets on the moduli space
of arc length-parametrized twisted polygons, originally introduced in [12] in terms
of a different, but equivalent, set of coordinates. §4 contains the main results of
this work. In this section, we define a pair of pre-symplectic forms that realize the
lifts of the Poisson brackets to the space arc length-parametrized twisted polygons
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(Theorems 4.4 and 4.5). In Theorem 4.6 we present a simple proof of the compat-
ibility of the Poisson brackets as a direct consequence of their representations in
terms of the pre-symplectic forms. In §5 we describe the generators of the kernels of
the pre-symplectic forms, their associated Hamiltonians with respect to their com-
panion form, and we propose a possible approach to the construction of additional
integrable hierarchies. The final section contains a discussion of the main results
and some open questions.

2. Background: Evolutions of Polygons in Centro-affine Space

It is instructive to consider the 3-dimensional case first. We define the centro-
affine action of SL(3,R) on R3 to be the standard linear action given by multi-
plication g ⋅ x = gx, where g ∈ SL(3,R) and x ∈ R3. Let γ ∶ Z → R3 be a discrete
space curve, assumed to satisfy the following non-degeneracy condition: any three
successive vertices γn, γn+1, γn+2 are linearly independent as vectors. Although not
necessary for parts of the discussion to follow, we also assume that γ is twisted (or
quasi-periodic), that is,

(1) γn+N = Tγn, n ∈ Z,
for a given matrix T in SL(3,R), the monodromy, and minimal N ∈ N, the period.
When T =Id, the identity matrix, γ is a closed polygon of period N .

Moving Frames and Invariants. Given γ = {γn} a twisted polygon in R3, we
introduce the centro-affine moving frame† ρ(γ) = {ρn(γ)} with

ρn(γ) = (γn γn+1
1

dn
γn+2) ∈ SL(3,R),

where the invariant

dn = ∣γn, γn+1, γn+2∣ ∶= det(γn, γn+1, γn+2)
is the discrete centro-affine arc length at the n-th vertex. (For sake of convenience,
we will use the notation ∣A∣ ∶= det(A) for matrix determinant.) From now on we
will take γ to be arc length parametrized, i.e. we assume that dn = 1 for all n.

The group G = SL(3,R) acts on polygons by diagonal action g ⋅ γ = {gγn}Nn=1,
and on the associated moving frame by g ⋅ ρ(γ) = ρ(g ⋅ γ), making ρ a left moving
frame (i.e. equivariant with respect to the left action of G on itself).

The components of the moving frame ρ satisfy an equation of the form

(2) ρn+1 = ρnKn,

where Kn is the Maurer-Cartan left invariant matrix. We call (2) the Frenet-Serret
equations for γ.

It follows from ∣γn, γn+1, γn+2∣ = ∣γn+1, γn+2, γn+3∣ = 1 that γn+3 − γn must be a
linear combination of γn+1 and γn+2, thus:

(3) γn+3 = τnγn+2 + knγn+1 + γn,
where kn ∶= ∣γn, γn+3, γn+2∣ and τn ∶= ∣γn, γn+1, γn+3∣ are periodic functions of n of
period N and completely determine γ up to the action of the group G. In other
words, {kn} and {τn} are a complete set of geometric invariants of the polygon.

†See [11] for the general definition of discrete moving frame.
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From equations (2) and (3) it follows that

(4) Kn =
⎛
⎜
⎝

0 0 1
1 0 kn
0 1 τn

⎞
⎟
⎠
,

with Kn+N = Kn. Moreover, from ρn+N = ρnKnKn+1 . . .Kn+N−1, we find that the
product

K1K2 . . .KN = ρ−11 Tρ1

must belong to the conjugacy class of the monodromy.

2.1. Evolutions of Polygons and Invariants. Consider a continuous time evo-
lution of the discrete curve, that is also invariant under the centro-affine action
(i.e. group elements take solutions to solutions). Then, the evolution equations
take the form:

(5)
d

dt
γn = cnγn + bnγn+1 + anγn+2 = ρnrn,

where the components of rn = (cn, bn, an)T , are functions of the geometric invariants
{kn} and {τn}. It follows that the evolution equations of moving frame have the
form:

(6)
d

dt
ρn = ρnQn,

with

(7) Qn = (rn Knrn+1 KnKn+1rn+2) ,
The expression for Qn is obtained directly by computing

(γn+1)t = ρn+1rn+1 = ρnKnrn+1, (γn+2)t = ρn+2rn+2 = ρnKnKn+1rn+2,

using equations (2) and (5).
Since dn = det(ρn), arc length is preserved by the evolution (5) if and only if the

trace of Qn vanishes for all n. Introducing the variables

vn = an+1, wn = bn+2 + τn+1an+2,
(whose meaning will become clear later on), we compute

tr(Qn) = cn + cn+1 + cn+2 + knvn + kn+1vn+1 + τnwn.
Denoting with T the left shift operator T fn = fn+1, the arc length preservation
condition tr(Qn) = 0 can be written as:

(8) cn = −R−1 [(1 + T )knvn + τnwn] ,
where the operator

R ∶= 1 + T + T 2

is invertible whenever N /= 3k, k ∈ N (see Lemma 3.1 in [12] for a proof of this fact),
so we will assume from now on that such is the case.

The evolution equations for the geometric invariants is obtained from the com-
patibility condition

(9)
d

dt
Kn =KnQn+1 −QnKn

of the Frenet-Serret equations (2) and the frame evolution (6).
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Multiplying both sides of (9) by K−1
n =

⎛
⎝

−kn 1 0
−τn 0 1
1 0 0

⎞
⎠

, we obtain

⎛
⎜
⎝

0 0 (kn)t
0 0 (τn)t
0 0 0

⎞
⎟
⎠
= Qn+1 −K−1

n QnKn.

Setting the (1,3)-entries of both sides equal gives

(kn)t = wn+1 − (−kn 1 0) (rn + knKnrn+1 + τnKnKn+1rn+2)
= wn+1 −wn−2 + τn−1vn−1 − τnvn+1 + kn(cn − cn+1).

(10)

Rewriting cn − cn+1 =R−1 [(T 2 − 1)knvn + (T − 1)τnwn], we get

(11) (kn)t = (T −T −2)wn+(T −1τn−τnT )vn+knR−1 [(T 2 − 1)knvn + (T − 1)τnwn] .

Similarly, from (2,3)-entries of (10), we obtain the evolution of τn:

(τn)t = vn+2 + kn+1wn+1 − (−τn 0 1) (rn + knKnrn+1 + τnKnKn+1rn+2)
= vn+2 − vn−1 + kn+1wn+1 − knwn−1 + τn(cn − cn+2) + τn(knvn − kn+1vn+1).

Rewriting cn − cn+2 = −R−1(1 − T 3)knvn −R−1(1 − T 2)(knvn + τnwn) and

τn(knvn−kn+1vn+1) = τnR−1R(1−T )knvn = τnR−1(1−T )Rknvn = τnR−1(1−T 3)knvn,

(where we used the fact that R and T commute), we obtain:

(12) (τn)t = (T 2 − T −1)vn + (T kn − knT −1)wn + τnR−1(T 2 − 1)(knvn + τnwn).

The evolution equations for the geometric invariants can be written as:

(13) (kn
τn

)
t

= P1n (vn
wn

) .

where

(14) P1n =
⎛
⎜
⎝

T −1τn − τnT + knR−1(T 2 − 1)kn T − T −2 + knR−1(T − 1)τn

T 2 − T −1 + τnR−1(T − 1)kn T kn − knT −1 + τnR−1(T 2 − 1)τn

⎞
⎟
⎠

A gauge equivalent version of P1n, as well as its higher-dimensional generalizations,
were shown to be Poisson operators in [12]. In the next section, we describe how
such discrete Hamiltonian structures arise in general dimension, together with its
bi-Hamiltonian companions.

3. Hamiltonian structures on the moduli space of polygons

Relying on the construction in [12] for polygons in projective space, this sec-
tion introduces two Hamiltonian structures on the moduli space of arc length-
parametrized twisted polygons in centro-affine Rm that are adapted to our partic-
ular choice of moving frame. We first discuss the equivalence between the centro-
affine and projective cases.

Definition 3.1. A projective polygon {pn}Nn=1, pn ∈ RPm−1, is non-degenerate if
there exists a lift {γn}, γn ∈ Rm, of {pn} such that ∣γn, γn+1, . . . , γn+m−1∣ ≠ 0,∀n.
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This property does not depend on the particular choice of lift: in fact, replacing
γn with λnγn, λn ≠ 0, changes the determinant by an overall non-zero factor. The
quantity

(15) dn = ∣γn, γn+1, . . . , γn+m−1∣
is the centro-affine arc length of {γn} at its n-th vertex. Let MN be the set of
non-degenerate twisted polygons in Rm, of given period N and monodromy T , and
let

M1
N ∶= {γ ∶ Z→ Rm ∣ γ ∈MN , dn = 1,∀n}

be the subset of arc-length parametrized polygons.

Definition 3.2. The moduli space of M1
N is the set of all orbits of M1

N under
the action of the subgroup of SL(m,R) that fixes the monodromy T , i.e. M1

N /GT ,
where GT denotes the isotropy subgroup of T (under the Adjoint action.)

Proposition 3.3. If N and m are co-prime, the moduli space of M1
N is diffeo-

morphic to the moduli space of non-degenerate twisted projective polygons in RPm−1

with the same monodromy.

Proof. We use the known fact that a non-degenerate projective polygon in RPm−1

admits a unique lift γ = {γn} to Rm satisfying ∣γn, γn+1, . . . , γn+m−1∣ = 1∀n, provided
N and m are co-prime. (For a proof, see, e.g. [12].)

Clearly, γ is an arc length parametrized twisted polygon in centro-affine Rm,
since the action of PSL(m,R) on projective polygons becomes the linear action of
SL(m,R) on lifts. The invariants {kn} and {τn} defined in terms of the Frenet-
Serret equations are both the projective invariants of {pn} as discussed in [12], as
well as the centro-affine invariants of its lift {γn} to Rm. �

The inverse of the correspondence described in Proposition 3.3 is simply the
projectivization of a centro-affine arc length parametrized N -gon. It follows that
the invariants can be used as coordinates for either moduli space, regarding them
as functions of {pn} in the projective case, and of {γn} in the centro-affine case.

Next, we use Proposition 3.3 and the results for projective N -gons in [12] to
define two Hamiltonian structures on the moduli space of centro-affine arc length
parametrized N -gons. These structures arise as reductions of more general struc-
tures as described below in the context of Poisson-Lie groups.

3.1. A twisted Poisson structure on a Poisson-Lie group. LetG be a semisim-
ple Lie group and g be its Lie algebra. Assume g has a non-degenerate inner product
< , >g∶ g × g∗ → R that identifies g with its dual g∗ (for matrix Lie algebras, this is
usually the trace of the product of two Lie algebra elements.)

Definition 3.4 (Left and right gradients). Let GN denote the Cartesian product
of N copies of G. The group GN acts on itself by diagonal (i.e. component-wise)
action: gg̃ ∶= (gng̃n), where g, g̃ ∈ GN .

Let F ∶ GN → R be a differentiable function. The left gradient of F at L = {Ln} ∈
GN is the element ∇F(L) = {∇nF(L)} of gN defined by

d

dε
∣
ε=0
F(exp(εξ)L) ∶= ⟨∇F(L), ξ⟩, ∀ξ ∈ gN ,

where ⟨ξ, ξ̃⟩ =
N

∑
n=1

< ξn, ξ̃n >g is the induced inner product on gN .
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Similary, the right gradient of F at L, ∇′F(L) ∈ gN , is defined by

d

dε
∣
ε=0
F(L exp(εξ)) ∶= ⟨∇′F(L), ξ⟩, ∀ξ ∈ gN .

(See [6, 12].)

Since Ln exp(εξn) = Ln exp(εξn)L−1n Ln = exp(εLnξnL−1n )Ln, one gets ⟨∇′F(L), ξ⟩ =
⟨∇F(L), LξL−1⟩ and the following relation between the right and left gradients:

(16) ∇′F(L) = L−1∇F(L)L,
expressed component-wise as ∇′

nF(L) = L−1n ∇nF(L)Ln, where the symbol ∇n
(resp. ∇′

n) denotes the n-th component of the left (resp. right) gradient.
Next, assume that g has a grading g = g+ ⊕ h0 ⊕ g−, with h0 commutative and

g+ dual to g−. Let ξ = ξ+ + ξ0 + ξ− be the associated decomposition of ξ ∈ g. Let
R ∶ g→ g be a classical R-matrix defined by:

(17) R(ξ) ∶= 1

2
(ξ+ − ξ−),

with associated 2-tensor

r(ξ ∧ η) ∶= ⟨ξ,R(η)⟩g, r(ξ ⊗ η) = ⟨ξ−, η+⟩g,
where ξ ∧ η = 1

2
(ξ ⊗ η − η ⊗ ξ).

Given F ,H smooth scalar-valued functions on GN and L ∈ GN , we introduce
the twisted Poisson bracket :

{F ,H}(L) ∶=
N

∑
s=1

r(∇sF ∧∇sH) +
N

∑
s=1

r(∇′
sF ∧∇′

sH)

−
N

∑
s=1

r ((T ⊗ 1)(∇′
sF ⊗∇sH)) +

N

∑
s=1

r ((T ⊗ 1)(∇′
sH⊗∇sF)) .

(18)

Equation (18) defines a Hamiltonian structure on G(N), as shown by Semenov-
Tian-Shansky [15]. Moreover, the twisted gauge action of GN on itself—mapping
{Ln} to {gn+1Lng−1n }—is a Poisson map and its orbits coincide with the symplectic
leaves [6, 15]. These brackets play a central role in the following construction.

3.2. Poisson structures on the moduli space of centro-affine polygons.
The symmetry group of the space of arc length parametrized twisted polygons
in centro-affine Rm is G = SL(m,R). In this case, the R-matrix (17) and the
ensuing twisted Poisson bracket (18) are defined in terms of the standard gradation
g = g+ ⊕ h0 ⊕ g− of its Lie algebra sl(m,R). Here, g−,g+ and h0 are the subsets of
(respectively) strictly lower triangular matrices, strictly upper triangular matrices,
and traceless diagonal matrices.

The Lie algebra sl(m,R) admits a second gradation g = g1 ⊕ g0 ⊕ g−1, with

(19) g1 =
⎛
⎜⎜⎜
⎝

0 ∗ . . . ∗
0 0 . . . 0
⋮ ⋮ ⋮ ⋮
0 0 . . . 0

⎞
⎟⎟⎟
⎠
, g0 =

⎛
⎜⎜⎜
⎝

∗ 0 . . . 0
0 ∗ . . . ∗
⋮ ⋮ ⋮ ⋮
0 ∗ . . . ∗

⎞
⎟⎟⎟
⎠
, g−1 =

⎛
⎜⎜⎜
⎝

0 0 . . . 0
∗ 0 . . . 0
⋮ ⋮ ⋮ ⋮
∗ 0 . . . 0

⎞
⎟⎟⎟
⎠
.

This second gradation realizes the quotient G/H as a homogeneous space, where
H ∈ SL(m,R) is the subgroup with Lie algebra h = g1 ⊕ g0, acting on G by left
multiplication.
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Remark. The two gradations of sl(m,R) are compatible, in the sense that g1 ⊂ g+
and g−1 ⊂ g−.

We will also consider the quotient space GN /HN , where HN acts on GN via the
right discrete gauge action:

(20) (hn, gn)→ hn+1gnh
−1
n .

Following a similar argument as the one given in Section 5 of [12], and using
Proposition 3.3, we identify (locally) the moduli space of M1

N with GN /HN and
coordinatize it by means of the geometric invariants of the polygons. The argument
has two main parts.

I. Group description of twisted polygons. Consider the space (G/H)N and denote its
elements with {[gn]}: N -tuples of equivalence classes with respect to the left action
on H. First note that, if e1 = (1 0 . . . 0)T and h ∈H, then he1 = ae1 for some scalar
a /= 0. This is easily verified by using the general form of h ∈ H. Letting ĝn = gnhn
be another element of [gn], then ĝne1 = gnhne1 = agne1. Therefore, [ĝn] = [gn] if
and only if the projective class of {gne1} is the same as that of {ĝne1}.

Given {[gn]} ∈ (G/H)N and T ∈ G, we extend gn quasi-periodically as gn+N =
Tgn, and let γ = {γn} be the unique lift of the projective class of {gne1} to Rm
satisfying ∣γn, . . . , γn+m−1∣ = 1 and γn+N = Tγn. (See also Proposition 3.3.) In this
way we construct a unique γ ∈M1

N of monodromy T from any given element of
(G/H)N , as illustrated in the following diagram:

(G/H)N Ð→ (RPm−1)N Ð→ M1
N

[{gn}] Ð→ {[gne1]π} Ð→ {γn},

where [gne1]π denotes the projective class of the first column of gn.
Note that, if ρ = {ρn}, ρn = (γn, . . . , γn+m−1), is the left-moving frame of γ, then

{[ρn]} = {[gn]}, since the first columns of ρn and gn belong to the same projective
class. In this way, an arc length parametrized twisted polygon γ is identified with
the equivalence class of its left-moving frame ρ, that is, M1

N is (at least) locally†

identified with (G/H)N ×G. We remark that a section of the quotient (G/H)N in
a neighborhood of the identity can be locally identified with G−1, as illustrated in
the following diagram:

(G/H)N Ð→ (RPm−1)N Ð→ G−1

[{gn}] Ð→ {[gne1]π} Ð→ (1 0T

v Im−1
)

(1
v
) ∈ [gne1]π.

Group description of the moduli space. Next, consider the quotient space GN /HN ,
where HN acts on GN via the right discrete gauge action (20), and introduce the
map

(21)
K ∶ (G/H)N ×G Ð→ GN /HN

({[gn]}, T ) Ð→ [{g−1n+1gn}],

†We will not need more than local identification.
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where we define gn+N ∶= Tgn.‡ If mn = g−1n gn+1, then {mn} is periodic of period
N and m1m2 . . .mN = T . The map K is well-defined since, if [ĝn] = [gn], i.e.
ĝn = gnhn, and both are extended with the same monodromy T , then K({[ĝn]}, T ) =
[{h−1n+1g−1n+1gnhn}] = K([gn], T ). Also, if [{m−1

n }] ∈ GN /HN has a representative m
satisfying m1m2 . . .mN = T and m̂−1 ∈ [{m−1

n }] is a different representative of
the same equivalence class, then m̂1m̂2 . . . m̂N = h−11 ThN+1 = h−11 Th1 belongs to
the H-conjugacy class CT of T . It follows that K is a surjective map; in fact,
given [{m−1

n }] ∈ GN /HN , and choosing an arbitrary representative {m−1
n } with

m1m2 . . .mN = T , we can solve recursively gn+1 = gnmn, and recover an N -gon of
monodromy T , up to an overall left action by the symmetry group, amounting to
the selection of g1.

Remark. It is a general fact that the cardinality of the conjugacy class of T is the
index of the isotropy subgroup of T . It follows that, there is a natural foliation of
GN /HN , where the dimension of the stabilizer of the monodromy of an element in
GN /HN equals the co-dimension of the leaf of that element. This foliation coincides
locally with the symplectic foliation of the reduced bracket defined below, described
in Proposition 3.6.

Finally, let γ ∈M1
N define a local section of (G/H)N by means of the equivalence

class representative given by its left-moving frame ρ. Let {Kn} ∶= {ρ−1n ρn+1} be its
left Maurer-Cartan matrix. Since K({[ρn]}, T ) = [{ρ−1n+1ρn}] = [{K−1

n }] ∶= [{Ln}],
{Ln} defines a smooth local section of GN /HN . On the other hand, the Maurer-
Cartan matrix of a twisted N -gon in Rm is uniquely determined by the geometric
invariants of the polygon (see (27)). Thus, GN /HN can be locally identified with
the moduli space of M1

N (or, by projectivizing, with the moduli space of twisted

polygons in RPm−1) and the geometric invariants can be used as invariant coordi-
nates on the moduli space. We will return to the map K later on.

When gradations are compatible, the Poisson bracket (18) - defined via the first
gradation - can be reduced to the quotient GN /HN , to obtain a Poisson structure
on the moduli space. The following paraphrases Theorem 5.5 in [12].

Theorem 3.5. Given G = SL(m,R), let g = g+ ⊕ h0 ⊕ g− = g1 ⊕ g0 ⊕ g−1 be the
two compatible gradations of its Lie algebra described above. Let H be the subgroup
with Lie algebra h = g0⊕g1, and assume HN acts on GN via the gauge action (20).
We also require gn+N = gn, ∀n. Then, the twisted Poisson structure (18) defined
on GN with r as in (17) is locally reducible to the quotient M = GN /HN .

We will denote the reduce bracket with { , }R.

Remark. We note that Semenov’s twisted Poisson bracket(18) is defined in terms
of the right action instead of the left action. For computations explicitly involving
(18) (such as in Section 3.3), we will then need to work with smooth sections of
M given by right Maurer-Cartan matrices (the inverses of the left Maurer-Cartan
associated to our choice of frame), in order to preserve each symplectic leaf and be
able to reduce the bracket to the quotient space. This is the price we pay for using
a more “canonical” choice of moving frame.

‡Right invariance is used in the description of GN /HN , since the twisted bracket on this

quotient space is defined for right gauges; while left invariance is used for (G/H)N , as it is
standard for homogeneous spaces.
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A second Poisson bracket arises from a companion bracket to (18) found in [12],
as a reduction of the tensor:

(22) θ(F ,H)(L) = 1

2

N

∑
n=1

⟨(∇′
nF)−1, (∇′

nH)1⟩ − ⟨(∇′
nH)−1, (∇′

nF)1⟩,

to M = GN /HN . Here, F ,H ∶ GN → R are differentiable functions. While tensor
θ is not a Poisson bracket on GN , its reduction to M is a Poisson bracket in any
dimension m, as shown in [12]. The origin of this second bracket, which will be
denoted by { , }0, has remained elusive and proof of its compatibility with the
reduced twisted bracket could only be achieved in dimension m = 3.

As consequences of our main results from Section 4, we will show that θ can
be interpreted as the invariant version of a Poisson bracket at the curve level,
explaining why its reduction to the moduli space is a Poisson bracket. We will also
provide a straightforward proof of the compatibility of the two Poisson structures
in any dimension (Theorem 4.6).

Proposition 3.6. The symplectic leaves of the reduced bracket from Theorem 3.5
are locally classified by the conjugacy class of the associated monodromy.

Proof. The symplectic leaves of (18) are gauge orbits of the discrete action of GN

on itself [6]; therefore, the symplectic leaves of the reduced bracket { , }R are the
projection of the gauge orbits. This is only true locally, since the reduction itself is
local, and additional global discrete invariants may exist for the projected leaves.
Let {mn} and {m̂n} belong to the same gauge orbit, i.e. m̂n = g−1n mngn+1, gn ∈ G
with gn+N = gn, and let T = m1m2 . . .mN be the monodromy of {mn}. Then
m̂1m̂2 . . . m̂N = g−11 TgN+1 = g−11 Tg1 belongs to the conjugacy class of T .

Conversely, given {mn} with m1m2 . . .mN = T , for any T g = gTg−1 in the con-
jugacy class of T we can find {[gn]} ∈ (G/H)N such that K({[gn]}, T g) = [{mn}].
In fact, gn can be constructed recursively from gn+1 = gnmn with g1 = g. Then,
gN+1 = g1T = (gTg−1)g1, i.e., locally, elements of each leaf—before projection onto
GN /HN—have the same monodromy class; the same will remain locally true on
the quotient GN /HN after projection. �

The relationship between Hamiltonian flows induced by the reduced bracket
{ , }R and polygon evolutions in centro-affine Rm is described next.

3.3. Polygon evolutions and Hamiltonian flows in the moduli space. We
first describe the set-up for arbitrary dimension m; much of this is adapted from [12]
for a different choice of moving frame.

Let G be a Lie group acting on a manifold M by left (or right) action. A vector
field V on M is left (or right) invariant if the associated flow Φt is equivariant with
respect to the left (or right) group action, i.e. g ⋅ Φt(x) = Φt(g ⋅ x), g ∈ G,x ∈ M.
Let VN ⊂ TMN denote the left invariant vector fields on MN , and let V1

N ⊂ TM1
N

be the subspace of arc length-preserving left invariant vector fields. (Recall that
M1

N ⊂MN is the subset of non-degenerate N -gons parametrized by centro-affine
arc length.)

3.3.1. Evolution of moving frames. Given γ = {γn} ∈ M1
N , we introduce the left

moving frame ρ ∶M1
N → SL(m,R)N , ρ(γ) = {ρn(γ)}Nn=1 with components

(23) ρn(γ) = (γn, γn+1, . . . , γn+m−1).
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As discussed in Section 2, this moving frame is gauge equivalent to the one used
in [12], thus many of the results in that work will apply to our context. In particular,
the generating set of geometric invariants will be used to coordinatize the moduli
space. The geometric invariants are defined via the following relation:

(24) γn+m = am−1
n γn+m−1 + ⋅ ⋅ ⋅ + a1nγn+1 + (−1)m−1γn,

where the coefficient of γn comes from specializing (−1)m−1dn+1/dn, with dn as in
(15), to γ ∈M1

N . This gives

(25) arn = ∣γn, . . . , γn+r−1,
r+1


γn+m , γn+r+1, . . . , γn+m−1∣.

The discrete equivalent of the Serret-Frenet equations is:

(26) ρn+1 = ρnKn,

(27) Kn = ( 0T (−1)m−1

Im−1 an
) ;

where Im−1 is the (m− 1)× (m− 1) identity matrix, 0 the zero vector in Rm−1, and

an = (a1n a2n . . . am−1
n )T the vector of invariants at vertex γn. We will also need

the inverse of the Maurer-Cartan matrix K:

(28) K−1 ∶= L = {Ln}, Ln = ((−1)man Im−1

(−1)m−1 0T
) .

The components of an invariant vector field X = {Xn}Nn=1 ∈ V1
N can be expressed

as linear combinations of the components of γ whose coefficients only depend on
the geometric invariants:

(29) Xn =
m−1

∑
`=0

r`nγn+` = ρnrn, rTn = (r0n, . . . , rm−1
n ).

The induced evolution on γ is (component-wise):

(30)
d

dt
γn =Xn.

From (29) and (26), one gets
d

dt
γn+1 = ρn+1rn+1 = ρnKnrn+1 and, in general,

d

dt
γn+` = ρnKnKn+1 . . .Kn+`−1rn+`. Thus, the evolution of the left-moving frame is

given by

(31)
d

dt
ρn = ρnQn,

where

(32) Qn = (rn Knrn+1 KnKn+1rn+2 . . . KnKn+1 . . .Kn+m−2rn+m−1) .
The Frenet-Serret equations (26) and the frame evolution (31) are compatible pro-
vided

(33)
d

dt
Kn =KnQn+1 −QnKn.

Arc length preservation during the evolution amounts to ∣γn γ1 . . . γn+m−1∣ = 1 for
all times. This condition is more conveniently expressed as

(34) tr(Qn) = 0,
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and uniquely determines r0n in terms the other entries of r as shown in the following:

Proposition 3.7. For N , m co-prime integers, and X as in (29), X ∈ V1
N if and

only if r0n = Rn(r), where Rn is an algebraic function of the ris’s.

Proof. From (32) we compute

(35) tr(Qn) =
m−1

∑
s=1

eTs+1Kn . . .Kn+s−1rn+s + r0n,

where the coefficient of r0n+s is obtained as follows:

eTs+1KnKn+1 . . .Kn+s−1e1 = eTs+1Kn . . .Kn+s−2e2 = . . . = eTs+1Knes = eTs+1es+1 = 1.

Then X ∈ V1
N if and only if

tr(Qn) = (1 + T + ⋅ ⋅ ⋅ + T m−1)r0n + R̂n = 0,

where R̂ is a function of rin+s, i, s = 1, . . .m− 1. The operator R = 1+T + ⋅ ⋅ ⋅ +T m−1

is invertible if and only if N and m are co-prime (see Lemma 3.1 in [12]). The
claim follows, since its inverse, though non-local, can be expressed as an algebraic
function of T . �

3.3.2. Poisson brackets. In the rest of this section, G = SL(m,R) and we will work
with two gradations of its Lie algebra: the standard gradation g = g+ ⊕ h0 ⊕ g− and
the gradation g = g1 ⊕ g0 ⊕ g−1, both described in Section 3.2.

For H the subgroup whose Lie algebra is h = g1 ⊕ g0, let f ∶ GN /HN → R be a
smooth functional on the moduli space and F ∶ GN → R an extension of f to GN ,
invariant under the discrete gauge action (20) of HN .

As discussed in Section 3.2, we will work with the smooth sections of the moduli
space M = GN /HN defined by the right Maurer-Cartan matrices L = {Ln} as in
(28), using the invariants ajn, j = 1, . . . ,m − 1, n = 1, . . . ,N, as coordinates of M .
Here ⟨ , ⟩ denotes the standard inner product on gN defined by

(36) ⟨ξ, ξ̃⟩ ∶=
N

∑
n=1

tr(ξnξ̃n), ξ, ξ̃ ∈ gN .

Lemma 3.8. For fixed n, the vector δnf of variational derivatives of f with respect
to the geometric coordinates ajn’s, j = 1, . . . ,m − 1, and the left gradient of its
extension F satisfy the following relation:

(37) ∇nF = ( ∗ ∗
−δnfT ∗) .

Moreover, the g1-component of the right gradient satisfies:

(38) (∇′
nF)1 = (0 (−1)mδTn f

0 0m−1
) ,

Proof. Recall that the left gradient of F at L = {Ln} ∈ GN is defined by:

d

dε
∣
ε=0
F( exp(εξ)L) ∶= ⟨∇F(L), ξ⟩, ∀ξ ∈ gN .
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In particular, choosing ξ of the form V (k) ∶= {V (k)n } with V
(k)
n = ( 0m−1 −vn

0T 0
) δnk,

we compute

exp(εV (k)n )Ln = (Im−1 −εvnδnk
0T 1

)Ln = ((−1)m(an + εvnδnk) Im−1

(−1)m−1 0T
) .

Since F is an extension of a function defined on the moduli space, we must have
that F( exp(εV (k))L) = f({an + εvnδnk}). Differentiating both sides with respect
to ε and evaluating at ε = 0, we obtain

δkf ⋅ vk = ⟨∇F , V (k)⟩ =
N

∑
n=1

tr(∇nFV (k)n ) = tr(∇kFV (k)k ),

where δkf ⋅vk is the dot product of vk with the vector of variational derivatives of

f with respect to the components of ak. Writing ∇kF in block form (Am−1 b
cT d

),we

compute the right-hand side as ⟨∇F , V (k)⟩ = −cT ⋅ vk and (after replacing k with
n) relation (37) follows. Finally, (38) can be obtained by direct verification using
the relation (16) between the left and right gradient. �

Lemma 3.9. Let F be an invariant extension of a smooth functional f ∶ GN /HN →
R. Let T denote the left shift operator. Then

(39) T −1∇nF −∇′
nF ∈ g1,

Proof. The gauge action of HN on K: Kn → h−1n Knhn+1 component-wise, induces
the action Ln → h−1n+1Lnhn on the inverse L =K−1. Since F is an invariant extension
of f , it must be constant on the gauge orbits, i.e. F(h ⋅ L) = F({h−1n+1Lnhn}) =
F(L),∀h ∈HN . Choosing h = exp(εξ) with ξn+N = ξn,

0 = d

dε
∣
ε=0
F({exp(−εξn+1)Ln exp(εξn)})

= d

dε
∣
ε=0
F({exp(−εξn+1)Ln}) +

d

dε
∣
ε=0
F({Ln exp(εξn}))

= −
N

∑
n=1

tr(∇nFξn+1) +
N

∑
n=1

tr(∇′
nFξn) =

N

∑
n=1

tr((−T −1∇nF +∇′
nF)ξn)

must hold for any ξ ∈ HN . It follows that T −1∇nF − ∇′
nF must belong to the

annihilator of the subalgebra h, which is the dual of g−1 ⊕ g0, namely g1. �

Remark. Conditions (37), (39) determine ∇F uniquely in terms of the geometric
invariants and the variational derivatives δnf . The proof of this fact can be found
in [12].

Moreover, these conditions lead to a concrete representation of the reduction of
the twisted Poisson bracket (18) to the moduli space GN /HN :

(40) {f, h}R(a) ∶= {F ,H}(L),

with f, h smooth functionals on GN /HN , F ,H their invariant extensions to GN ,
{,} as in (18), a = {an} ∈ GN /HN , and L = {Ln} ∈ GN as in (28).
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Proposition 3.10. Given f, h,F ,H as above, the reduced bracket (40) has the
following explicit representation:

(41) {f, h}R = ⟨(∇F − T ∇′F)1, (∇H)−1⟩ =
N

∑
n=1

tr((∇nF − T ∇′
nF)1(∇nH)−1),

where the subscripts indicate the components w.r.t. the gradation g = g1 ⊕ g0 ⊕ g−1.

Proof. Using (18), with r(ξ ∧ η) = 1
2
tr(ξ(η+ − η−)) and r(ξ ⊗ η) = tr(ξ−η+), we

compute

{f, h}R = 1

2

N

∑
n=1

tr((∇nF)−(∇nH)+) − tr((∇nH)−(∇nF)+)

+1

2

N

∑
n=1

tr((∇′
nF)−(∇′

nH)+) − tr((∇′
nH)−(∇′

nF)+)

−
N

∑
n=1

tr(T (∇′
nF)−(∇nH)+) + tr(T (∇′

nH)−(∇nF)+).

Since g1 ⊂ g+, condition (39) implies that T −1∇nF − ∇′
nF ∈ g+ and therefore that

(T ∇′
nF)− = (∇nF)−. Similarly, (T ∇′

nH)− = (∇nH)−. Using these relationships we
get

{f, h}R = 1

2

N

∑
n=1

tr((∇nF)+(∇nH)−) − tr((∇nH)+(∇nF)−)

− tr((∇′
nF)+(∇′

nH)−) + tr((∇′
nH)+(∇′

nF)−).
Using condition (39) for H, we have

N

∑
n=1

tr((∇nF)+(∇nH)−) − tr((∇′
nF)+(∇′

nH)−)

=
N

∑
n=1

tr((∇nF)+(∇nH)−) − tr((∇′
nF)+T −1(∇nH)−)

=
N

∑
n=1

tr((∇nF − T ∇′
nF)+, (∇nH)−).

Similarly,

N

∑
n=1

tr((∇nH)+(∇nF)−) − tr((∇′
nH)+(∇′

nF)−)

=
N

∑
n=1

tr((∇nH − T ∇′
nH)+(∇nF)−).

On the other hand, from the identity tr(ξ1ξ−) = tr(ξ1ξ−1) and the fact that F and
H satisfy (39), we rewrite the expression of the reduced bracket as

{f, h}R = 1

2

N

∑
n=1

tr((∇nF − T ∇′
nF)1(∇nH)−1) − tr((∇nH − T ∇′

nH)1(∇nF)−1).

Since ∇nH − T ∇′
nH ∈ g1, the second term becomes

tr((∇nH − T ∇′
nH)1(∇nF)−1) = tr((∇nH − T ∇′

nH)∇nF)
= − tr(∇nF T ∇′

nH) + tr(∇nH∇nF) = −tr(∇nF T ∇′
nH) + tr(∇′

nH∇′
nF),



INTEGRABLE EVOLUTIONS OF TWISTED POLYGONS 15

where in the last step we used relation (16) and the invariance of the trace under
conjugation. It follows that the operator ∇ − T ∇′ is skew-symmetric on the set of
invariant extensions. In fact, shifting indices appropriately and using (39),

N

∑
n=1

tr((∇nH − T ∇′
nH)1(∇nF)−1) =

N

∑
n=1

−tr(∇nF T ∇′
nH) + tr(∇′

nH∇′
nF)

=
N

∑
n=1

−tr((∇nF − T ∇′
nF)T ∇′

nH) = −
N

∑
n=1

tr((∇nF − T ∇′
nF)1 (T ∇′

nH)−1)

= −
N

∑
n=1

tr((∇nF − T ∇′
nF)1 (∇nH)−1).

This finally gives

{f, h}R =
N

∑
n=1

tr((∇nF − T ∇′
nF)1 (∇nH)−1).

�

The companion Poisson bracket, obtained in [12] as the reduction of the right
tensor θ to the moduli space, also has the following explicit representation:

(42) {f, h}0 =
1

2

N

∑
n=1

tr((∇′
nF)−1 (∇′

nH)1)) − tr((∇′
nH)−1 (∇′

nF)1)).

3.3.3. Invariant Hamiltonian flows. Next we study the relation between Hamilton-
ian flows induced by the reduced bracket { ,}R on the geometric invariants ajn’s,
viewed as coordinates of the moduli space of M1

N , and the associated polygonal
evolutions.

Assume that a = {an} evolves according to the Hamiltonian evolution

(43)
d

dt
an = {f,an}R,

for given Hamiltonian f ∶ GN /HN → R. The following key result relates the matrix
Q = {Qn} defining both polygon and frame evolution to the right and left gradients
of an invariant extension F of f .

Lemma 3.11. Let γ = {γn} ∈M1
N and Q = {Qn} as in (32). Then, the polygon

evolution (30) (equivalently, the evolution (31) of its left moving frame) induces the
Hamiltonian equation (43) if and only if

(44) (Qn+1)−1 = (∇nF)−1.

Proof. Given an arbitrary smooth functional h ∶ GN /HN → R, we use the following
form the compatibility condition (33)

(45)
⎛
⎝
0m−1

d

dt
an

0T 0

⎞
⎠
= Qn+1 −K−1

n QnKn = Qn+1 −LnQnL−1n ,

and expression (37) of the left gradient of h’s invariant extension H to write

d

dt
h(a) =

N

∑
n=1

δnh
T ⋅ d

dt
an = ⟨LQL−1 − T Q,∇H⟩,
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If the an’s evolve according to (43), using the explicit representation (41) of the
reduced bracket, we also have

d

dt
h(a) = {f, h}R = ⟨(∇F − T ∇′F)1, (∇H)−1⟩.

Rewriting

⟨LQL−1 − T Q,∇H⟩ = ⟨LQL−1,∇H⟩ − ⟨T Q,∇H⟩ = ⟨Q,L−1∇HL⟩ − ⟨T Q,∇H⟩
= ⟨Q,∇′H⟩ − ⟨T Q,∇H⟩ = ⟨T Q,T ∇′H⟩ − ⟨T Q,∇H⟩ = ⟨T Q,T ∇′H −∇H⟩,

and

⟨(∇F − T ∇′F)1, (∇H)−1⟩ = −⟨(∇H − T ∇′H)1, (∇F)−1⟩ = ⟨∇F ,T ∇′H −∇H⟩,

and comparing the two expressions for
d

dt
h(a), we obtain

⟨T Q −∇F ,T ∇′H −∇H⟩ = 0.

Since T ∇′
nH − ∇nH ∈ g1 for any invariant H, then (Qn+1 − ∇nF)−1 must vanish

and (44) follows. �

Remark. The right gradient of F satisfies the analogous relation

(46) (Qn)−1 = (∇′
nF)−1,

derived directly from using condition (39) in (44).

Since

Qn = ρ−1n (Xn Xn+1 . . . Xn+m−1) = ρ−1n (ρnrn ρn+1rn+1 . . . ρn+m−1rn+m−1)
= (rn ρ−1n ρn+1rn+1 . . . ρ−1n ρn+m−1rn+m−1) ,

(47)

where the vector field Xn = ρnr, rT = (r0n, . . . , rm−1
n ) defines the polygon evolu-

tion (30), the entries rin, i = 1, . . . n+m−1 of r are uniquely determined by (Qn)−1,
while the remaining entry r0n is determined by the arc length preservation condition
as in Proposition 3.7. From this observation and relation (44) it follows that:

Theorem 3.12. Given a smooth function f ∶ GN /HN → R, there exists a unique
invariant vector field Xf on M1

N that induces the evolution (43) on the geometric
invariants {an} with Hamiltonian f .

The g1-component of the matrix Q ∶= Qf , associated with the unique vector field
Xf , can be identified with the vector of variational derivatives of the Hamiltonian
f . This result will be used in Section 4 to relate the reduced brackets to a pair of
pre-symplectic forms on M1

N .

Proposition 3.13. Let Xf be the unique vector field given by Theorem 3.12 and
Qf be as in (47). Then

(48) (Qfn)1 = (0 (−1)mδnfT
0 0m−1

) .

Proof. Writing Q in the following form

(49) Qfn = (D0
n D1

n . . . Dm−1
n ) ,

with D0
n = rn, Di

n =Kn . . .Kn+i−1rn+i, i = 1, . . .m − 1, one has

(50) KnD
i
n+1 =Di+1

n , i = 0, . . .m − 1.
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We will also make use of the following easily verifiable identities:

Lnek = ek−1, k = 2, . . . ,m, eTmLn = (−1)m−1eT1 .

First, it is easy to verify by direct computation that components 2, . . .m of the
top row of Kn∇nFK−1

n are the components of (−1)mδnfT , i.e.

eT1Kn∇nFK−1
n es = (−1)m δf

δas−1n

, s = 2, . . .m.

Next, relation (44): (Qfn+1)−1 = (∇nF)−1, can be written as

∇nFe1 =D0
n+1 + c0 e1,

for some c0 ∈ R. Multiplying the above on the left by Kn and using (50), we get

(51) Kn∇nFe1 =KnD
0
n+1 + c0Kne1 =D1

n + c0 e2.

It follows that

eT1D
1
n = eT1Kn∇nFK−1

n Kne1 = eT1Kn∇nFK−1
n e2 = (−1)m δf

δa1n
.

Shifting indices in (51), we write

Kn+1∇n+1Fe1 =D1
n+1 + c0 e2.

Its left-hand side can be rewritten as

Kn+1∇n+1FK−1
n+1Kn+1e1 =Kn+1∇n+1FK−1

n+1e2 = ∇nFe2 + c1e2,

for c1 ∈ R, where we used relation (16) between the right and left gradient combined
with condition (39) to give (Kn+1∇n+1FK−1

n+1)1 = (∇nF)1. Multiplying by Kn on
the left, we arrive at

(52) Kn∇nFe2 + c1e3 =KnD
1
n+1 + c0 e3 =D2

n + c0 e3.

Then,

eT1D
2
n = eT1Kn∇nFK−1

n Kne2 = eT1Kn∇nFK−1
n e3 = (−1)m δf

δa2n
.

The claim follows by induction.
�

Using the results in this section, one can rewrite formula (41) for the reduced
Poisson bracket as follows:

{f, h}R(a) = −
1

2

N

∑
n=1

m−1

∑
r=1

(eTr (LnQfnL−1n − T Qfn)em
δh

δarn

− eTr (LnQhnL−1n − T Qhn)em
δf

δarn
) .

(53)

Remark. The Hamiltonian equation (43) can be written as

(54)
d

dt
an = P1nδnf,

for a skew-symmetric operator P1n explicitly computable from the “atomic” brack-
ets {asn, arn}R.
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Corollary 3.14. Given X ∈ V1
N , let QX define the associated frame evolution (31).

Write

(55) (QXn )1 = (0 (−1)mpTn
0 0m−1

) .

Then

(56)
d

dt
an = Pnpn.

Proof. The statement is true if X = Xf comes from a Hamiltonian f as in Theo-
rem 3.12. In this case, Proposition 3.13 and equation (54) give p = δnf .

For the general case, (Q)1 together with the compatibility condition (33)) com-
pletely determine Q. Since the construction is algebraic, given (55), we can simply
replace δnf in (54) with pn. �

Example 3.15 (m = 3). For sake of readability, we drop the subscript n. Given
expression (48) for the g1-component of Qf , we write:

Qf =
⎛
⎜
⎝

a −δkf −δτf
c −a − b e
h g b

⎞
⎟
⎠
,

where (k, τ)T is the vector of invariants, δkf = δf/δkn, and δτf = δf/δτn. With

L =
⎛
⎝

−k 1 0
−τ 0 1
1 0 0

⎞
⎠

,

LQfL−1 =
⎛
⎜
⎝

kδkf − a − b e + kδτf −ka + c + k(kδkf − a − b) + τ(kδτf + e)
g + τδkf b + τδτf −aτ + h + (τδkf + g)k + τ(τδτf + b)
−δkf −δτf −kδkf − τδτf + a

⎞
⎟
⎠
.

Since T Qf −  LQfL−1 is determined by (45), we set all but components (3,1) and
(3,2) to zero, getting:

a =R−1 ((1 + T )kδkf + τδτf) , b = −R−1 (T kδkf + (1 + T )τδτf) ,
T h = −δkf, T g = −δτf, T c = τδkf − T −1δτf, e + kδτf = −T −1δkf

where R = 1 + T + T 2. Using formula (53), we compute the reduced bracket

{f, h}R =
N

∑
n=1

(δkf δτf)P1 (
δkh
δτh

) ,

where

(57) P1 =
⎛
⎜
⎝

T −1τ − τT + kR−1(T 2 − 1)k T − T −2 + kR−1(T − 1)τ

T 2 − T −1 + τR−1T (T − 1)k T k − kT −1 + τR−1(T 2 − 1)τ

⎞
⎟
⎠
,

is the same tensor as in (14).
The companion bracket found in [12]:

{f, h}0(k, τ) ∶= θ(F ,H)(L) =
N

∑
n=1

r(∇′
nF ∧∇′

nH),
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can be similarly computed as

{f, h}0(k, τ) =
N

∑
n=1

(δkf δτf)P2 (
δkh
δτh

) ,

where

(58) P2 = (T
−1τ − τT T − T −2
T 2 − T −1 0

) .

The skew-symmetric operators P1 and P2 define compatible Poisson structures and
form a Hamiltonian pencil for the second Adler-Gelfand-Dikii flow, an integrable
discretization of the Boussinesq equation [12].

4. Lifting Hamiltonian structures to the moduli space of twisted
polygons

In higher dimension, the counterparts of brackets { , }R,{ , }0 are also Poisson
brackets on the space of geometric invariants, as shown in [12]. However, a proof
of their compatibility beyond dimension 2 could not be attained: on the one hand,
tensor θ (see (22)) is neither a Poisson tensor nor compatible with the twisted
bracket (18); on the other hand, the reduction process becomes too complicated
to allow a direct or a theoretical argument. As discussed in this section, lifting
the brackets to the moduli spaceM1

N produces a far simpler pair of pre-symplectic
forms on V1

N , in terms of which proof of compatibility becomes elementary. We first
illustrate the main ideas by continuing the discussion of the 3-dimensional case.

4.1. Example (m = 3). Let X,Y ∈ V1
N be arc length-preserving left invariant

vector fields. At a given γ ∈M1
N , and write their components as

Xn = cnγn + bnγn+1 + anγn+2, Yn = ĉnγn + b̂nγn+1 + ânγn+2,
with an, ân, bn, b̂n, cn, ĉn periodic functions of the invariants {kn},{τn} satisfying
the arc length preservation condition (8).

For Z ∈ V1
N , let Jn(Z) ∶= Zn + knZn+1 + τnZn+2, and define the following 2-forms

on M1
N :

ω1(X,Y ) =
N

∑
n=1

∣Jn(Y ),Xn+1, γn+2∣ + ∣Jn(Y ), γn+1,Xn+2∣

− ∣Jn(X), Yn+1, γn+2∣ − ∣Jn(X), γn+1, Yn+2∣
+ ∣Xn, γn+1, Yn+2∣ + ∣γn,Xn+1, Yn+2∣ − ∣Yn, γn+1,Xn+2∣ − ∣γn, Yn+1,Xn+2∣,

ω2(X,Y ) =
N

∑
n=1

∣Yn,Xn+1, γn+2∣ + ∣Yn, γn+1,Xn+2∣ − ∣Xn, Yn+1, γn+2∣ − ∣Xn, γn+1, Yn+2∣,

Theorem 4.1. Let P1, P2 be the tensors defined by (57), (58). Denote with QX

(resp. QY ) the matrices associated with vector field X (resp. Y ) as in (7), and
write the g1-components as

QXn = (∗ −pTn
∗ ∗ ) , QYn = (∗ −p̂Tn

∗ ∗ ) ,

with pn, p̂n ∈ R2. Then

(59) ω1(X,Y ) =
N

∑
n=1

pTnP1np̂n, ω2(X,Y ) =
N

∑
n=1

pTnP2np̂n.
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Proof. We prove the result for ω2, the simpler of the 2-forms. Using the expression
Qn = (rn Knrn+1 KnKn+1rn+2), with rn = (cn bn an)T and Kn given by (4),

−pn = ( eT1Knrn+1
eT1KnKn+1rn+2

) = ( an+1
bn+2 + τn+1an+2

) .

Setting vn = an+1, wn = bn+2 + τn+1an+2 (as in Section 2.1), we get pn = −(vn,wn)T .
Next, using the fact that dρn/dt = (Xn,Xn+1,Xn+2) = ρnQn, we compute

∣Yn,Xn+1, γn+2∣ + ∣Yn, γn+1,Xn+2∣ = ∣ρnQYn e1, ρnQ
X
n e2, ρne3∣ + ∣ρnQYn e1, ρne2, ρnQ

X
n e3∣

= ∣QYn e1,Q
X
n e2,e3∣ + ∣QYn e1,e2,Q

X
n e3∣ = ∣r̂n,Knrn+1,e3∣ + ∣r̂n,e2,KnKn+1rn+2∣

= (ĉneT2Knrn+1 − b̂neT1Knrn+1) + (ĉneT3KnKn+1rn+2 − âneT1KnKn+1rn+2)
= ĉn(cn+1 + cn+2 + (1 + T )knvn + τnwn) − vnŵn−2 − v̂n−1wn + τn−1vnv̂n−1

= −ĉncn + (vn wn)
T (T

−1τn −T −2
−T −1 0

)( v̂n
ŵn

) ,

where, in the last step, we used the arc length preservation condition (8) to write

cn+1 + cn+2 + (1 + T )knvn + τnwn = −cn.
Swapping X and Y in the computation above amounts to interchanging the hat
symbol; subtracting the resulting expression, we get:

(vn wn)(
T −1τn − τnT T − T −2
T 2 − T −1 0

)( v̂n
ŵn

) = (vn wn)P2n ( v̂n
ŵn

) .

Summing over n completes the proof for ω2. The formula for ω1 can be obtained
in a similar way, with a similar, slightly more involved computation. �

Let h be a smooth functional on GN /HN and let Y = Xh be the unique vector
field in V1

N given by Theorem 3.12. Then, using (48), we replace p̂n = δnh and
obtain

ω1(X,Xh) =
N

∑
n=1

pTnP1nδnh.

On the other hand, assume that dγn/dt =Xn, and let π ∶M1
N → GN /HN , π(γ) ∶= a,

be the projection of MN
1 to the moduli space. Then,

d(h ○ π)(X) =X(h ○ π) = d

dt
h(a ○ γ) =

N

∑
n=1

δnh
T d

dt
an.

Using (13) to replace dan/dt = −P1npn, we write

N

∑
n=1

δnh
T d

dt
an = −

N

∑
n=1

δnh
TP1npn =

N

∑
n=1

pTnP1nδnh,

finally giving

(60) d(h ○ π)(X) = ω1(X,Xh), ∀X ∈ V1
N .

Remark. As we will show in the general case, ω1 is a pre-symplectic form, i.e. a
closed 2-form with non-trivial kernel, thus Hamiltonian vector fields are only defined
up to addition of elements in the kernel. Nevertheless, equation (60) selects Xh as
the natural representative of the class of Hamiltonian vector fields associated to h
via ω1.
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4.2. The general case. We are now ready to discuss our main results. Given
X,Y ∈ V1

N , we introduce the following pair of 2-forms on M1
N :

ω1(X,Y )(γ) ∶=1

2

N

∑
n=1

m−1

∑
r=1

(∣Jn(Y ), γn+1, . . . , γn+r−1,
r+1


Xn+r , γn+r+1, . . . , γn+m−1∣

− ∣Jn(X), γn+1, . . . , γn+r−1,
r+1
¬
Yn+r , γn+r+1, . . . , γn+m−1∣

− ∣γn, . . . ,
r

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
Xn+r−1, . . . , Yn+m−1∣ + ∣γn, . . . ,

r
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
Yn+r−1, . . . ,Xn+m−1∣),

(61)

where Jn(X) = (−1)m−1
m−1

∑
`=0

a`nXn+`, with a0n = (−1)m−1;

ω2(X,Y )(γ) ∶=1

2

N

∑
n=1

m−1

∑
r=1

(∣Yn, γn+1, . . . , γn+r−1,
r+1


Xn+r , γn+r+1 . . . , γn+m−1∣

− ∣Xn, γn+1, . . . , γn+r−1,

r+1
¬
Yn+r , γn+r+1 . . . , γn+m−1∣).

(62)

Proposition 4.2. Given the 1-form

(63) θ2(X) = 1

2

N

∑
n=1

∣Xn, γn+1, . . . , γn+m−1∣,

defined on M1
N , then ω2 = dθ2.

Proof. The verification of this fact is straightforward:

dθ2(X,Y ) =X(θ2(Y )) − Y (θ2(X)) − θ2([X,Y ])

= 1

2

N

∑
n=1

∣[X,Y ]n, γn+1, . . . , γn+m−1∣ + ω2(X,Y ) − θ2([X,Y ]) = ω2(X,Y ).

�

Corollary 4.3. The 2-form ω2 is a closed form on M1
N .

Remark. Also ω1 can be rewritten in terms of the 1-form θ2. If we introduce the
operator L(X) = {Ln(X)} with

Ln(X) = (−1)m ((−1)mXn + a1nXn+1 + ⋅ ⋅ ⋅ + amn Xn+m −Xn+m+1) .

Then,

(64) ω2(X,Y ) =X(θ2(L(Y ))) − Y (θ2(L(X))) − θ2 ((XL(Y ) − Y L(X))) .

Theorem 4.4. Let f, h be smooth functionals on GN /HN and let Xf ,Xh be the
unique vector fields in V1

N given by Theorem 3.12. Then,

ω2(Xf ,Xh)(γ) = {f, h}0(a(γ)),

where { , }0 is the reduction of the right tensor defined in (42).



22 INTEGRABLE EVOLUTIONS OF TWISTED POLYGONS

Proof. In formula (42), we use (46) to replace (∇′
nF)−1 with (Qfn)−1, and (38)

together with (48) in Proposition 3.13 to write (∇′
nF)1 = (Qfn)1, and do the same

for (∇′
nH)±1. Writing Qfn = (D0

n D1
n . . . Dm−1

n ), Qhn = (R0
n R1

n . . . Rm−1
n ),

and denoting with (Di
n)j (resp. (Rin)j), j = 0, . . . ,m−1, the j-th component of the

i-column of Qfn (resp. Rfn), we compute:

{f, h}0(a) = (−1)m 1

2

N

∑
n=1

m−1

∑
k=1

(D0
n)kδknh−(R0

n)kδknf = 1

2

N

∑
n=1

m−1

∑
k=1

(D0
n)k(Rkn)0−(R0

n)k(Dk
n)0.

On the other hand, Xf
n+r = ρnDr

n and Xh
n+r = ρnRrn. Replacing these expression in

formula (62) for ω2, we get

ω2(X,Y )(γ) =1

2

N

∑
n=1

m−1

∑
r=1

(∣ρnR0
n, γn+1, . . . , γn+r−1,

r+1

ρnD

r
n , γn+r+1 . . . , γn+m−1∣

− ∣ρnD0
n, γn+1, . . . , γn+r−1,

r+1

ρnR

r
n , γm+r+1 . . . , γn+m−1∣).

Computing, e.g., the first of the two determinants, we get

∣ρnR0
n, γn+1, . . . , γn+r−1,

r+1

ρnD

r
n , γn+r+1 . . . , γn+m−1∣

=
m−1

∑
j,k=0

∣(R0
n)jγj , γn+1, . . . , γn+r−1,

r+1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Dr

n)kγk, γn+r+1 . . . , γn+m−1∣ = (R0
n)0(Dr

n)r − (R0
n)r(Dr

n)0.

Finally,

ω2(X,Y )(γ) = 1

2

N

∑
n=1

((R0
n)0

m−1

∑
r=1

(Dr
n)r − (D0

n)0
m−1

∑
r=1

(Rrn)r) +
1

2

N

∑
n=1

m−1

∑
r=1

(D0
n)r(Rrn)0 − (R0

n)r(Dr
n)0

= 1

2

N

∑
n=1

m−1

∑
r=1

(D0
n)r(Rrn)0 − (R0

n)r(Dr
n)0,

since tr(Qf) = tr(Qh) = 0 implies

(R0
n)0

m−1

∑
r=1

(Dr
n)r − (D0

n)0
m−1

∑
r=1

(Rrn)r = −(R0
n)0(D0

n)0 + (D0
n)0(R0

n)0 = 0.

�

Theorem 4.5. Let f, h be smooth functionals on GN /HN and let Xf ,Xh be the
unique vector fields in V1

N given by Theorem 3.12. Then

(65) ω1(Xf ,Xh)(γ) = {f, h}R(a(γ)).
Proof. Recall formula (61) for ω1:

ω1(X,Y )(γ) ∶=1

2

N

∑
n=1

m−1

∑
r=1

(∣Jn(Y ), γn+1, . . . , γn+r−1,
r+1


Xn+r , γn+r+1, . . . , γn+m−1∣

− ∣Jn(X), γn+1, . . . , γn+r−1,
r+1
¬
Yn+r , γn+r+1, . . . , γn+m−1∣

− ∣γn, . . . ,
r

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
Xn+r−1, . . . , Yn+m−1∣ + ∣γn, . . . ,

r
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
Yn+r−1, . . . ,Xn+m−1∣),
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We first shift indices in last term:

∑
n
∑
`

∣γn, . . . , Yn+`−1, . . . ,Xn+m−1∣ =∑
n
∑
`

∣γn+1, . . . , Yn+`, . . . ,Xn+m∣ .

Substituting

Xn+m = d

dt
γn+m = d

dt

m−1

∑
k=0

aknγn+k =
m−1

∑
k=0

aknXn+k +
m−1

∑
k=0

akn(akn)tγn+k

= (−1)m−1Jn(X) +
m−1

∑
k=0

(akn)tγn+k

in the above, we obtain

∑
n
∑
`

∣γn, . . . , Yn+`−1, . . . ,Xn+m−1∣

=∑
n
∑
`

∣Jn(X), γn+1, . . . , Yn+`, . . . , γn+m−1∣ +∑
n
∑
`

m−1

∑
k=1

(akn)t ∣γn+1, . . . , Yn+`, . . . , γn+k ∣ .

The first term of the formula above cancels the second term in the expression
for ω1. Also, the second term in the above can be rewritten, by swapping columns,
as

∑
n

m−1

∑
`=1

(a`n)t ∣γn+1, . . . , Yn+`, . . . , γn+`∣ = (−1)m−1∑
n

m−1

∑
`=1

(a`n)t ∣Yn+`, γn+1, . . . , γn+m−1∣ .

Up to a sign, this expression is the dot product of the first row of QYn with
its first entry removed with the vector (a`n)t. Now assume that a evolves by a
Hamiltonian flow with Hamiltonian f with respect to the reduced bracket, i.e.
(a`n)t =Xf = Pnδnf . When Y =Xg, the first row of Qgn with its first entry removed
is equal to (−1)mδng, giving ∑n∑m−1

`=1 (a`n)t ∣γn+1, . . . , Yn+`, . . . , γn+`∣ = {f, g}R. The
remaining terms produce another copy of the same, which takes care of the factor
of 1/2 in the definition of ω1. �

We are now ready for one of the main results of this work.

Theorem 4.6. The bracket

{f, g} = {f, g}R + {f, g}0
is a Poisson bracket. Therefore, the reduced Poisson brackets { , }R and { , }0
are compatible.

Proof. We only need to verify the Jacobi identity. From (60),

Xf(g) ∶= d(g ○ π)(Xf) = ω1(Xf ,Xg) = {f, g}R ○ π,
and from Theorem 4.4,

ω2(Xf ,Xg) = {f, g}0 ○ π.
Denoting cyclical summations with ∑

⟲

:

∑
⟲

{{f, g}R + {f, g}0, h}R + {{f, g}R + {f, g}0, h}0 =∑
⟲

{{f, g}0, h}R + {{f, g}R, h}0

=∑
⟲

{{f, g}0, h}R ○ π + {{f, g}R, h}0 ○ π = −∑
⟲

Xh(ω2(Xf ,Xg)) + ω2(X{f,g}R ,Xh).
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Now, recall that

[Xf ,Xg](h ○ π) =Xf(Xg(h ○ π)) −Xg(Xf(h ○ π)) =Xf({g, h}R ○ π)) −Xg({f, h}R ○ π))
= {f,{g, h}R}R ○ π − {g,{f, h}R}R ○ π = −{h,{f, g}R}R ○ π =X{f,g}R(h ○ π).

Therefore,

∑
⟲

{{f, g}R + {f, g}0, h}R + {{f, g}R + {f, g}0, h}0, h}0

= −(∑
⟲

Xh(ω2(Xf ,Xg)) − ω2([Xf ,Xg],Xh)) = dω2(Xf ,Xg,Xh) = 0,

since ω2 is a closed form. �

While Theorem 4.6 demonstrates the compatibility of the reduced brackets in
a simple and direct way, the implications on integrability are not yet clear since
ω1 and ω2 have non-trivial kernels. We next investigate whether we have a bi-
Hamiltonian pair. We begin by proving that ω1 is also a closed 2-form; the proof
relies on a general expression for ω1 that is valid for arbitrary (not necessarily arc
length-preserving) vector fields X,Y ∈ VN .

Proposition 4.7. Assume X,Y ∈ VN and let QX and QY define the associated
frame evolutions as in (31). Then,

ω1(X,Y ) = −1

2

N

∑
n=1

{[QYn ,QXn ]m,m + (K−1
n [QYn ,QXn ]Kn)m,m

− tr(QXn )((QYn )m,m − (K−1
n QYnKn)m,m)

+ tr(QYn )((QXn )m,m − (K−1
n QXn Kn)m,m)},

(66)

where (M)i,j denotes the (i, j)-th entry of matrix M .

Remark. The second and third lines of (66) vanish whenever X and Y are arc
length-preserving vector fields.

Proof. By replacing γn+r−1 = ρner, Xn+r−1 = ρnQXn er, and Yn+r−1 = ρnQYn er, we
compute:

∣γn, . . . ,
r

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
Xn+r−1, . . . , Yn+m−1∣ − ∣γn, . . . ,

r
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
Yn+r−1, . . . ,Xn+m−1∣

= ∣e1, . . . ,

r

QXn er , . . . ,Q

Y
n em∣ − ∣e1, . . . ,

r

QYn er , . . . ,Q

X
n em∣

= (QXn )r,r(QYn )m,m∣e1, . . . ,

r©
er , . . . ,em∣ + (QXn )m,r(QYn )r,m∣e1, . . . ,

r
«
em, . . . ,er ∣

− (terms with X replaced by Y)
= (QXn )r,r(QYn )m,m − (QXn )m,r(QYn )r,m − (terms with X replaced by Y).

This gives

m−1

∑
r=1

(∣γn, . . . ,
r

³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
Xn+r−1, . . . , Yn+m−1∣ − ∣γn, . . . ,

r
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
Yn+r−1, . . . ,Xn+m−1∣)

= tr(QXn )(QYn )m,m − tr(QYn )(QXn )m,m + [QYn ,QXn ]m,m.
(67)
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A slightly longer, but straightforward computation, making use of the relations:

m−1

∑
`=1

a`nQ
Y
n e`+1 + (−1)m−1QYn e1 = QYnKnem, (−1)m−1eT1Q

Y
n = eTmK

−1
n QYn ,

yields

m−1

∑
r=1

{(−1)m−1
m−1

∑
`=1

a`n(∣Yn+`, . . . ,
r+1


Xn+r , . . . , γn+m−1∣ − ∣Xn+`, . . . ,

r+1
¬
Yn+r , . . . , γn+m−1∣)

+ ∣Yn, . . . ,
r+1


Xn+r , . . . , γn+m−1) − ∣Xn, . . . ,

r+1
¬
Yn+r , . . . , γn+m−1∣}

= (K−1
n [QYn ,QXn ]Kn)

m,m
+ tr(QXn )(K−1

n QYnKn)
m,m

− tr(QYn )(K−1
n QXn Kn)

m,m
.

(68)

Formula (68) is valid for arbitrary (1,m)-entry of Kn, i.e. when ∣γn, . . . , γn+m−1∣
is not a constant. Replacing (67) and (68) in the expression (61) for ω1 gives
formula (66).

�

The 2-form ω2 also has an analogous representation as described by the following

Proposition 4.8. Assume X,Y ∈ VN and let QX and QY be the matrices define
the associated frame evolutions as in (31). Then,

(69) ω2(X,Y ) =
N

∑
n=1

[QYn ,QXn ]
1,1
.

The proof is similar to the proof of Proposition 4.7.

Remark. It is a natural to wonder whether any of the 2-forms

ωr+s(X,Y ) =
N

∑
n=1

[QYn ,QXn ]
r,s
, s ≥ r,

which can be easily shown to be closed, induce a Poisson bracket on the moduli
space GN /HN . In particular for s = r, in which case the 2-form ω2r is also exact:

ω2r = dθ2r, θ2r(X) = 1

2

N

∑
n=1

∣γn, γn+1, . . . ,
r+1


Xn+r , . . . , γn+m−1∣.

However, in dimension m = 3, a quick calculation shows that ωr+s defines a Poisson
bracket only when r = s = 1. We conjecture that ω1 and ω2 are the only two Poisson
brackets that can be generated in terms of entries of the commutators [QYn ,QXn ].

We now proceed with computing the differential of ω1.
Given an invariant vector field X ∈ VN , with (X ∣γ)n = ∑m−1

`=0 r`nγn+` we introduce
the reparametrization operator P ∶ VN → V1

N :

(70) (PX)n ∶= r̂0nγn + r1nγn+1 + . . . rm−1
n γn+m−1,

where the coefficients r̂0n’s are uniquely determined by the arc length preservation
condition (34). Since (PX)n+r −Xn+r = (r̂0n+r − r0n+r)γn+r = (r̂0n+r − r0n+r)ρner+1,
and QXn = ρ−1n (Xn Xn+1 . . . Xn+m−1), then

(71) QPX
n = QXn + dn(X),
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where dn(X) is the diagonal matrix

(72) dn(X) = diag(r̂0n − r0n, r̂0n+1 − r0n+1, . . . , r̂0n+m−1 − r0n+m−1).

Since PX is arc lengh-preserving, computing the trace of both sides of (71), we
obtain

(73) 0 = tr(QXn ) + (1 + T + . . .T m−1)(r̂0n − r0n),

which can be solved uniquely for r̂0n, n = 1, . . . ,N, since N and m are assumed to
be co-prime.

Remark. From now on, we will use the notation X̂ ∶= PX to denote the reparametrized
vector field.

Lemma 4.9. Assume X̂, Ŷ , Ẑ ∈ V1
N are commuting vector fields and let γ ∈M1

N .
Then,

(74) dω1∣γ(X̂, Ŷ , Ẑ) =∑
↻

Ẑ(γ)ω1(X̂, Ŷ )∣γ .

Proof. Let X,Y,Z be commuting vector fields in VN , not necessarily arc length-
preserving. Substituting expression (71) into formula (66) and using [dn(X),dn(Y )] =
0, we compute the exterior derivative of ω1 as follows:

dω1(X,Y,Z) =∑
↻

Zω1(X̂, Ŷ )

− 1

2
∑
↻

∑
n

Zn{ − [QŶn ,dn(X)]m,m − [dn(Y ),QX̂n ]m,m − (K−1
n [QŶn ,dn(X)]Kn)

m,m

− (K−1
n [dn(Y ),QX̂n ]Kn)

m,m
+ tr(dn(X))[(QŶn )m,m − (K−1

n QŶnKn)
m,m

]

− tr(dn(Y ))[(QX̂n )m,m − (K−1
n QX̂n Kn)

m,m
]}.

(75)

First, note that [QŶn ,dn(X)]m,m = [dn(Y ),QX̂n ]m,m = 0, since dn(X), dn(Y ) are

diagonal matrices. Also, when X = X̂ is an arc length-preserving vector field, (71)

implies dn(X̂) = 0; it follows that the only non-vanishing terms left in expres-

sions such as Zn (K−1
n [QŶn ,dn(X)]Kn)

m,m
when evaluated at X = X̂, will be

(K−1
n [QŶn , Zn(dn(X))]Kn)m,m.
Writing

dγn
dt1

=Xn,
dγn
dt2

= Yn,
dγn
dt3

= Zn,

and taking the traces of the relations

d

dt3
QXn = d

dt1
QZn + [QZn ,QXn ], d

dt3
QYn = d

dt2
QZn + [QZn ,QYn ],

we compute

d

dt3
tr(QXn ) = d

dt1
tr(QZn ),

d

dt3
tr(QYn ) = d

dt2
tr(QZn ).
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Since (71) implies tr(QXn ) = −tr(dn(X)) and similar identities when X is replaced
with Y and with Z, then

d

dt3
tr(dn(X)) = d

dt1
tr(dn(Z)), d

dt3
tr(dn(Y )) = d

dt2
tr(dn(Z)).

Again from (71) and the invertibility of 1 + T + . . .T m−1, it also follows that

d

dt3
dn(X) = d

dt1
dn(Z), d

dt3
dn(Y ) = d

dt2
dn(Z).

Using these relations it is straightforward to check that all remaining terms in
the second cyclic sum vanish, giving

dω1(X,Y,Z) =∑
↻

Zω1(X̂, Ŷ ).

Evaluating both sides at X̂, Ŷ , Ẑ ∈ V1
N concludes the proof. �

Theorem 4.10. The 2-form ω1 is a closed form on M1
N .

Before providing an abstract proof of this result, we derive a simplified formula
for dω1 and use it in a computational proof for dimension 2.

For X,Y,Z arc lenght-preserving vector fields, formula (74) reduces to

dω1(X,Y,Z) = −1

2

N

∑
n=1
∑
↻

Zn([QYn ,QXn ]m,m + (K−1
n [QYn ,QXn ]Kn)m,m ).

The identity [QYn ,QXn ] =X(QYn )−Y (QXn ) implies that∑
↻

Zn([QYn ,QXn ]) = 0. More-

over, one can check that the m-th row of K−1
n Z(Kn) is the zero vector. It follows

that

dω1(X,Y,Z) = −1

2

N

∑
n=1
∑
↻

(K−1
n [QYn ,QXn ]Z(Kn))m,m .

Finally, using the identities:

eTmK
−1
n = (−1)m−1e1, Z(Kn)em = (0 0

0 Z(an)
)em =

m

∑
j=2

Z(aj−1n )ej ,

we get the simplified formula

(76) dω1(X,Y,Z) = −1

2

N

∑
n=1
∑
↻

m

∑
j=2

Z(aj−1n )[QYn ,QXn ]1,j .

Example 4.11. (2-dimensional case) From Kn = (0 −1
1 an

) and the condition

K−1
n

d

dt
Kn = (0 dan/dt

0 0
) = Qn+1 −K−1

n QnKn,

we obtain the following general expression

Qn = (R
−1anqn qn
−qn−1 −R−1anqn

) .
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For some qn. (Note that R = 1 + T is invertible for odd period N .) Writing
QXn = Qn(q), QYn = Qn(p), QZn = Qn(r), we compute

[QXn ,QYn ] = ( pnqn−1 − qnpn−1 2(pnR−1anqn − qnR−1anpn)
2(pn−1R−1anqn − qn−1R−1anpn) pn−1qn − qn−1pn

) ,

and

QZn+1 −K−1
n QZnKn = (0 rn+1 − rn−1 + anR−1(T − 1)anrn

0 0
) ,

giving
Z(an) = rn+1 − rn−1 + anR−1(T − 1)anrn.

Then, equation (76) with a1n = an becomes

dω1(X,Y ) = − 1

2

N

∑
n=1
∑
↻

([QYn ,QXn ])1,2Z(an)

=
N

∑
n=1
∑
↻

(qnR−1anpn − pnR−1anqn)(rn+1 − rn−1 + anR−1(T − 1)anrn).

Using the identity R−1(T − 1) = 1 − 2R−1, it is easy to check that

∑
↻

(qnR−1anpn − pnR−1anqn)anR−1(T − 1)anrn

=∑
↻

[a2nrn(qnR−1anpn − pnR−1anqn) − 2an(R−1anrn)(qnR−1anpn − pnR−1anqn)] = 0.

For the remaining cyclical sum
N

∑
n=1
∑
↻

(qnR−1anpn − pnR−1anqn)(rn+1 − rn−1), we

group its terms as follows:

N

∑
n=1

(rn+1qnR−1anpn − rn+1pnR−1anqn − pn−1rnR−1anqn + qn−1rnR−1anpn)

=
N

∑
n=1

(rn+1qnR−1anpn − rn+1pnR−1anqn − pnrn+1R−1T anqn + qnrn+1R−1T anpn)

=
N

∑
n=1

(rn+1qnR−1(1 + T )anpn − rn+1pnR−1(1 + T )anqn) =
N

∑
n=1

(rn+1qnanpn − rn+1qnanpn) = 0,

using 1 + T =R. The remaining terms are dealt with in a similar way.

Proof of Theorem 4.10. Let γ ∈ M1
N and assume for simplicity that X,Y,Z are

commuting vector fields in V1
N , i.e. X = X̂, Y = Ŷ , Z = Ẑ. From Lemmae 4.9,

dω1(X,Y,Z)(γ) =∑
↻

Z(γ)ω1(X,Y )(γ).

We now recall Theorem 4.5 and its implications. The Poisson bracket { , }R is
a reduction of Semenov-Tian-Shansky’s twisted bracket (18). Since its symplectic
leaves (at the invariant level) are the GN -orbits under the gauge action

hn → gn+1hng
−1
n .

it follows that the tangent space to a symplectic leaf (before reduction) comprises
the Lie algebra invariant elements of the form

Pn+1hn − hnPn
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hn ∈ G, Pn ∈ g. A complement to the leaves is then obtained by solving Pn+1 =
h−1n Pnhn,∀n. When the twisted bracket restricted to γn and reduced, its symplectic
leaves are described in terms evolutions of Maurer-Cartan matrices Kn, and the
complement is given by solutions of Qn+1 = ρ−1n Qnρn, for which dKn/dt = 0.

Next, split V1
N ∣γ into vector fields in the kernel of ω1 (i.e. describing directions

in V1
N ∣γ for which dKn/dt vanishes), and vector fields whose push forwards on

the invariant manifold are tangent to the symplectic leaves of { , }R. We can
assume that the latter are also Hamiltonian vector fields on the space of geometric
invariants of γ, since they generate the tangent space to the symplectic leaf. We
can now consider three scenarios.

If X,Y and Z are all tangent to a given symplectic leaf, then, since ω1 is the
pull-back of the symplectic structure defined on the corresponding symplectic leaf,
it must be a closed form. Hence

dω1(X,Y,Z)(γ) = 0.

If two or three of X,Y,Z are in the kernel of ω1, then we immediately have
dω1(X,Y,Z)(γ) = 0. The remaining case is when only one vector field, say Z,
belongs to the kernel of ω1. The only term we need to compute is Z(γ) (ω1(X,Y )),
since the other terms will vanish. By assumption, dγn/dt = Z(γ)n induces the
stationary flow dKn/dt = Qn+1 −K−1

n QnKn = 0 on the geometric invariants ain’s.
Since ω1(X,Y ) is an invariant function of the ain’s, then Z(γ) (ω1(X,Y )) = 0. �

Remark. If γ is not arc length parametrized, dω1∣γ in general will not vanish. We
will discuss this point in the next section.

This proof provides a good understanding of the role of ω1. Elements of its
kernel push forward to transverse sections to the symplectic leaves of { , }R under
the map X → QX , where QX is the matrix defining the associated frame evolution.
Whereas, the restriction of ω1 to tangent vector fields that push forward to the
symplectic leaf, coincides with the natural symplectic structure on the orbit.

5. The kernels of the pre-symplectic forms

Shifting the point of view from the AGD flows on geometric invariants to the
associated polygonal evolutions presents several advantages. On the one hand,
not all vector fields on the Poisson space of geometric invariants will admit a lift
to invariant—monodromy preserving—geometric flows (i.e. an invariant polygonal
evolution). On the other hand, given a geometric flow , then the induced flow on the
space of geometric invariants is automatically tangent to the leaves of the Poisson
structure. In addition, as both ω1 and ω2 are trivially reducible to the moduli
space, they will induce Poisson structures on the submanifolds of fixed monodromy
conjugacy class, [T ] = const.

In this final section we describe the kernels of ω1 and ω2, show that ω1 is a
symplectic form on submanifolds where [T ] = const, and discuss how we may tackle
the construction of an integrable hierarchy of vector fields for polygonal flows.

5.1. The kernel of ω1.

Theorem 5.1. Assume γ = {γn} ∈ M1
n is a twisted polygon with monodromy

T ∈ SL(m,R). Then, the dimension of the kernel of ω1∣γ equals the dimension of
the isotropy subgroup of T (under the adjoint action).
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Furthermore, if a belongs to the isotropy subalgebra, and we define Q1 = a, Qn+1 =
K−1
n QnKn, then the vector field X = {Xn} ∈ V1

n, with components Xn = Qne1

belongs to the kernel of ω1.

Proof. Recall, from Theorem 3.12 and Proposition 3.13, that the matrix Qfn as-
sociated to a Hamiltonian functional f satifies (Qfn)−1 = (∇′

nF)−1, where F is an
invariant extension of f . Then, letting f, h be smooth functionals on GN /HN and
Xf ,Xh be the unique vector fields in V1

N given by Theorem 3.12,

ω1(Xf ,Xh) =
N

∑
n=1

⟨(∇nF)1 − T (∇′
nF)1, (Qhn)−1⟩.

Since condition (39), relating the right and left gradients, and condition (45), deter-
mining Q, are algebraic conditions, and since ∇′

nF depends solely on δf via (38),
one can replace δf in (38) with an arbitrary vector and proceed to determine the
remaining entries of the matrix using (45). The resulting matrix will not in general
correspond to a gradient. Proceeding as described, for X,Y ∈ V1

N and given QX ,QY

the associated matrices, we let SXn be the solution of

(77) (SXn )−1 = (QXn )−1; SXn+1 −K−1
n SXn Kn ∈ g1.

(Note that, if X =Xf , then SX = ∇′F .) Then,

ω1(X,Y ) =
N

∑
n=1

⟨(K−1
n SXn Kn − SXn+1)1 , (Q

Y
n )−1⟩.

Assume X is an element of the kernel of ω1, i.e. ω1(X,Y ) = 0,∀Y ∈ V1
N . Since an

arbitrary Y ∈ V1
N arbitrary implies an arbitrary QY , then X belongs to the kernel

of ω1 if and only if (K−1
n SXn Kn − SXn+1)1 = 0, ∀n. Since SXn+1 −K−1

n SXn Kn ∈ g1, we
obtain the condition

SXn+1 =K−1
n SXn Kn, ∀n,

giving

SXn+N =K−1
n+N−1 . . .K

−1
n SXn Kn . . .Kn+N−1 = (ρ−1n T −1ρn)SXn (ρ−1n Tρn) .

Since γn is a twisted polygon of period N and monodromy T , then SXn+N = SXn , so
[ρ−1n Tρn, SXn ] = 0. This proves the first claim.

For the second claim, we only need to check that [ρ−11 Tρ1, S
X
1 ] = 0, since SX =

QX , which is the case because SX1 = a, an element of the isotropy subalgebra. �

Corollary 5.2. The kernel of ω1 is generated by the infinitesimal rigid motions
that leave the monodromy invariant.

Proof. Given an element of the isotropy subalgebra a ∈ sl(m,R), denote by ga(t) ∶=
eta the associated one-parameter subgroup of SL(m,R). For a given (twisted)
polygon {γn}, the corresponding variation is {ga(t)γn}. The n-th component of
the variation vector field is computed as follows:

(78) γ̇n =
d

dt
ga(t)γn∣

t=0
= aγn.

Note that the vector field (78) is, by construction, locally arclength preserving.
This can be also checked directly by differentiating ∣ga(t)(γn, . . . , γn+m−1)∣ = 1 and
computing ∣aγn, . . . , γn+m−1∣ + ∣γn, . . . ,aγn+m−1∣ = 0.
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From (78), we have

ρ̇n = aρn = ρnρ−1n aρn = ρnQn, Qn ∶= ρ−1n aρn.

Moreover, from ρnQn = aρn, compute ρn+1Qn+1 = aρn+1 ⇐⇒ ρnKnQn+1 = aρnKn,
giving

Qn+1 =K−1
n QnKn.

The choice ρ1 = Id (identity matrix) as initial condition, gives Q1 = a. It follows
from Theorem 5.1, that (78) is in the kernel of ω1, conversely, every element in the
kernel is an infinitesimal rigid motion as defined by (78). �

Lemma 5.3. The Hamiltonian functional associated to an infinitesimal rigid mo-
tion by means of ω2 is given by

(79) ha(γ) =
N

∑
n=1

∣aγn, γn+1, . . . , γn+m−1∣ ,

where a ∈ sl(m,R) belongs the isotropy subalgebra of the monodromy.

Proof. Given ga(t) ∶= eta ∈ SL(m,R), the one-parameter subgroup generated by a,
the following holds for every t:

(80) ∣ga(t)vn, ga(t)vn+1, . . . , ga(t)vn+m−1∣ = ∣vn, vn+1, . . . , vn+m−1∣,

and for any m-tuple of vectors vj ∈ Rm. As before, differentiating both sides of (80)
with respect to t and evaluating at t = 0, one gets

(81) ∣avn, vn+1, . . . , vn+m−1∣ +
m−1

∑
r=1

∣vn, vn+1, . . . ,
r+1


avn+r , . . . , vn+m−1∣ = 0.

Let now Y = {Yn} ∈ V1
N , and let Xa = {aγn} be the infinitesimal rigid symmetry

vector field generated by a. Then, using (81),

ω2(Y,Xa) = −
1

2

N

∑
n=1

(
m−1

∑
r=1

∣Yn, γn+1, . . . ,
r+1


aγn+r , . . . , γn+m−1∣

−
m−1

∑
r=1

∣aγn, γn+1, . . . ,
r+1
¬
Yn+r , . . . , γn+m−1∣)

= 1

2

N

∑
n=1

(∣aYn, γn+1, . . . , γn+m−1∣ +
m−1

∑
r=1

∣aγn, γn+1, . . . ,
r+1
¬
Yn+r , . . . , γn+m−1∣)

= dha[Y ],

where dha[Y ] denotes the differential of ha at Y . �

Corollary 5.4. Let γ ∈M1
N . Given the symmetry vector field Xa = {aγn}, there

is no vector field Wa ∈ V1
N satisfying

ω1(Wa, Y )∣γ = ω2(Xa, Y )∣γ , ∀Y ∈ V1
N .

(That is, there are no “negative” flows generated by the symmetry vector fields.)
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Proof. If such Wa existed, then

0 = ω1(Wa,Xb) = ω2(Xa,Xb).
where b is a different element of the isotropy subalgebra. However, the right-hand-
side is never zero. In fact,

ω2(Xa,Xb) =
1

2

N

∑
n=1

(∣abγn, γn+1, . . . , γn+m−1∣ +
m−1

∑
r=1

∣aγn, γn+1, . . . ,
r+1


bγn+r , . . . , γn+m−1∣)

=1

2

N

∑
n=1

∣[a,b]γn, γn+1, . . . , γn+m−1∣,

which is non-zero since the center of sl(m,R) is trivial. �

5.2. The kernel of ω2. We now show that the kernel of ω2, when evaluated on a
pair of vector fields in V1

N , is 2-dimensional. First recall that, given the vector field
X = {Xn}, with

Xn = v0nγn + v1nγn+1 + ⋅ ⋅ ⋅ + vm−1
n γn+m−1 = ρnvn,

the components of the associated matrix Q, defining the frame evolution, are

Qn = (vn Knvn+1 KnKn+1vn+2 . . . KnKn+1 . . .Kn+m−2vn+m−1) .
When X ∈ V1

N , the condition that Qn is traceless can be restated as

(82) eT1 vn +
m−1

∑
`=1

eT`+1KnKn+1 . . .Kn+`−1vn+` = 0.

Theorem 5.5. In arbitrary dimension m, the kernel of ω2 is generated by the
vector fields

(83) X1
n = γn+1 + αnγn, X2

n = γn+2 + bnγn+1 + βnγn,
where αn and βn are uniquely determined from the arc-length preservation condi-
tion, and where bn is the unique solution of the equation

(84) bn − bn+m = am−1
n+2 − am−1

n .

Proof. First, we verify that the vector fields X1,X2 described in (83) are elements
of the kernel of ω2. For general vector fields X,Y ∈ VN , Xn = ρnvn, Yn = ρnwn, we
compute (see, e.g., proof of Theorem 4.4)

ω2(X,Y ) = 1

2

N

∑
n=1

m−1

∑
r=1

vrneT1Kn . . .Kn+r−1wn+r −wrneT1Kn . . .Kn+r−1vn+r.

Since eT1Kn . . .Kn+r−1e1 = eT1Kner = eT1 er+1 = 0 for r = 1, . . . ,m − 1, the above
is independent of the first component of both vn and wn. Thus, we can assume
v0n = w0

n = 0 for now, with no loss of generality.
Setting v1n = 1 and vrn = 0 for r = 2, . . . ,m − 1, we get

ω2(X,Y ) =
N

∑
n=1

(eT1Knwn+1 −
m−1

∑
r=1

wrneT1Kn . . .Kn+r−1e2)

=
N

∑
n=1

(eT1Knwn+1 −
m−1

∑
r=1

wrneT1Kner+1) =
N

∑
n=1

(eT1Knwn+1 − eT1Knwn).

= (−1)m−1
N−1

∑
n=0

(wm−1
n+1 −wm−1

n ) = 0.
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This shows that X = γn+1 belongs to the kernel of ω2, and so does its reparametriza-
tion X1 = PX, since ω2(X,Y ) is independent of v0n.

Assume now v1n = bn, v2n = 1, and vrn = 0, for r = 3, . . . ,m − 1 . Then

ω2(X,Y ) =
N

∑
n=1

[bneT1Knwn+1 + eT1KnKn+1wn+2 −
m−1

∑
r=1

(wrneT1Kn . . .Kn+r−1(e3 + bn+re2)) ]

=
N

∑
n=1

(bneT1Knwn+1 −
m−1

∑
r=1

wrnbn+re
T
1Kner+1 + eT1KnKn+1wn+2 −

m−1

∑
r=1

wrneT1KnKn+1er+1)

=
N

∑
n=1

(bneT1Knwn+1 − bn+m−1e
T
1Knwn + eT1KnKn+1wn+2 − eT1KnKn+1wn)

=
N

∑
n=1

[(−1)m−1(bnwm−1
n+1 − bn+m−1w

m−1
n ) + eT1KnKn+1((wm−2

n+2 −wm−2
n )em−1 + (wm−1

n+2 −wm−1
n )em)]

=
N

∑
n=1

((−1)m−1(bn−1 − bn+m−1)wm−1
n + (−1)m−1(wm−2

n+2 −wm−2
n ) + (−1)m−1(wm−1

n+2 −wm−1
n )am−1

n+1 )

=
N

∑
n=1

((−1)m−1(bn−1 − bn+m−1 + am−1
n−1 − am−1

n+1 )wm−1
n ),

which vanishes for all wn if and only if bn−1 = bn+m−1 − am−1
n−1 + am−1

n+1 .
In order to prove that X1 and X2 are the generators of the kernel of ω2, we have

recourse to the algebraic relation obtained in Theorem 4.4

ω2(Xg,Xh) = {g, h}0,
with Xg,Xh the vector fields associated with the Hamiltonians g, h, and study the
kernel of the Poisson bracket

{g, h}0 =
N

∑
n=1

hTnP2ngn,

where gn,hn are invariant (m−1)-dimensional vectors and P2 is a skew-symmetric
tensor.

An explicit expression for P2 is given in (58) for dimension m = 3, and can
be found in reference [12] for arbitrary m, written in terms of alternative, but
equivalent coordinates (here denoted with k):
(85)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

T k2
n − k2

nT
−1 . . . T

m−3km−2
n − km−2

n T
−1

T
m−2km−1

n − km−1
n T

−1
T

m−1
− T

−1

T k3
n − k3

nT
−2 . . . T

m−3km−1
n − km−1

n T
−2

T
m−2

− T
−2 0

⋮ ⋮ ⋮ ⋮ ⋮

T km−2
n − km−2

n T
−(m−3)

T
2km−1

n − km−1
n T

−(m−3)
T

3
− T

−(m−3) . . . 0

T km−1
n − km−1

n T
−(m−2)

T
2
− T

−(m−2) 0 . . . 0

T − T
−(m−1) 0 0 . . . 0.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

For our purposes, it suffices to show that the kernel of P2 is 2-dimensional.
Looking at the terms along the diagonal of (85), if gn = (g1n, . . . gm−1

n )T is in the
kernel of P2n, then

g1n+1 = g1n−m+1, ∀n = 1, . . . ,N,

which can be solved uniquely as g1n = c1, c1 a constant, since m and N are assumed
to be coprime. Going back to P2n, we see that g2n must satisfy the relation

(86) g2n−m = g2n + c1(km−1
n−1 − km−1

n−2 ),
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which admits a unique solution if, and only if ∑Nn=1(km−1
n−1 −km−1

n−2 ) = 0. The telescopic
sum is indeed zero, because the kn’s are periodic. Also, the next entry g3n must
satisfy

g3n−m+3 − g3n+3 = km−1
n+2 g

2
n+2 − km−1

n g2n−m+3 + c1(km−2
n+1 − km−2

n ).
These equation admits a unique solution if and only if

N

∑
n=1

(km−1
n+2 g

2
n+2 − km−1

n g2n−m+3 + c1(km−2
n+1 − km−2

n )) =
N

∑
n=1

(km−1
n+2 g

2
n+2 − km−1

n g2n−m+3) = 0.

We will show that this equation has no solution unless c1 = 0, which implies that
g2n = c2 and g3n is the solution of an equation of the same form as (86) with c1

replaced with c2.
In fact, we will prove a stronger result: assume

(87) gn−m = gn + c(bn−1 − bn−`), ` = 1, . . . ,m − 1,

where c is a constant. Then, generically,

(88)
N

∑
n=1

bngn − bn−`gn−m+1 = 0

if and only if, ` =m − 1.
This result implies that the only elements of the kernel are of the form gn =

(0, . . . ,0,0, c) and gn = (0, . . . ,0, hm−2
n , c), where c is constant and gm−2

n satisfies

gm−2
n−m = gm−2

n + c(km−1
n+1 − km−1

n+m−1).

It follows that the kernel of ω2 is 2-dimensional.
Let us proceed to prove this result. Given b = {bn}Nn=1, we write {bn−1} = Eb in

terms of the N -dimensional permutation matrix

E =
⎛
⎜
⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 ⋱ ⋱ ⋮ ⋮

⋮ ⋱ ⋱ 0 0
0 . . . 0 1 0

⎞
⎟
⎠
.

Then, formula (87) can be written as

(Em − I)g = c(E −E`)b.

If gn are not all equal to the same constant, rewriting the above as

(E − I)(Em−1 +Em−2 + ⋅ ⋅ ⋅ + I)g = cE(I −E)(I +E + ⋅ ⋅ ⋅ +E`−2)b,

we can solve for g, since Em−1 + Em−2 + ⋅ ⋅ ⋅ + I is invertible when m and N are
coprime:

g = −c(Em−1 +Em−2 + ⋅ ⋅ ⋅ + I)−1E(I +E + ⋅ ⋅ ⋅ +E`−2)b.
Equation (88) becomes

0 = ((I −E`−m+1)b)T g = bT (I −Em−`−1)g
= (−c)bT (I −Em−`−1)(Em−1 +Em−2 + ⋅ ⋅ ⋅ + I)−1E(I +E + ⋅ ⋅ ⋅ +E`−2)b.

Since b is arbitrary, we must have

(89) (I −Em−`−1)(Em−1 +Em−2 + ⋅ ⋅ ⋅ + I)−1E(I +E + ⋅ ⋅ ⋅ +E`−2) = 0.
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Permuting the first two terms (the Ej ’s are circulant matrices and thus commute
with one another) and multiplying by Em−1 + Em−2 + ⋅ ⋅ ⋅ + I on the left, equation
(89) reduces to

(I−Em−`−1)E(I+E+⋅ ⋅ ⋅+E`−2) = (E+E2+⋅ ⋅ ⋅+E`−1)−(Em−`+Em−`+1+⋅ ⋅ ⋅+Em−2) = 0.

Since the Ej ’s, j = 1, . . . ,N are the circulant matrices generators, the equation
above holds if and only if ` =m − 1. �

As in the case of the kernel of ω1, the generators X1 and X2 of the kernel of ω2

have rather simple Hamiltonians with respect to ω1.

Proposition 5.6. The Hamiltonian functions associated to the vector fields X1

and X2 in (83) by means of ω1 are given by

f1(γ) = −
N

∑
n=1

am−1
n =m

N

∑
n=1

αn, f2(γ) =
m

2

N

∑
n=1

βn.

Proof. We first find the associated matrices QX
1

and QX
2

, and use (48) to find the
ω1-Hamiltonians. (See also the Remark following (60).)

Since X1
n = ρnrn, with rn = (αn,1,0, . . . ,0)T , we compute

Knrn+1 = (0 αn+1 1 0 . . . 0)T ,
⋮

KnKn+1 . . .Kn+m−3rn+m−2 = (0 . . . 0 αn+m−2 1)T , and

KnKn+1 . . .Kn+m−2rn+m−1 =Knem + (0 . . . 0 αn+m−2)
T
.

Then, from (32), we get

(90) QX
1

n =Kn +
⎛
⎜⎜⎜
⎝

αn 0 . . . 0
0 αn+1 . . . 0
⋮ ⋱ ⋱ ⋮
0 . . . 0 αn+m−1

⎞
⎟⎟⎟
⎠
.

A longer, but similar calculation gives

(91) QX
2

n =
⎛
⎜⎜⎜
⎝

βn 0 . . . 0
0 βn+1 . . . 0
⋮ ⋱ ⋱ ⋮
0 . . . 0 βn+m−1

⎞
⎟⎟⎟
⎠
+Kn

⎛
⎜⎜⎜
⎝

bn 0 . . . 0
0 bn+1 . . . 0
⋮ ⋱ ⋱ ⋮
0 . . . 0 bn+m−1

⎞
⎟⎟⎟
⎠
+KnKn+1.

Requiring tr(QXj

n ) = 0, j = 1,2, determines αn and βn:

(92) αn = −R−1am−1
n , βn = −R−1(am−2

n + am−2
n+1 + am−1

n (bn+m−1 + am−1
n+1 )),

where R = 1 + T + . . . + T m−1. Matching g1-components of (90) and (91) with the
right-hand side of (48), gives the gradients of f1 and f2 (assuming such Hamiltoni-
ans exist):

∇nf1 = (0,0, . . . ,0,−1)T , ∇nf2 = (0,0, . . . ,0,−1,−bn+m−1 − am−1
n+1 )T .

The f1 chosen above has the correct gradient, since

f1(γ) = −
N

∑
n=1

am−1
n =

N

∑
n=1

Rαn =
N

∑
n=1

(αn + αn+1 + ⋅ ⋅ ⋅ + αn+m−1) =m
N

∑
n=1

αn.
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To justify the choice for f2, we need more work. First, (91) suggests an f2 of the
form

f2 = −
N

∑
n=1

am−2
n − g(a), with

∂g

∂am−1
n

= bn+m−1 + am−1
n+1 .

Equation (84), determing bn up to a constant, can be rewritten as (shifting indices)

R(bn − bn−1) = am−1
n−1 − am−1

n+1 = (1 − T )(1 + T )am−1
n−1 .

Since neither bn nor am−1
n are in the kernel of 1 − T , substituting R(bn − bn−1) =

−(1 − T )bn−1, we arrive at

(93) bn = −R−1(am−1
n + am−1

n+1 ) = αn + αn+1,
which gives

bn+m−1 + am−1
n+1 = −R−1(am−1

n+m−1 + am−1
n+m) + am−1

n+1 = −R−1(am−1
n+1 + am−1

n+2 + ⋅ ⋅ ⋅ + am−1
n+m−2).

Let cn =R−1am−1
n and compute

∂g

∂cn
=
N

∑
r=1

∂g

∂am−1
r

∂am−1
r

∂cn
=

n

∑
r=n−(m−1)

∂g

∂am−1
r

,

where we used am−1
n =Rcn = cn+cn+1+⋅ ⋅ ⋅+cn+m−1. From ∂g/∂am−1

n = bn+m−1+am−1
n+1 ,

we then obtain

∂g

∂cn
=

n

∑
r=n−(m−1)

R−1(am−1
r+1 + am−1

r+2 + ⋅ ⋅ ⋅ + am−1
r+m−2) =

n

∑
r=n−(m−1)

(cm−1
n+1 + cm−1

n+2 + ⋅ ⋅ ⋅ + cm−1
n+m−2)

= (m − 2)(cn+1 + cn + cn−1) + (m − 3)(cn+2 + cn−2) + . . .
. . . + 2(cn+m−3 + cn−(m−3)) + cn+m−2 + cn−(m−2),

which is the gradient of the function

g(a) =
N

∑
n=1

m − 2

2
c2n + cn ((m − 2)cn+1 + (m − 3)cn+2 + ⋅ ⋅ ⋅ + 2cn+m−3 + cn+m−2) .

However, g(a) = 1
2 ∑

N
n=1 a

m−1
n (bn+m−1 + am−1

n+1 ), in fact

N

∑
n=1

am−1
n (bn+m−1 + am−1

n+1 ) =
N

∑
n=1

am−1
n R−1(am−1

n+1 + am−1
n+2 + ⋅ ⋅ ⋅ + am−1

n+m−2)

=
N

∑
n=1

(cn + cn+1 + ⋅ ⋅ ⋅ + cn+m−1)(cn+1 + cn+2 + ⋅ ⋅ ⋅ + cn+m−2)

=
N

∑
n=1

(m − 2)c2n + 2cn((m − 2)cn+1 + (m − 3)cn+2 + ⋅ ⋅ ⋅ + 2cn+m−3 + cn+m−2).

Combining this with

m

2

N

∑
n=1

βn =
1

2

N

∑
n=1

Rβn = −
N

∑
n=1

am−2
n − 1

2

N

∑
n=1

am−1
n (bn+m−1 + am−1

n+1 ),

completes the verification for f2. �

The generators of the kernel of ω2 are commuting vector fields with respect to
the symplectic structure defined on the moduli space of M1

N by ω1.

Theorem 5.7. Let X1 and X2 be as in (83). Then

ω1(X1,X2) = 0.
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Proof. We only need to show that X1 preserves the ω1-Hamiltonian associated with
X2, i.e.

m

2

N

∑
n=1

X1(βn) = 0.

Using (92)) and (93), the above is equivalent to verifying that

N

∑
n=1

X1(am−2
n +am−2

n+1 +am−1
n (bn+m−1+am−1

n+1 )) =
N

∑
n=1

X1(2am−2
n −am−1

n (αn+1+⋅ ⋅ ⋅+αn+m−2)) = 0.

Substituting X1(γn+r) = γn+r+1 + αn+rγn+r from equation (83),
arn = ∣γn, . . . , γn+r−1, γn+m, γn+r+1, . . . , γn+m−1∣ from equation (25), and γn+m+1 =

∑m−1
s=1 asn+1γn+s+1 + (−1)m−1γn+1, we compute

X1(am−1
n ) =

m−2

∑
r=0

(∣γn, . . . , γn+r−1, γn+r+1 + αn+rγn+r, γn+r+1, . . . , γn+m−2, γn+m∣

+ ∣γn, . . . , γn+m−2, γn+m+1 + αmγn+m∣)

= am−1
n

m−2

∑
r=0

(αn+r + am−1
n αn+m − am−2

n + am−2
n+1 + am−1

n+1 a
m−1
n ).

Since ∑mr=1 αn+r = −am−1
n+1 , equivalently αn = −R−1am−1

n , the expression can be fur-
ther simplified to

X1(am−1
n ) = am−1

n (αn − αn+m−1) + am−2
n+1 − am−2

n ,

which also gives X1(αn) = −R−1am−1
n . A similar calculation leads to

X1(am−2
n ) = am−2

n (αn − αn+m−2) + am−3
n+1 − am−3

n .

Combining the various identities, we get

N

∑
n=1

X1(2am−2
n − am−1

n (αn+1 + ⋅ ⋅ ⋅ + αn+m−2)) =
N

∑
n=1

[2am−2
n (αn − αn+m−2)

− am−1
n (αn − αn+m−1)(αn+1 + ⋅ ⋅ ⋅ + αn+m−2) − (am−2

n+1 − am−2
n )(αn+1 + ⋅ ⋅ ⋅ + αn+m−2)

+ am−1
n R−1((αn+1 − αn+m)am−1

n+1 + ⋅ ⋅ ⋅ + (αn+m−2 − αn+2m−3)am−1
n+m−2

+ am−2
n+1 − am−2

n + am−2
n+2 − am−2

n+1 + ⋅ ⋅ ⋅ + am−2
n+m−2 − am−1

n+m−3)],

where the last telescopic sum simplifies to

am−2
n+1 − am−2

n + am−2
n+2 − am−2

n+1 + ⋅ ⋅ ⋅ + am−2
n+m−2 − am−1

n+m−3 = am−2
n+m−2 − am−2

n ,

and
N

∑
n=1

(am−2
n+1 − am−2

n )(αn+1 + ⋅ ⋅ ⋅ + αn+m−2)) =
N

∑
n=1

am−2
n (αn − αn+m−2).

We briefly outline the rest of the proof, omitting the details for sake of brevity.
One need to show that: 1. the terms involving am−2

n vanish; this requires careful
accounting, aided by introducing R∗ = T −m+1R such that (R−1)∗ = R−1T m−1. 2.
the terms involving am−1

n also vanish; the procedure is lengthier (but still fairly
straightforward) and makes use of am−1

n = −∑mr=1 αn+r = to show that

∑
n

am−1
n (αn − αn+m−1)(αn+1 + αn+2 + ⋅ ⋅ ⋅ + αn+m−2) = 0.

�
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Discussion and Open Questions

By lifting the Hamiltonian structures from the space of invariant curvatures to
the space of arc length parametrized polygons, not only we prove that the Pois-
son brackets derived in [12] form a bi-hamiltonian pair on the space of geometric
invariants, but we also provide a framework for studying the integrability of the
geometric flows that reveals several interesting features.

The 2-form ω1 is symplectic on the moduli space ofM1
N , since its kernel is gener-

ated by the infinitesimal rigid motions, which preserve the monodromy class. Thus
ω1 provides, through relation (60), a natural correspondence between Hamiltonians
and Hamiltonian vector fields. On the other hand, the 2-form ω2 has a non-trivial
kernel, so it remains an open question whether a hierarchy of commuting vector
fields can be constructed by means of a Lenard-Magri type of scheme.

In two dimensions, the 2-form ω2 is a straightforward discretization of Pinkall’s
symplectic form on the space of star-shaped planar curves [14]. For m = 3, ω2 can
also be regarded as a straightforward generalization of the 2-form introduced in [4]
for curves in centro-affine R3. Its expression is very simple in arbitrary dimension
(see also Proposition 4.8) and, for m ≥ 3, its kernel is generated by two interesting
vector fields: X1, a natural discretization of the translation flow (i.e. the discrete
counterpart of γx in the continuous case), and X2, which could be interpreted as a
discretization of the second derivative. Both X1 and X2 have been reparametrized
to make them arc length-preserving. Moreover, we find that there are no negative
flows generated by the infinitesimal symmetries (Corollary 5.4), and thatX1 andX2

commute with respect to the ω1-Hamiltonian structure. This parallels the case of
the integrable curve evolutions in centro-affine R3 discussed in [4], where geometric
realizations of the Boussinesq hierarchy are constructed as a double hierarchy of
commuting vector fields whose headers are the elements of the kernel of the pre-
symplectic form. The fact that, also in the discrete case and in arbitrary dimension
(not just for m = 3), the integrable flows are generated by a pair of vector fields, is
intriguing and suggests that ω2 and its continuous counterparts should be further
investigated.

We conclude with some remarks on the construction of integrable hierarchies,
which we are currently investigating.

Define V̂ 1
N to be the ω1-complement of the kernel of ω2, that is

V̂ 1
N = {X ∈ V1

N ∣ ω1(X,X1) = ω1(X,X2) = 0} .

Theorem 5.7 implies that X1,X2 ∈ V̂ 1
N . From a standard linear algebra argument,

if X ∈ V̂ 1
N , then there exists Y ∈ V1

N such that

ω1(X,Z) = ω2(Y,Z), ∀Z ∈ V1
N .

Given also that ω1 is symplectic on the moduli space of M1
N , this suggests the

following

Conjecture 5.8. Let X1,X2 ∈ V̂ 1
N and define Xk+2 ∈ V1

N as

ω1(Xk, Z) = ω2(Xk+2, Z).
Then Xk ∈ V̂ 1

N , for all k = 1,2,3, . . . .

If the conjecture is true, taking Xk = Xk, k = 1,2, as seeds, generates an inte-
grable double hierarchy of commuting flows. We remark that the associated flows
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on the space on invariants are different from the hierarchy of flows conjectured in
[12]. The study of this new hierarchy is in progress.
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[3] A. Calini and T. Ivey, Bäcklund Transformations and Knots of Constant Torsion, J. of Knot

Theory and its Ramif. 7 (6) (1998), 719–746
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