Show all work. Circle your answer.
No books, no notes, no calculator, no cell phones, no pagers, no electronic devices at all.
Solutions will be posted shortly after the exam: www.math.wisc.edu/~miller/m213

Name:______________________________

Circle your DIScussion section (column one):

TA: Youngsuk Lee

DIS 301	8:50 T	6322 SOC SCI
DIS 302	8:50 R	215 INGRAHAM
DIS 303	9:55 T	225 INGRAHAM
DIS 304	9:55 R	495 VAN HISE

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1. (5 pts) Find all first and second order partial derivatives of the function:

\[f(x, y) = e^{x+y^2} \]

Circle your answer.
2. (5 pts) Find the average of the function

\[f(x) = \frac{1}{x \ln(x)} \]

on the interval \([2, 5]\).

Circle your answer.
3. (6 pts) Graph the first octant of the plane determined by the equation:

\[x + 3y + 2z = 6 \]

Circle your answer.
4. (8 pts) Determine whether the integral below converges or diverges and find its value if it converges.

\[\int_{1}^{\infty} \frac{2x}{(x^2 + 1)^3} \, dx \]

Circle your answer.
5. (8 pts) The function

\[f(x) = 2000e^{-0.01x} \]

represents a flow of money in dollars per year over 3 years. Assume 5% per year compounded continuously. Find

(a) the present value
(b) the accumulated amount after 3 years.

Circle your answer.
6. (10 pts) Find the critical points of the function and classify each as either saddle points or relative (or local) maximums or minimums.

\[f(x, y) = 2x^2 - 4xy + y^4 + 2 \]

Circle your answer.
7. (8 pts) The graph of the function $y = \sqrt{x}$ for x such that $0 \leq x \leq k$ is rotated around the x-axis, i.e. $y = 0$. The volume of the solid of rotation is 8π. What is k?

Circle your answer.
Answers

1. \(f_x = e^x + y^2 = f_{xx}, \quad f_y = 2ye^x+y^2 = f_{yx}, \quad f_{yy} = 2e^x+y^2 + 4y^2e^x+y^2. \)

2. Substitute \(u = \ln(x) \) and \(du = \frac{1}{x} dx. \)

\[
\frac{1}{5 - 2} \int_{\frac{1}{2}}^{5} \frac{1}{x \ln(x)} \, dx = \frac{1}{3} (\ln(\ln(5)) - \ln(\ln(2)))
\]

3. The plane intersects the three axis at \((6, 0, 0)\) and \((0, 2, 0)\) and \((0, 0, 3)\)

4. Converges to \(\frac{1}{8}\). Substitute \(u = x^2 + 1 \) and \(du = 2x \, dx. \)

5. (a) \(\int_{0}^{3} e^{-0.05x}2000e^{-0.01x} \, dx = 2000 \int_{0}^{3} e^{-0.06x} \, dx = \frac{2000}{0.06} (1 - e^{-18}) \)

(b) \((e^{15})\) times part (a)

6. Saddle at \((0, 0)\), loc mins at \((1, 1)\) and \((-1, -1)\).

7. \[
\int_{0}^{k} \pi y^2 \, dx = \int_{0}^{k} \pi x \, dx = \pi \frac{k^2}{2} = 8\pi
\]
so \(k = 4\).