There is a total of 26 points. Put your answers on separate sheets of paper. Prove everything you use. It is OK to quote any theorem that was proved in your book or in class, but you must include a proof of that theorem.

1. (5 points) Suppose that V is a vector space over the field \mathbb{F}, and v_j’s are vectors in V such that $v_1 \in \text{span}(\{v_2, v_3, \ldots, v_m\})$. Prove that v_1, v_2, \ldots, v_m are linearly dependent.

2. (6 points) Suppose that the function $L : \mathbb{R}^{n\times n} \to \mathbb{R}^{n\times n}$ is defined by $L(A) = A - A'$ where A' is the transpose of A. Prove that L is a linear transformation.

3. (7 points) Suppose $v \in \mathbb{C}^{n\times 1}$ and v is not the zero vector and E is the set of all $A \in \mathbb{C}^{n\times n}$ such that v is an eigenvector of A. (This means that $A \in E$ iff there exists $\lambda \in \mathbb{C}$ such that $Av = \lambda v$.) Prove that E is a subspace of $\mathbb{C}^{n\times n}$.

4. (8 points) Suppose that V is a vector space over \mathbb{F}, $\{u_1, u_2, \ldots, u_n\}$ is a basis for V, and $u \in V$ is not the zero vector. Prove that for some i with $1 \leq i \leq n$ that $\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n, u\}$ is a basis for V.

1
1. Since $v_1 \in \text{span}(\{v_2, \ldots, v_m\})$ there exists $c_2, c_3, \ldots, c_m \in \mathbb{F}$ such that $v_1 = c_2v_2 + \cdots + c_m v_m$. But then $0 = (-1)v_1 + c_2v_2 + \cdots + c_m v_m$ and since the coefficient of v_1 is not zero, v_1, v_2, \ldots, v_m are linearly dependent.

2. $L(A + B) = (A + B) - (A + B)' = (A + B) - (A' + B') = A - A' + B - B' = L(A) + L(B)$

 $L(cA) = (cA) - (cA)' = cA + cA' = c(A - A') = cL(A)$

3. Since $[0]_{n \times n}v = 0v$ we have that $[0]_{n \times n} \in E$ which is the zero vector of $\mathbb{C}^{n \times n}$. If $A_0 \in E$ and $A_1 \in E$, then there exists $\lambda_0, \lambda_1 \in \mathbb{C}$ such that $A_0v = \lambda_0v$ and $A_1v = \lambda_1v$ and so

 $(A_0 + A_1)v = A_0v + A_1v = \lambda_0v + \lambda_1v = (\lambda_0 + \lambda_1)v$

 so $(A_0 + A_1) \in E$. If $c \in \mathbb{C}$ and $A \in E$, then there exists $\lambda \in \mathbb{C}$ such that $Av = \lambda v$ and

 $(cA)v = c(Av) = c(\lambda v) = (c\lambda)v$

 so $cA \in E$.

4. Since $\{u_1, u_2, \ldots, u_n\}$ is a basis for V it spans V and therefore there are scalars c_1, \ldots, c_n such that $u = c_1u_1 + \cdots + c_n u_n$. Since u is not the zero vector and u_1, u_2, \ldots, u_n are linearly independent some $c_i \neq 0$. For this particular i we will show that $\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n, u\}$ is a basis.

 Linear independence

 Suppose that

 $$d_1u_1 + d_2u_2 + \cdots + d_{i-1}u_{i-1} + d_{i+1}u_{i+1} + \cdots + d_n u_n + du = 0.$$

 Replacing u by $c_1u_1 + \cdots + c_n u_n$ and combining the coefficients we get

 $$(d_1 + dc_1)u_1 + \cdots + (d_{i-1} + dc_{i-1})u_{i-1} + (dc_i)u_i + (d_{i+1} + dc_{i+1})u_{i+1} + \cdots$$
\[
\cdots + (d_n + dc_n)u_n = 0
\]

Since \(u_1, u_2, \ldots, u_n\) are linearly independent it must be that all these coefficients are zero, in particular \(dc_i = 0\). But \(c_i \neq 0\) so that it must be that \(d = 0\). But replacing \(d\) with 0 gives

\[
d_1u_1 + d_2u_2 + \cdots + d_{i-1}u_{i-1} + d_{i+1}u_{i+1} + \cdots + d_nu_n = 0
\]

and since \(u_1, u_2, \ldots, u_n\) are linearly independent all the \(d_j\)’s must be zero as well. Hence \(u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n, u\) are linearly independent.

Spanning

Since \(c_i \neq 0\) we can solve for \(u_i\)

\[
u_i = \frac{c_1}{c_i}u_1 + \cdots + \frac{c_{i-1}}{c_i}u_{i-1} + \frac{c_{i+1}}{c_i}u_{i+1} + \cdots + \frac{c_n}{c_i}u_n + \frac{1}{c_i}u.
\]

To simplify the notation write these scalars as \(a\)’s

\[
u_i = a_1u_1 + \cdots + a_{i-1}u_{i-1} + a_{i+1}u_{i+1} + \cdots + a_nu_n + au.
\]

Let \(v \in V\) be arbitrary. Since \(\{u_1, u_2, \ldots, u_n\}\) is a basis for \(V\) there exists scalars \(d_1, \ldots, d_n\) such that \(v = d_1u_1 + \cdots + d_nu_n\). Replace \(d_iu_i\) by \(d_ia_1u_1 + \cdots + d_{i-1}a_{i-1}u_{i-1} + d_{i+1}a_{i+1}u_{i+1} + \cdots + d_na_nu_n + d_au\). and combine coefficients to get

\[
v = (d_1 + d_ia_1)u_1 + \cdots + (d_{i-1} + d_{i-1}a_{i-1})u_{i-1} + (d_{i+1} + d_{i+1}a_{i+1})u_{i+1} + \cdots + (d_n + d_na_n)u_n + (d_au)
\]

Hence \(v \in \text{span}(\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n, u\})\). Since \(v\) was arbitrary \(V = \text{span}(\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n, u\})\).