Monodromy representations of conformal field theory

Toshitake Kohno

The University of Tokyo

July 2011
The space of conformal blocks
Plan

- The space of conformal blocks
- Quantum representations of mapping class groups

Toshitake Kohno

Monodromy representations
Plan

- The space of conformal blocks
- Quantum representations of mapping class groups
- Monodromy representations of braid groups and Gauss-Manin connections
Plan

- The space of conformal blocks
- Quantum representations of mapping class groups
- Monodromy representations of braid groups and Gauss-Manin connections
- Images of quantum representations of mapping class groups
Conformal Field Theory

\((\Sigma, p_1, \cdots, p_n)\): Riemann surface with marked points
\(\lambda_1, \cdots, \lambda_n\): level \(K\) highest weights
Conformal Field Theory

\((\Sigma, p_1, \cdots, p_n)\) : Riemann surface with marked points
\(\lambda_1, \cdots, \lambda_n\) : level \(K\) highest weights
\(\mathcal{H}_\Sigma(p, \lambda)\) : space of conformal blocks
vector space spanned by holomorphic parts of the WZW partition function.
Wess-Zumino-Witten model

Conformal Field Theory

\((\Sigma, p_1, \cdots, p_n)\) : Riemann surface with marked points
\(\lambda_1, \cdots, \lambda_n\) : level \(K\) highest weights
\(\mathcal{H}_\Sigma(p, \lambda)\) : space of conformal blocks

vector space spanned by holomorphic parts of the WZW partition function.

Geometry : vector bundle over the moduli space of Riemann surfaces with \(n\) marked points with projectively flat connection.
$g = sl_2(\mathbb{C})$ has a basis

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

λ : non-negative integer

V_λ : irreducible highest weight representation of $sl_2(\mathbb{C})$ with highest weight vector v such that

$$Hv = \lambda v, \ E v = 0$$
Representations of an affine Lie algebra

\(\hat{g} = g \otimes C((\xi)) \oplus Cc : \text{affine Lie algebra} \) with commutation relation

\[
[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \text{Res}_{\xi=0} df g \langle X, Y \rangle c
\]

\(K \) a positive integer (level)
\(\hat{g} = \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \)
\(c \) acts as \(K \cdot \text{id} \).
Representations of an affine Lie algebra

\(\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}((\xi)) \oplus \mathbb{C}c : \text{affine Lie algebra} \) with commutation relation

\[
[X \otimes f, Y \otimes g] = [X, Y] \otimes fg + \text{Res}_{\xi=0} df g \langle X, Y \rangle c
\]

\(K \) a positive integer (level)
\(\hat{\mathfrak{g}} = \mathcal{N}_+ \oplus \mathcal{N}_0 \oplus \mathcal{N}_- \)
\(c \) acts as \(K \cdot \text{id.} \)

\(\lambda : \text{an integer with } 0 \leq \lambda \leq K \)
\(\mathcal{H}_\lambda : \text{irreducible quotient of } \mathcal{M}_\lambda \) called the integrable highest weight modules.
Geometric background

G : the Lie group $SL(2, \mathbb{C})$

$LG = \text{Map}(S^1, G)$: loop group

$\mathcal{L} \rightarrow LG$: complex line bundle with $c_1(\mathcal{L}) = K$
G : the Lie group $SL(2, \mathbb{C})$

$LG = \text{Map}(S^1, G)$: loop group

$L \rightarrow LG$: complex line bundle with $c_1(L) = K$

The affine Lie algebra $\hat{\mathfrak{g}}$ acts on the space of sections $\Gamma(L)$.
The integrable highest weight modules \mathcal{H}_λ, $0 \leq \lambda \leq K$, appears as sub representations.
As the infinitesimal version of the action of the central extension of $\text{Diff}(S^1)$ the Virasoro Lie algebra acts on \mathcal{H}_λ.
Suppose $0 \leq \lambda_1, \cdots, \lambda_n \leq K$.
\[p_1, \cdots, p_n \in \Sigma \]
Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.
\mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

The space of conformal blocks is defined as
\[\text{H}^\Sigma(p, \lambda_1) \otimes \cdots \otimes \text{H}^\Sigma(p, \lambda_n) / (g \otimes M_p) \]
where $g \otimes M_p$ acts diagonally via Laurent expansions at p_1, \cdots, p_n.

Toshitake Kohno
Monodromy representations
Suppose $0 \leq \lambda_1, \cdots, \lambda_n \leq K$.
$p_1, \cdots, p_n \in \Sigma$
Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.
\mathcal{H}_j: irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

\mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n.

Toshitake Kohno
Monodromy representations
Suppose $0 \leq \lambda_1, \cdots, \lambda_n \leq K$
$p_1, \cdots, p_n \in \Sigma$

Assign highest weights $\lambda_1, \cdots, \lambda_n$ to p_1, \cdots, p_n.

\mathcal{H}_j : irreducible representations of $\hat{\mathfrak{g}}$ with highest weight λ_j at level K.

\mathcal{M}_p denotes the set of meromorphic functions on Σ with poles at most at p_1, \cdots, p_n.

The space of conformal blocks is defined as

$$\mathcal{H}_\Sigma(p, \lambda) = \mathcal{H}_{\lambda_1} \otimes \cdots \otimes \mathcal{H}_{\lambda_n} / (\mathfrak{g} \otimes \mathcal{M}_p)$$

where $\mathfrak{g} \otimes \mathcal{M}_p$ acts diagonally via Laurent expansions at p_1, \cdots, p_n.
\(\Sigma_g \): Riemann surface of genus \(g \)

\(p_1, \cdots, p_n \): marked points on \(\Sigma_g \)

Fix the highest weights \(\lambda_1, \cdots, \lambda_n \).
\(\Sigma_g \): Riemann surface of genus \(g \)
\(p_1, \cdots, p_n \): marked points on \(\Sigma_g \)
Fix the highest weights \(\lambda_1, \cdots, \lambda_n \).

The union

\[
\bigcup_{p_1, \cdots, p_n} \mathcal{H}_{\Sigma_g}(p, \lambda)
\]

for any complex structures on \(\Sigma_g \) forms a vector bundle on \(\mathcal{M}_{g,n} \), the moduli space of Riemann surfaces of genus \(g \) with \(n \) marked points.
Conformal block bundle

\[\Sigma_g : \text{Riemann surface of genus } g \]
\[p_1, \cdots, p_n : \text{marked points on } \Sigma_g \]

Fix the highest weights \(\lambda_1, \cdots, \lambda_n \).

The union

\[\bigcup_{p_1, \cdots, p_n} \mathcal{H}_{\Sigma_g}(p, \lambda) \]

for any complex structures on \(\Sigma_g \) forms a vector bundle on \(\mathcal{M}_{g,n} \), the moduli space of Riemann surfaces of genus \(g \) with \(n \) marked points.

This vector bundle is called the **conformal block bundle** and is equipped with a natural **projectively flat connection**. The holonomy representation of the mapping class group is called the quantum representation.
\(\Gamma_{g,n} \): **mapping class group** of the Riemann surface of genus \(g \) with \(n \) marked points (orientation preserving diffeomorphisms of \(\Sigma \) upto isotopy)

\(\Gamma_{g,n} \) is generated by Dehn twists.

Dehn twist along the curve \(C \)

\(\Gamma_{g,n} \) acts on \(\mathcal{H}_\Sigma \): **quantum representation** \(\rho_K \).
A basis of the space of conformal blocks is given by trivalent graphs labelled by highest weights dual to pants decomposition of the surface.

The Dehn twist along t acts as $e^{2\pi i \Delta_m}$
(Δ_m : conformal weight)
A braid and its closure (figure 8 knot)

genus 0 case: The flat connection is the **KZ connection**, which is interpreted as **Gauss-Manin connection** via hypergeometric integrals.
The case $g = 0$

$p_1, \cdots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$

Assign highest weights $\lambda_1, \cdots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \cdots, p_{n+1}.
The case $g = 0$

$p_1, \cdots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$

Assign highest weights $\lambda_1, \cdots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \cdots, p_{n+1}.

We have a flat vector bundle over the configuration space

$$X_n = \{(z_1, \cdots, z_n) \in \mathbb{C}^n ; z_i \neq z_j, \ i \neq j\}.$$

with KZ connection.
The case $g = 0$

$p_1, \cdots, p_{n+1} \in \mathbb{C}P^1$ with $p_{n+1} = \infty$

Assign highest weights $\lambda_1, \cdots, \lambda_{n+1} \in \mathbb{Z}$ to p_1, \cdots, p_{n+1}.

We have a flat vector bundle over the configuration space

$$X_n = \{ (z_1, \cdots, z_n) \in \mathbb{C}^n ; \ z_i \neq z_j, \ i \neq j \}.$$

with KZ connection.

The monodromy representation is the quantum representation of the braid groups.
\{I_\mu\} : \text{orthonormal basis of } \mathfrak{g} \ \text{w.r.t. Killing form.}
\Omega = \sum_\mu I_\mu \otimes I_\mu
r_i : \mathfrak{g} \rightarrow \text{End}(V_i), \ 1 \leq i \leq n \ \text{representations.}
\{I_\mu\} : \text{orthonormal basis of } \mathfrak{g} \text{ w.r.t. Killing form.}

\Omega = \sum_\mu I_\mu \otimes I_\mu

r_i : \mathfrak{g} \to End(V_i), \ 1 \leq i \leq n \text{ representations.}

\Omega_{ij} : \text{the action of } \Omega \text{ on the } i\text{-th and } j\text{-th components of } V_1 \otimes \cdots \otimes V_n.

\omega = \frac{1}{\kappa} \sum_{i,j} \Omega_{ij} d\log(z_i - z_j), \quad \kappa \in \mathbb{C} \setminus \{0\}

\omega \text{ defines a flat connection for a trivial vector bundle over the configuration space } X_n \text{ with fiber } V_1 \otimes \cdots \otimes V_n \text{ since we have}

\omega \wedge \omega = 0
As the holonomy we have representations

$$\theta_\kappa : P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_\kappa : B_n \to GL(V^{n \otimes}).$$
As the holonomy we have representations

$$
\theta_\kappa : P_n \rightarrow GL(V_1 \otimes \cdots \otimes V_n).
$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$
\theta_\kappa : B_n \rightarrow GL(V^n).
$$

We shall express the horizontal sections of the KZ connection: $d\varphi = \omega \varphi$ in terms of homology with coefficients in local system homology on the fiber of the projection map

$$
\pi : X_{m+n} \rightarrow X_n.
$$

$X_{n,m}$: fiber of π, \quad $Y_{n,m} = X_{n,m}/S_m$
\(\mathcal{L} \): rank 1 local system over \(Y_{n,m} \)

\[
m = \frac{1}{2}(\lambda_1 + \cdots + \lambda_n - \lambda_{n+1})
\]

\(\mathcal{H}_{n,m} \): local system over \(X_n \) with fiber \(H_m(Y_{n,m}, \mathcal{L}) \)

Theorem

There is an injective bundle map from the conformal block bundle

\[
\bigcup \mathcal{H}_{\mathbb{C}P^1}(p, \lambda) \longrightarrow \mathcal{H}_{n,m}
\]

via hypergeometric integrals. The KZ connection is interpreted as Gauss-Manin connection.
Asymptotic faithfulness

Any two elements of the mapping class group are distinguished by the quantum representation for sufficiently large K (J. Andersen).

$B_n[k]$: normal subgroup of the braid group B_n generated by σ_i^k, $1 \leq i \leq n - 1$.

\[
\begin{array}{c}
1 & 2 & i & i+1 & n \\
\cdots & \cdots & \sigma_i & \cdots & \\
\end{array}
\]

Theorem (L. Funar and T. Kohno)

For any infinite set $\{k\}$, we have $\bigcap_k B_n[2k] = \{1\}$.

A positive answer to Squier’s conjecture.
The quantum representations are projectively unitary.

\[\rho_K : \Gamma_g \longrightarrow PU(\mathcal{H}_{\Sigma_g}) \]

The \(k \)-th Johnson subgroup acts trivially on the \(k \)-th lower central series of the fundamental group \(\pi_1(\Sigma_g) \).

The image of the quantum representation is “big” in the following sense.

Theorem (L. Funar and T. Kohno)

Suppose \(g \geq 4 \) and \(K \) sufficiently large. Then the image of any Johnson subgroup by \(\rho_K \) contains a non-abelian free group.
Images of braid groups B_3 in the mapping class group by the quantum representation ρ_K are related to Schwarz triangle groups.

tessellation of the Poincaré disc by the triangle group
Gilmer and Masbaum show in the case $\kappa = K + 2$ is odd prime, the image of the quantum representation ρ_K is contained in

$$PU(\mathcal{O}_\kappa)$$

where \mathcal{O}_κ is the ring of cyclotomic integers:

$$\mathcal{O}_\kappa \subset \mathbb{Q}(e^{2\pi i/\kappa})$$

Suppose g, K sufficiently large.

Theorem (L. Funar and T. Kohno)

$\rho_K(\Gamma_g)$ is of infinite index in $PU(\mathcal{O}_\kappa)$.

Reference: L. Funar and T. Kohno, On images of quantum representations of mapping class groups, arXiv:0907.0568