1.(5%) Draw the graph of a function \(f(x) \) such that \(f'(x) \) is positive on the intervals \((1, 2)\) and \((3, 4)\) negative on the interval \((2, 3)\).

2.(5%) Draw the graph of function \(f(x) \) such that \(f''(x) \) is is positive on the intervals \((1, 2)\) and \((3, 4)\) and negative on the interval \((2, 3)\).

3.(5%) Prove the special case of L’Hôpital’s Rule: Suppose that \(f(x) \) and \(g(x) \) are differentiable at \(a \), \(f(a) = g(a) = 0 \), and \(g'(a) \neq 0 \). Then \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} \).

4.(5%) Draw a picture illustrating the Mean Value Theorem.

5.(5%) A light is hung 12 feet directly above a straight horizontal walk on which a girl 5 feet tall is walking. How fast is the girl’s shadow lengthening when she is walking away from the light at the rate of 168 feet per minute?

6.(5%) A woman has 320 yards of fencing for inclosing two separate lots, one of which is to square and other a rectangle three times as long as it is wide. Find the dimensions of each lot so that the total area inclosed shall be a minimum.

7.(5%) Prove the first part of the Fundamental Theorem of Calculus: Suppose \(f(x) \) is a continuous function on the interval \([a, b]\) and defining \(F(x) = \int_a^x f(t) \, dt \), then \(F'(x) = f(x) \).

8.(5%) Prove the second part of the Fundamental Theorem of Calculus: Suppose \(f(x) \) is a continuous function on the interval \([a, b]\) and \(G(x) \) is a function such that \(G'(x) = f(x) \), then \(\int_a^b f(x) \, dx = G(b) - G(a) \).

9.(5%) Find \(\frac{d}{dx} \int_0^{\sin(x)} \cos(t^4 + t^3) \, dt \).

10.(5%) Evaluate the definite integral \(\int_0^1 \frac{8x^3}{4x^2 + 1} \, dx \).

11.(5%) Suppose \(\int_2^3 3x^2 \tan(x^3) \, dx = \int_0^b \tan(u) \, du \). What are \(a \) and \(b? \)

12.(5%) Suppose \(\int_0^2 f(x) \, dx = 3 \) and \(\int_1^2 -4f(x) \, dx = 4 \). What is \(\int_0^1 f(x) \, dx? \)

13.(5%) Solve \(\frac{dw}{dx} = (\frac{x}{y})^3 \).

14.(5%) Solve \(\frac{dw}{dx} = \sin^2(x) \).

15.(5%) Solve \(\int x \tan^2(x^2 + 1) \, dx \).

16.(5%) Find \(\lim_{x \to \pi/2} \frac{1-\sin(x)}{1-\cos(4x)} \).

17.(5%) Standing on a 160 foot tower you throw a rock upwards at the velocity of 64 feet per second. What is the maximum height that rock achieves? (Recall that the acceleration due to gravity is \(-32 \) feet per second\(^2 \).)
18. (5%) Use the Trapezoid rule with \(n = 4 \) to approximate the definite integral \(\int_0^2 x^2 \, dx \).

For each of the following, circle True or circle False.

19. (1%) (True or False) \(\lim_{x \to 3} \frac{x^3 - 3}{x^2 - 3} = \lim_{x \to 3} \frac{1}{2x} \) by using L'Hôpital's Rule.

20. (1%) (True or False) If \(f(x) \) is a differentiable function, then it is integrable.

21. (1%) (True or False) If \(f(x) \) is a continuous function, then it is integrable.

22. (1%) (True or False) If \(f(x) \) is a function which is continuous on \([a, b]\), differentiable on \((a, b)\), and \(f(a) = f(b) \), then for some \(c \) in \((a, b)\) we have \(f'(c) = 0 \).

23. (1%) (True or False) \(\int_1^0 f(x) \, dx = -\int_0^1 f(x) \, dx \) for any continuous function \(f(x) \).

24. (1%) (True or False) \(\int_0^1 f(x) \, dx < 0 \) for any continuous function \(f(x) \).

25. (1%) (True or False) If \(f'(x) = g'(x) \) for all \(x \), then \(f(x) = g(x) \) for all \(x \).

26. (1%) (True or False) If \(f'(x) = 0 \) for all \(x \), then \(f(x) \) is a constant function.

27. (1%) (True or False) If \(f''(x) \) is positive on the interval \((a, b)\), then the function \(f'(x) \) is increasing on the interval \((a, b)\).

28. (1%) (True or False) If \(f'(x) \) is negative on the interval \((a, b)\), then the function \(f(x) \) is increasing on the interval \((a, b)\).
Answers Exam 2 Fall 91

5. 288
6. \(\frac{240}{7} \) by \(\frac{160}{7} \)
9. \(\cos(x) \cdot \cos(\sin^4(x) + \sin^3(x)) \)
10. \(\frac{1}{8} \)
11. \(a = 8 \) and \(b = 27 \)
12. 4
13. \(y = \frac{2}{7} + C \)
14. \(y = \frac{1}{2}x^3 - \frac{1}{4} \sin(2x) + C \)
15. \(\frac{1}{4}(\tan(x^2 + 1) - (x^2 + 1)) + C \)
16. \(\frac{1}{15} \)
17. 244
18. 2
19. False
20. True
21. True
22. True
23. True
24. False
25. False
26. True
27. True
28. False