You may use without proof any theorem proved in class, all of which are on the fourteen page handout; however when you do so, you should **state the result** you are using. You may also use any assigned exercise, but in this case you should **state the exercise and give a full proof** of the exercise in your solution.

1. Suppose V is a vector space, W is a subset of V, and v_1, v_2, \ldots, v_n are elements of V.

 Define

 (a) W is a subspace of V.
 (b) $\text{span}(\{v_1, v_2, \ldots, v_n\})$.
 (c) v_1, v_2, \ldots, v_n are linearly independent.
 (d) v_1, v_2, \ldots, v_n are linearly dependent.
 (e) v_1, v_2, \ldots, v_n are a basis for V.

2. A. Let u_1, u_2, u_3 be elements of a vector space. Suppose

 $v_1 = u_1 - u_2$
 $v_2 = u_2 - u_3$
 $v_3 = u_3 - u_1$

 Prove that v_1, v_2, v_3 are linearly dependent.

 B. Suppose u_1, u_2, u_3 is a basis of the vector space V. Let

 $v_1 = u_1 + u_2$
 $v_2 = u_2 + u_3$
 $v_3 = u_1 + u_3$

 Prove that v_1, v_2, v_3 is a basis of V.
3. A matrix $A_{n \times n}$ is Toplitz iff it is constant on all its ‘diagonals’. For example:

\[
A = \begin{bmatrix}
0 & 6 & -4 & 0 \\
-8 & 0 & 6 & -4 \\
-2 & -8 & 0 & 6 \\
6 & -2 & -8 & 0 \\
\end{bmatrix}
\]

So entry$_{i,j}(A) = 0$ if $i = j$ or $i - j = 0$, entry$_{i,j}(A) = -8$ if $i - j = 1$, entry$_{i,j}(A) = 6$ if $i - j = -1$, etc. More precisely an $n \times n$ matrix A is Toplitz iff for all i, j, i', j' between 1 and n

\[
\text{if } i - j = i' - j' \text{ then entry}_{i,j}(A) = entry_{i',j'}(A).
\]

A. Prove that $T_n = \{A \in \text{MAT}_{n \times n} : A \text{ is Toplitz } \}$ is a subspace of $\text{MAT}_{n \times n}$. If you would prefer you may assume $n = 4$, i.e., show T_4 is a subspace of the 4×4 matrices.

B. Find a formula for the dimension of T_n in terms of n, i.e.,

\[
\dim(T_n) = ?
\]

Justify your formula by writing down a basis for T_3 and T_4.

4. Let A be the following matrix:

\[
A = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

Let W be defined as follows:

\[
W = \{B \in \text{MAT}_{2 \times 2} : AB = BA \}
\]

Find a basis for W and prove that it is a basis.

5. Suppose A is any $n \times n$ matrix. Prove there exists a polynomial

\[
p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_kx^k
\]

of degree k with $1 \leq k \leq n^2$ such that

\[
p(A) = a_0I + a_1A + a_2A^2 + \cdots + a_kA^k = Z
\]

where I is the $n \times n$ identity matrix and Z is the $n \times n$ zero matrix.

Hint: What is the dimension of $\text{MAT}_{n,n}$ and what is the size of the set \{0, 1, 2, \ldots, n^2\}?
Answers

1a. \(u, v \in W \) implies \(u + v \in W \) and \(au \in W \).

1b. \(\text{span}\{u_1, \ldots, u_n\} = \{a_1u_1 + \cdots + a_nu_n : a_1, \ldots, a_n \text{ scalars}\} \)

1c. \(a_1v_1 + a_2v_2 + \cdots + a_nv_n = z \) implies \(a_1 = a_2 = \cdots = a_n = 0 \)

1d. not linearly independent.

1e. linearly independent and spans \(V \).

2A. \(v_1 + v_2 + v_3 = (u_1 - u_2) + (u_2 - u_3) + (u_3 - u_1) = z \).

2B. We show \(v_1, v_2, v_3 \) are linearly independent. Suppose

\[av_1 + bv_2 + cv_3 = z. \]

Then

\[a(u_1 + u_2) + b(u_2 + u_3) + c(u_1 + u_3) = z \text{ so } (a + c)u_1 + (a + b)u_2 + (b + c)u_3 = z. \]

Since \(u_1, u_2, u_3 \) are linearly independent we have \(a + c = 0, a + b = 0, \) and \(b + c = 0 \). Solving for \(a, b, c \) we get \(a = -c = b \) so \(a = b \). But \(a = -b \) also
so \(b = -b \) and so \(b = 0 \). Since \(a = -c = b \), we have \(a = 0 \) and \(c = 0 \). This shows \(v_1, v_2, v_3 \) are linearly independent. Since any \(n \) linearly independent vectors in a vector space of dimension \(n \) is a basis, it follows that \(v_1, v_2, v_3 \) is a basis.

Remark: Many students asserted without proof that

\[\text{span}\{u_1, u_2, u_3\} = \{(a + c)u_1 + (a + b)u_2 + (b + c)u_3 : a, b, c \in \mathbb{R}\} \]

But if \(u_1, u_2, u_3 \) are linearly independent, then

\[\text{span}\{u_1, u_2, u_3\} \neq \{(a - c)u_1 + (b - a)u_2 + (c - a)u_3 : a, b, c \in \mathbb{R}\} \]

(This follows from the fact the \(v_1, v_2, v_3 \) in part A are linearly dependent.) So something must be proved. A correct proof can be given by showing that for any \(a_1, a_2, a_3 \) there exists \(a, b, c \) so that \(a + b = a_1, b + c = a_2, \) and \(b + c = a_3 \).

3A. Suppose \(A, B \in T_n \). Suppose \(i - j = i' - j' \) and \(a, b \) are scalars. Then since \(A \) and \(B \) are Toplitz,

\[\text{entry}_{i,j}(A) = \text{entry}_{i',j'}(A) \text{ and } \text{entry}_{i,j}(B) = \text{entry}_{i',j'}(B). \]
But then
\[
\text{entry}_{i,j}(aA + bB) = a\text{entry}_{i,j}(A) + b\text{entry}_{i,j}(B) = \\
\text{entry}_{i',j'}(A) + b\text{entry}_{i',j'}(B) = \text{entry}_{i',j'}(aA + bB)
\]
Hence \((aA + bB) \in T_n\).

3.B \(\text{dim}(T_n) = 2n - 1\).

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}, \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]
is a basis for \(T_3\). (Similarly for \(T_4\).) Each basis vector is determined by a diagonal and there are \(2n - 1\) diagonals. (Count the number of entries in a \(n \times n\) matrix which are in either the first row or first column. The \(-1\) is there because the \(1,1\) is counted twice.)

4.\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} \begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]
gives us
\[
\begin{bmatrix}
c & d \\
a & b
\end{bmatrix} = \begin{bmatrix}
b & a \\
d & c
\end{bmatrix}
\]
and therefore \(a = d\) and \(b = c\). So
\[
W = \{B \in \text{MAT}_{2,2} : AB = BA\} = \left\{ \begin{bmatrix}
a & b \\
b & a
\end{bmatrix} : a, b \in \mathbb{R} \right\}
\]
We show
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}, \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]
is a basis for \(W\). To see they are linearly independent, suppose
\[
a \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} + b \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix}
a & b \\
b & a
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}.
\]
But then \(a = b = 0\). To see that they span \(W\):
\[
\text{span} \left\{ \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}, \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} \right\} = \left\{ a \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix} + b \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} : a, b \in \mathbb{R} \right\} =
\]
4
\[
= \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\} = W
\]

5. The dimension of the vector space MAT\(_{n,n}\) is \(n^2\). The **Main Theorem** proved in class is that if a vector space is spanned by \(m\) vectors, then any sequence of \(m + 1\) vectors is linearly dependent. The sequence of \(n \times n\) matrices

\[
I_{n \times n}, A, A^2, A^3, \ldots, A^{n^2}
\]

has length \(n^2 + 1\) and is therefore linearly dependent. So there exists a nontrivial linear combination

\[
a_0 I_{n \times n} + a_1 A + a_2 A^2 + \cdots + a_{n^2} A^{n^2} = Z_{n \times n}
\]

Let \(k\) be the largest such that \(a_k \neq 0\), clearly \(k > 0\) because \(a_0 I \neq Z\) if \(a_0 \neq 0\), and so

\[
p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_k x^k
\]

is a polynomial with degree \(k\) (\(1 \leq k \leq n^2\)) such that \(p(A) = Z\).

Grading Key:

1. 4 pts each definition, 2 if partially right
2. 10 part A, 10 part B - 5 each for span, lin indep
3. 10 each part
4. 10 for a correct basis, 5 each for showing lin indep and spans
5. 2 each for dim(MAT\(_{n,n}\)) = \(n^2\) and size of \(\{0, 1, \ldots, n^2\}\) is \(n^2 + 1\).