Linear differential equations.

1. A mass m_1 is hung from a spring with spring constant k_1 is attached to a rigid support. A mass m_2 is hung from a second spring with spring constant k_2 is attached to the mass m_2. Let y_1 be the displacement from equilibrium of the mass m_1 and similarly y_2 the displacement from equilibrium of the mass m_2. Then using Hooke’s law and $F = ma$ we get that:

$$m_1y_1'' = -k_1 y_1 + k_2(y_2 - y_1)$$

$$m_2y_2'' = -k_2(y_2 - y_1).$$

Let $u_1 = y_1$, $u_2 = y_1'$, $u_3 = y_2$, and $u_4 = y_2'$. Find a matrix A such that $U' = AU$.

2. Suppose $k_1 = 21$, $k_2 = 15$, $m_1 = 7$, $m_2 = 3$ in the appropriate units. Find the general solution.

3. Suppose $y_1(0) = 1$, $y_2(0) = -1$, and both have 0 initial velocities. Find the solution. Find the displacements and velocities of the masses at time $t = 2$.

RULES: Do not discuss this exam with anybody except me. I will explain any definition or clarify the statement of any of these problems. My office is 403 Van Vleck, office hours MF 2:30-3:30 and W 4:30-5:30, or you can make an appointment. You may use minimat to do any calculation. The exam is due in class on Wed April 11. Exam 2 Part II will be in class on Mon April 16.
The method of least squares.

4. Prove that if A is an $n \times m$ matrix of functions of t and B is an $m \times r$ matrix of functions of t, then

$$\frac{d}{dt}(AB) = (\frac{d}{dt}A)B + A(\frac{d}{dt}B).$$

5. Prove that if U and V are $n \times 1$ vectors of functions of t, then

$$\frac{d}{dt} \langle U, V \rangle = \langle \frac{d}{dt}U, V \rangle + \langle U, \frac{d}{dt}V \rangle.$$

6. Let $A_{n \times m}, B_{m \times 1}$ be matrices of reals. Prove that

$$\frac{\partial}{\partial x_i} ||AX - B||^2 = 2 \langle AX - B, Ae_i \rangle.$$

7. Prove that if X minimizes $||AX - B||^2$, then $A^T(AX - B) = 0$.

8. It is good surveying practice to make more observations than are strictly necessary. For example, to determine the altitude of four points x_1, x_2, x_3, x_4, eight observations were taken:

- $x_1 = 2.947$
- $x_2 = 1.735$
- $x_3 = -1.449$
- $x_4 = 1.321$
- $x_1 - x_2 = 1.204$
- $x_1 - x_4 = 1.631$
- $x_2 - x_3 = 3.186$
- $x_3 - x_4 = -2.778$

Note that all of these observations contain error and there do not exists any solutions to all eight equations. Find $A_{8 \times 4}$ and $B_{8 \times 1}$ such that the most likely altitudes X minimize $||AX - B||^2$. Find X.

2
Linear programming or linear optimization.

Let \(A \) be \(n \times m \), \(B \) be \(m \times 1 \) and \(C = [c_1, c_2, \ldots, c_n] \) be \(1 \times n \).

(*) Maximize \(z = c_1x_1 + c_2x_2 + \cdots + c_nx_n \) subject to the constraints:
\(AX = B \) and \(X \geq 0 \).

\(X \geq 0 \) means that \(x_1 \geq 0, x_2 \geq 0, \ldots, \) and \(x_n \geq 0 \). \(X \) is called feasible iff \(AX = B \) and \(X \geq 0 \). A solution to (*) is a vector \(X \) which is feasible and for which the value of \(z \) is as large as the value of \(z \) is for any feasible solution.
\(X \) is called an extreme point iff there exists \(m_1, m_2, \ldots, m_k \) such that \(X \) is the unique solution of \(AX = B, x_{m_1} = 0, x_{m_2} = 0, \ldots, \) and \(x_{m_k} = 0 \).

9. Give an example of (*) where there are no feasible solutions. Give an example of (*) where there are feasible solutions but no solutions. Give an example of (*) where there are infinitely many solutions. Give an example of (*) with an extreme point which is not feasible.

10. Let \(X_1 \) and \(X_2 \) be solutions of \(AX = B, x_{m_1} = 0, x_{m_2} = 0, \ldots, \) and \(x_{m_k} = 0 \). Define \(L[t] = X_1 + t(X_2 - X_1) \) where \(t \) is a scalar. Show that \(L[t] \) is a solution of \(AX = B, x_{m_1} = 0, x_{m_2} = 0, \ldots, \) and \(x_{m_k} = 0 \) for every \(t \).

11. Suppose in addition to above that all coordinates of \(X_1 \) other than \(m_1, m_2, \ldots, m_k \) are strictly positive. Show that there exists \(\epsilon > 0 \) such that \(L[t] \geq 0 \) for every \(t \) with \(-\epsilon < t < \epsilon \).

12. Define \(Z(t) = CL[t] \). Prove that for some scalars \(p \) and \(q \) that \(Z(t) = pt + q \). Prove that \(Z \) is maximized at \(t = 0 \) iff \(p = 0 \).

13. Given the problem (*) suppose \(X_0 \) is any solution which has the maximum number of zero coordinates as any other solution. Prove that \(X_0 \) is an extreme point.
Graph theory.

Suppose that A is an $n \times n$ matrix such that for any i, j we have that $a_{i,j} = 0$ or $a_{i,j} = 1$. The matrix A determines a graph G_A on n vertices v_1, v_2, \ldots, v_n by the rule that v_i and v_j are connected by an edge iff $a_{i,j} = 1$. A path in a graph G is a sequence of vertices u_1, u_2, \ldots, u_k such that for each $i = 1, \ldots, k - 1$ there is an edge in G which connects u_i and u_{i+1}. A graph G is connected iff any two vertices of G can be connected by a path.

14. Give an example of a 4×4 matrix A as above whose graph is connected. Give an example of a 4×4 matrix A as above whose graph is not connected.

15. Prove that if $A^m = [c_{ij}]$, then c_{ij} is the number of paths of length m connecting v_i to v_j.

16. Prove that the graph associated to such an $n \times n$ matrix A is connected iff every entry of $I + A + A^2 + \cdots + A^{n-1}$ is positive.

Markov processes.

In the Land of OZ there are three states for the weather: nice, rain, and snow. The weather follows the following rules:

(a) There are never two nice days in a row.

(b) When it rains or snows, half the time it the same the next day.

(c) If the weather changes, the chances are equal for a change to each of the two other types of weather.

17. Draw a graph with vertices N, R, and S and label the edges with the appropriate probabilities.

18. Find the 3×3 transition matrix A corresponding to this graph.

19. Prove that the probability that it will rain exactly one week after it was nice is the $(1, 2)$ entry of the matrix A^7. Find this probability.

20. Find the probability that the weather will be nice, rain, or snow on a random day in the Land of OZ.
Determinants, etc.

The trace of an \(n \times n \) matrix \(A \) is defined by

\[
\text{trace}(A) = a_{11} + a_{22} + \cdots + a_{nn}.
\]

The characteristic polynomial of a matrix \(A \) is defined by \(p(x) = \det(xI - A) \).

21. Prove that if \(A \) and \(B \) are similar, then \(\text{trace}(A) = \text{trace}(B) \).

22. Prove that if \(A \) and \(B \) are similar, then \(\det(A) = \det(B) \).

23. Prove or disprove: if two matrices \(A \) and \(B \) have the same characteristic polynomial, then they are similar.

24. Prove or disprove: if two matrices \(A \) and \(B \) are similar, then they have the same characteristic polynomial.