Show all work.

No notes, no books, no calculators, no cell phones, no pagers, no electronic devices of any kind.

Name_____________________________________

Circle your Discussion Section:

DIS 303 12:05p T B235 VAN VLECK
DIS 304 12:05p R B235 VAN VLECK
DIS 307 2:25p T B139 VAN VLECK
DIS 308 2:25p R B309 VAN VLECK

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Solutions will be posted shortly after the exam: www.math.wisc.edu/~miller/m240
1. (4 pts) Construct a truth table for the compound proposition:

\((p \rightarrow q) \lor (\neg p \rightarrow q)\)

2. (4 pts) Use a truth table to verify:

\((p \rightarrow q) \equiv (\neg q \rightarrow \neg p)\)
3. (6 pts) Let \(P(x) \) be the statement \(x + 1 > x^2 \) and suppose that the universe of discourse consists of the integers. What are the truth values of the following?

1. \(P(0) \)
2. \(P(1) \)
3. \(P(-1) \)
4. \(\exists x \ P(x) \)
5. \(\forall x \ P(x) \)
6. \(\forall x \exists y \ ((y > x) \land P(y)) \)

4. (6 pts) Determine the truth value of each of the following if the universe of discourse for all variables consists of the positive integers \(\mathbb{N} = \{1, 2, 3, \ldots\} \).

1. \(\forall n \ \exists m \quad n^2 < m \)
2. \(\exists m \ \forall n \quad n^2 < m \)
3. \(\exists n \ \exists m \quad n^2 + m^2 = 5^2 \)
4. \(\exists n \ \exists m \quad n^2 + m^2 = 6^2 \)
5. \(\forall n \ \forall m \quad (n \leq m \lor m \leq n) \)
6. \(\forall n \ \forall m \quad (n < m \lor m < n) \)
5. (8 pts) Determine if the following arguments are correct. If it is correct, what rule of inference is being used. If it is not, what logical error occurs?

(a) If n is an integer with $n \geq 2$, then $n^3 \geq 8$. Suppose $n < 2$. Then $n^3 < 8$.

(b) If n is an integer with $n > 2$, then $n^3 > 8$. Suppose $n^3 \leq 8$. Then $n \leq 2$.
6. (7 pts) How many different elements does \(A \times A \times A \) have if \(A \) has \(n \) elements?

7. (7 pts) What can we say about the sets \(A \) and \(B \) if \(A \oplus B = \emptyset \). The symbol \(\oplus \) denotes the symmetric difference.
8. (6 pts) Let $h(x) = \lceil x \rceil$. Find

1. $h^{-1}(\{2\})$

2. $h^{-1}(\{x : -1 \leq x \leq 1\})$

3. $h(\{x : -1 \leq x \leq 1\})$
9. (7 pts) Use the bubble sort to sort the list 3, 2, 4, 5, 1 showing the lists obtained at each step, i.e., after each time you do a comparison.
10. (8 pts) Find the least integer n such that $f(x)$ is $O(x^n)$ where

$$f(x) = \frac{2x^5 + x^2 + 1}{3x^2 + 4x \ln(x)}$$
11. (8 pts) Show that if $2^n - 1$ is prime, then n is prime.

Hint: $(x^n - 1) = (x - 1)(x^{n-1} + x^{n-2} + \cdots + x + 1)$
12. (7 pts) Convert the integer 11001111 from binary notation to decimal notation.

13. (7 pts) How much time does an algorithm using 2^{40} bit operations take if each bit operation takes 10^{-9} seconds?
14. (8 pts) Suppose that an integer a is not divisible by the prime p. Show that no two of the integers:

$$a, 2a, 3a, \ldots, (p - 1)a$$

are congruent modulo p.
15. (7 pts) Find AB if

$$A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & -1 \\ -1 & 2 \\ 2 & 0 \end{bmatrix}$$
Answers

1. 1.1-27
This is a tautology.

2. 1.2-3
This is the contrapositive.

3. 1.3-11
TTFTFF

4. 1.4-27
TFTFTF

5. 1.5-13
(a) The logical form of this argument is:
\[P \rightarrow Q \]
\[\neg P \]
\[\therefore \neg Q. \]
This is an incorrect inference even though it reaches a correct conclusion.

(b) The logical form of this argument is:
\[P \rightarrow Q \]
\[\neg Q \]
\[\therefore \neg P. \]
This is a correct logical inference.

6. 1.6-25
\[n^3. \]

7. 1.7-31
\[A = B \]

8. 1.8-35
1. \((1, 2]\)
2. \((-2, 1]\)
3. \{\(-1, 0, 1]\}

9. 2.1-35
\[32451 \]
\[23451 \]
\[23451 \]
\[23451 \]
\[23415 \]
\[23415 \]
10. 2.2-7

\(O(x^5) \)

11. 2.4-23

Suppose that \(n \) is not prime and let \(n = km \) for integers \(k, m \) with \(1 < k, m < n \). Put \(x = 2^k \) and using the hint note that

\[
2^n - 1 = (2^k)^m - 1 = (x^m - 1) = (x - 1)(x^{m-1} + x^{m-2} + \cdots + x + 1)
\]

and so \(2^n - 1 \) is not prime.

12. 2.5-3

207

13. 2.3-11

\(2^{40}10^{-9} \) seconds. A good estimate is to use \(2^{10} = 1024 \approx 1000 \) so

\[
2^{40}10^{-9} = \frac{2^{40}}{10^9} = \frac{(2^{10})^4}{10^9} \approx \frac{(1000)^4}{10^9} = \frac{(10^3)^4}{10^9} = \frac{10^{12}}{10^9} = 10^3
\]

14. 2.6-17

Suppose for contradiction that there are \(i, j \) integers with \(1 \leq i < j \leq p - 1 \) such that

\[ia \equiv_p ja \]

Then

\[0 \equiv_p (j - i)a \]

and so \(p \) divides \((j - i)a \). Since \(p \) is prime and does not divide \(a \) it must divide \(j - i \). But this is impossible because \(1 \leq j - i < p \).

15. 2.7-3

\[
\begin{bmatrix}
-2 & -3 \\
-3 & 5
\end{bmatrix}
\]
The following program was used to pick the problems on this test. In some cases the problem is identical and in others it is just similar.

```python
#!/usr/ucb/python

import string
import sys
import random

f=open("hmwk1","r") # input file
lines=f.readlines()

random.seed("the three stooges")

for line in lines:
    s=string.split(line)
    if len(s)> 4:
        section=s.pop(0)
        print random.choice(s).rjust(2) + " " +string.lstrip(line)
```