1. Assume \(f : \mathbb{R}^2 \to \mathbb{R} \) is \(C^2 \) on \(\mathbb{R}^2 \). Define \(u(r, \theta) = f(r \cos \theta, r \sin \theta) \). If \(f \) satisfies Laplace equation, that is, if
\[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\]
prove that for any \(r \neq 0 \) one has
\[
\frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} = 0.
\]

2. Let \(u : \mathbb{R} \to [0, \infty) \) be differentiable. Show that for each \((x, y, z) \neq (0, 0, 0)\)
\[
F(x, y, z) = u(\sqrt{x^2 + y^2 + z^2})
\]
satisfies
\[
\sqrt{\left(\frac{\partial F}{\partial x} \right)^2 + \left(\frac{\partial F}{\partial y} \right)^2 + \left(\frac{\partial F}{\partial z} \right)^2} = \| u'(\sqrt{x^2 + y^2 + z^2}) \|.
\]

3. Find a constant \(c \) such that at any point of intersection of the two spheres
\[
(x - c)^2 + y^2 + z^2 = 3, \quad x^2 + (y - 1)^2 + z^2 = 1
\]
the corresponding tangent planes will be perpendicular to each other.
4. The equation
\[\sin(x + y) + \sin(y + z) = 1 \]
defines \(z \) implicitly as a function of \(x \) and \(y \). Find \(\frac{\partial^2 z}{\partial x \partial y} \) as a function of \(x, y \) and \(z \). Find \(\frac{\partial^2 z}{\partial x \partial y}(0,0) \) for \(0 \leq z \leq \pi \).

5. Find the equation of the tangent plane to \(z = f(x, y) \) at \(c \).

 (a) \(f(x, y) = x^3 \sin y \), \(c = (0, 0, 0) \).

 (b) \(f(x, y) = x^3 y - y^3 x \), \(c = (1, 1, 0) \).

6. Let \(\mathcal{H} \) be the hyperboloid given by \(x^2 + y^2 - z^2 = 1 \).

 (a) Prove that at every point \((a, b, c) \in \mathcal{H} \), \(\mathcal{H} \) has a tangent plane whose normal is given by \((-a, -b, c) \).

 (b) Find an equation for each plane tangent to \(\mathcal{H} \) that is perpendicular to the \(xy \) plane.

 (c) Find an equation of each plane tangent to \(\mathcal{H} \) that is parallel to the plane \(x + y - z = 1 \).

7. When \(u \) is eliminated from the two equations \(x = u + v \) and \(y = uv^2 \), we get an equation of the form \(F(x, y, v) = 0 \) which defines \(v \) implicitly as a function of \(x \) and \(y \), say \(v = h(x, y) \). Show that
\[
\frac{\partial h}{\partial x} = \frac{h(x, y)}{3h(x, y) - 2x}.
\]

Find a similar formula for \(\frac{\partial h}{\partial y} \).

Section 9.7 in the book has this and other worked out examples. You can also try #1-6 and #12 in page 302.