Cheat Sheet 2

Math 141

Let A = accumulated balance after Y years

P = starting principal

APR = annual percentage rate (as a decimal)

n = number of compounding periods per year

Y = number of years (may be a fraction)

PMT = regular payment (deposit) amount

a = inflation rate (a decimal)

i = interest rate (a decimal)

Simple Interest Formula: A = P(A (# APR * Y) Compound Interest Formula:

Annual Percentage Yield: APY $APY = (1 + \frac{APR}{n})^n - 1$

Formula for Continuous Compounding $A = P * e^{APR*Y}$

Savings Plan Formula: $A = PMT * \frac{[(1 + \frac{APR}{n})^{nY} - 1]}{\frac{APR}{n}}$

Total and Annual Return: $total return = \frac{A-P}{P}$

 $total return = \frac{A-P}{P}$ $annual return = \left(\frac{A}{P}\right)^{(1/Y)} - 1$

Current Yield of a Bond: $current yield = \frac{annual interest payment}{current price of bond}$

Loan Payment Formula: $PMT = P * \frac{\frac{APR}{n}}{\left[1 - \left(1 + \frac{APR}{n}\right)^{(-nY)}\right]}$

The CPI Formula $\frac{CPI_X}{CPI_Y} = \frac{price_X}{price_Y}$

The Present Value of a principal P, Y years into the future, r=APR, a=annual inflation:

 $A = P * \left[\frac{1+r}{1+a}\right]^Y$

Real Growth g: $g = \frac{r-a}{1+a}$

Real Growth over Y years: $g(Y) = [1 + \frac{r-a}{1+a}]^Y - 1$

The Tax Table:

The Tax Table:				
	single	m(joint)	m(separate)	head_household
10%	1 - 7,550	1-15,100	1 - 7,550	1-10,750
15%	7,551 - 30,650	15,101 - 61,300	7,551 - 30,650	10,751 - 41,050
25%	30,651 - 74,200	61,301 - 123,700	30,651 - 61,850	41,051 - 106,000
28%	74,201 - 154,800	123,701 - 188,450	61,851 - 94,225	106,001 - 171,650
33%	154,801 - 336,550	188,451 - 336,550	94,226 - 168,275	171,651 - 336,550
35%	336,551+	336,551+	168,276+	336,551+

The mean of
$$x_1, x_2, ...x_n$$
 is
$$\mu = \frac{x_1 + x_2 + ... + x_n}{n}.$$
 The variance s^2 of $x_1, x_2, ...x_n$ is
$$s^2 = \frac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + ... + (x_n - \mu)^2}{n - 1}.$$
 The standard deviation s is the square root of the variance s^2 .

Quartiles of Normal Distributions:

$$Q_1 = mean - .67 * s$$
$$Q_3 = mean + .67 * s$$

The 68 - 95 - 99.7 Rule for normal distributions:

68% of the observations fall within 1 standard deviation of the mean.

95% of the observations fall within 2 standard deviations of the mean.

99.7% of the observations fall within 3 standard deviations of the mean.

Given data (x_1, y_1) , (x_2, y_2) , ... (x_n, y_n) , with means μ_x , μ_y and standard deviations s_x , s_y . The correlation between variables x and y is

$$r = \frac{1}{(n-1)s_x s_y} \left[(x_1 - \mu_x)(y_1 - \mu_y) + (x_2 - \mu_x)(y_2 - \mu_y) + \dots + (x_n - \mu_x)(y_n - \mu_y) \right].$$

The least squares regression line is y = ax + b. where $a = r * \frac{s_y}{s_x}$ and $b = \mu_y - a\mu_x$.

For a simple random sample of size n, the sample proportion of successes is $p' = \frac{\text{count of successes in the sample}}{n}$. The mean of the sampling distribution is p and the standard deviation is $\sqrt{\frac{p(1-p)}{n}}$. The 68-95-99.7 Rule applies here aswell.