Similarity, diagonalization, and eigenvalues

Remark. From now on all matrices are square, i.e., $n \times n$ for some n and our field of scalars is the complex numbers, \mathbb{C}.

Definition 1 A is similar to B (written $A \sim B$) iff there exists an invertible matrix P such that $A = PBP^{-1}$.

Theorem 2
1. $A \sim A$
2. $A \sim B$ implies $B \sim A$, and
3. $A \sim B$ and $B \sim C$ implies $A \sim C$.

proof:
For (1) $A = IAI^{-1}$.
For (2) if $A = PBP^{-1}$, then $B = QAQ^{-1}$ where $Q = P^{-1}$.
For (3) suppose $A = PBP^{-1}$ and $B = QCQ^{-1}$. Then

$$A = (PQ)C(PQ)^{-1}.$$

QED

Definition 3 A is diagonalizable iff A is similar to a diagonal matrix.

Definition 4 $\lambda \in \mathbb{C}$ is an eigenvalue of A iff for some $X \neq Z$ we have $AX = \lambda X$. Such an X is called an eigenvector of A.

Theorem 5 An $n \times n$ matrix A is diagonalizable iff \mathbb{C}^n has a basis consisting of eigenvectors of A.

proof:
Suppose first that \mathbb{C}^n has a basis X_1, \ldots, X_n consisting of eigenvectors of A, so $AX_i = \lambda_i X_i$. Let P be the $n \times n$ matrix with $\text{col}_j(P) = X_j$ for
each \(j = 1, \ldots, n \) and let \(D \) be the diagonal matrix with \(\lambda_1, \lambda_2, \ldots, \lambda_n \) on its diagonal, i.e.,

\[
D = \begin{bmatrix}
\lambda_1 & 0 & 0 & \cdots & 0 \\
0 & \lambda_2 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & 0 & 0 & \cdots & \lambda_n
\end{bmatrix}.
\]

Since the \(X_j \)'s are a basis \(P \) is invertible.

Claim \(AP = PD \).

proof:

For any \(j \)

\[
col_j(AP) = A \cdot \text{col}_j(P) \\
= \lambda_j \cdot \text{col}_j(P)
\]

since \(\text{col}_j(P) = X_j \) an eigenvector associated to \(\lambda_j \). Also

\[
col_j(PD) = P \cdot \text{col}_j(D) \\
= P \cdot \text{col}_j(\lambda_jI) \\
= \lambda_j \cdot P \cdot \text{col}_j(I) \\
= \lambda_j \cdot \text{col}_j(PI) \\
= \lambda_j \cdot \text{col}_j(P)
\]

Hence \(AP \) and \(PD \) have the same columns, and so they are equal. This proves the Claim and so \(A = PDP^{-1} \).

Now we prove the converse. Suppose that \(A = PDP^{-1} \). Where \(D \) is a diagonal matrix with \(\lambda_1, \ldots, \lambda_n \) on its diagonal. We have that

\[
AP = PD
\]

and by the same argument as the Claim, we have for each \(j = 1, \ldots, n \) that

\[
A \cdot \text{col}_j(P) = \lambda_j \cdot \text{col}_j(P)
\]

Then since \(P \) is invertible the columns \(P \) are a basis of \(\mathbb{C}^n \) and the formula implies that each \(\text{col}_j(P) \) is an eigenvector of \(A \).

QED
Theorem 6 If $\lambda_1, \lambda_2, \ldots, \lambda_m$ are distinct eigenvalues of A and $AX_i = \lambda_i X_i$ for $i = 1, \ldots, m$ are (nontrivial) eigenvectors of A, then X_1, X_2, \ldots, X_m are linearly independent.

proof:

Nontrivial means that $X_i \neq Z$ all i.

Suppose they are linearly dependent. Then (by an exercise) either $X_1 = Z$ or there exists k such that $X_k \in \text{span}(\{X_1, \ldots, X_{k-1}\})$. If we choose k minimal such that $X_k \in \text{span}(\{X_1, \ldots, X_{k-1}\})$, then it follows that X_1, \ldots, X_{k-1} are linearly independent.

Now let a_1, \ldots, a_{k-1} be such that

$$X_k = a_1 X_1 + \cdots + a_{k-1} X_{k-1}.$$

Multiplying by A gives us

$$AX_k = a_1 AX_1 + \cdots + a_{k-1} AX_{k-1}$$

and using $AX_i = \lambda_i X_i$ gives us

$$\lambda_k X_k = a_1 \lambda_1 X_1 + \cdots + a_{k-1} \lambda_{k-1} X_{k-1}.$$

Case 1. $\lambda_k = 0$.

In this case we have

$$Z = a_1 \lambda_1 X_1 + \cdots + a_{k-1} \lambda_{k-1} X_{k-1}.$$

and since X_1, \ldots, X_{k-1} are linearly independent we have that $\lambda_i a_i = 0$ for all $i = 1, \ldots, k - 1$. But the λ’s are all distinct, so $\lambda_i \neq \lambda_k = 0$ for all $i = 1, \ldots, k - 1$. Hence $a_i = 0$ and so $X_k = a_1 X_1 + \cdots + a_{k-1} X_{k-1} = Z$, which contradicts the fact that X_k is nontrivial.

Case 2. $\lambda_k \neq 0$.

In this case we can divide by λ_k and get

$$X_k = a_1 \frac{\lambda_1}{\lambda_k} X_1 + \cdots + a_{k-1} \frac{\lambda_{k-1}}{\lambda_k} X_{k-1}.$$

subtracting this from

$$X_k = a_1 X_1 + \cdots + a_{k-1} X_{k-1}$$
gives

\[Z = (a_1 - a_1 \frac{\lambda_1}{\lambda_k})X_1 + \cdots + (a_{k-1} - a_{k-1} \frac{\lambda_{k-1}}{\lambda_k})X_{k-1}. \]

Since \(X_1, \ldots, X_{k-1} \) are linearly independent we have that \(a_i - a_i \frac{\lambda_1}{\lambda_k} = 0 \) for all \(i = 1, \ldots, k-1 \). Since \(X_k \) is nontrivial at least one \(i \leq k-1 \) exists such that \(a_i \neq 0 \), but then

\[a_i - a_i \frac{\lambda_i}{\lambda_k} = 0 \]

implies that \(\lambda_i = \lambda_k \) contradicting the fact that the \(\lambda \)'s are distinct.

In either case we get a contradiction and so our “suppose not” is impossible and therefore \(X_1, \ldots, X_m \) are linearly independent.

QED

Corollary 7 If an \(n \times n \) matrix \(A \) has \(n \) distinct eigenvalues, then it is diagonalizable.

proof:

Since any set of \(n \) independent vectors in \(\mathbb{C}^n \) must be a basis, it must be that \(\mathbb{C}^n \) has a basis consisting of eigenvectors of \(A \) and so \(A \) is diagonalizable.

QED