Problems 9

Please, do problems 1, 2, 4, 6, 8, 10, 11.

1. Consider the sequence defined recursively by

\[x_1 = \sqrt{2} \]

\[x_{n+1} = \sqrt{2 + x_n} \]

(a) Show by induction that \(x_n < 2 \), for all \(n \).

(b) Show by induction that \(x_n < x_{n+1} \), for all \(n \).

2. Suppose \(A, B \) are nonempty sets of real numbers, such that \(a \leq b \), for all \(a \in A, b \in B \).

(a) Prove \(\sup A \leq b \) for all \(b \in B \).

(b) Prove \(\sup A \leq \inf B \).

3. In the proof of Theorem 7.1, show that there is a largest \(x \) in \((a, b)\) with \(f(x) = 0 \).

4. Given \(f \) continuous, nonnegative on \([a, b]\), \(f(a) = f(b) = 0 \) and there exists an \(x_0 \), such that \(f(x_0) > 0 \).

Then there exist \(c, d \), such that

\[a \leq c < x_0 < d \leq b \]

and

\[f(c) = f(d) = 0 \]

and for all \(x \) in \((c, d)\): \(f(x) > 0 \).

5. Nested Interval Theorem:

Consider a sequence of closed intervals \(I_1 = [a_1, b_1], I_2 = [a_2, b_2], \ldots \), where

\[a_1 \leq \ldots \leq a_n \leq \ldots \leq b_m \leq \ldots \leq b_1. \]

Prove that there is a point \(x \) which is in every \(I_n \).

Also show that this conclusion is false for open intervals.

6. Suppose \(f \) is continuous on \([a, b]\) and \(f(a) < 0, f(b) > 0 \), then either

(i) \(f\left(\frac{a+b}{2}\right) = 0 \)

(ii) \(f(a) < 0 < f\left(\frac{a+b}{2}\right) \) (\(*\))

(iii) \(f\left(\frac{a+b}{2}\right) < 0 < f(b) \)

Suppose \((*)\). Apply the same argument to \([a, \frac{a+b}{2}]\).

Claim: This process will lead to \(x \in [a, b] \) such that \(f(x) = 0 \).

7. Show: Every point in \([0,1]\) is an accumulation point.

8. Show: No point at all is an accumulation point of the set of natural numbers \(\mathbb{N} \).
9. Show: every point on the real line, both rational and irrational, is an accumulation point of the set \(\mathbb{Q} \).

10. Show: every point of a closed interval \([a, b]\) is an accumulation point of \((a, b)\). No point outside can be.

11. Find the sup, inf, maxima, minima (if they exist), accumulation points and limits superior and inferior, of:

 (a) \(A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \).

 (b) \(A = \{ x \mid 0 \leq x \leq \sqrt{2}, x \in \mathbb{Q} \} \).

 (c) \(A = \left\{ \frac{1}{n} + (-1)^n n \mid n \in \mathbb{N} \right\} \).

12. Are they uniformly continuous?

 (a) \(f(x) = \frac{1}{x} \) on \((0, 1)\)

 (b) \(f(x) = \frac{1}{x} \) on \((\frac{1}{n}, 1)\)

 (c) \(f(x) = \sin x \) on \(\mathbb{R}\).

 (d) \(f(x) = x^3 \) on \([-100, 100]\)

 (e) \(f(x) = x \)

 (f) \(f(x) = e^x \)

 (g) \(f(x) = e^{-x} \) on \(\mathbb{R}^+\)

13. Prove that if \(f \) is continuous and \(f(x) = 0 \) for all \(x \) in the dense set \(A \), then \(f(x) = 0 \) for all \(x \).

14. Suppose that \(f \) is a function such that \(f(a) \leq f(b) \) whenever \(a < b \).

 (a) Prove that \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^+} f(x) \) both exist.

 (b) Prove that \(f \) never has a removable discontinuity.