Vector Spaces

A vector space, V, is a set with two operations, vector addition (written $u + v$) and scalar multiplication (written av). The elements of V will be denoted using u, v, w, etc. The formula ‘$u \in V$’ is short hand for ‘u is an element of V’ or ‘u in V’ or just ‘u is a vector’. Vector spaces will be written using capital letters V, W, etc. Scalars are elements of some field F, for example, the real numbers, \mathbb{R}, or the complex numbers, \mathbb{C}. Scalars will be written using the letters a, b, c, etc.

Closure axioms:

1. If $u \in V$ and $v \in V$, then $u + v \in V$.
2. If $u \in V$ and a a scalar, then $au \in V$.

Associative, commutative, distributive axioms:

1. For all $u, v, w \in V$ $(u + v) + w = u + (v + w)$.
2. For all $u, v \in V$ $u + v = v + u$.
3. For all scalars a and b and vectors $u \in V$ $(ab)u = a(bu)$.
4. For all scalars a and b and vectors $u \in V$ $(a + b)u = au + bu$.
5. For all scalars a and vectors $u, v \in V$ $a(u + v) = au + av$.

Zero vector, additive inverse, identity axioms:

1. There exists a vector $\vec{0} \in V$ such that for all $u \in V$ $\vec{0} + u = u + \vec{0} = u$.
2. For every $u \in V$ there exists a vector $v \in V$ (for which we write $v = -u$) such that $u + v = v + u = \vec{0}$.
3. For every $u \in V$, $1u = u$.
Any abstract set V with two operations, vector addition and scalar multiplication which satisfy all the above axioms is a vector space.

Most author’s use either 0 or $\vec{0}$ to denote the zero vector. Note that it is not the same as the zero element 0 of the field.

Exercise 1 Prove that $0u = \vec{0}$ for any $u \in V$ a vector space.

Exercise 2 Prove that $(-1)u = -u$ for any $u \in V$ a vector space.

Definition 3 For W a subset of a vector space V (written $W \subseteq V$) we say that W is a **subspace** of V iff

1. for every $u, v \in V$ if $u \in W$ and $v \in W$, then $u + v \in W$, and

2. for every $u \in V$ and scalar a if $u \in W$, then $au \in W$.

Theorem 4 If W is a subspace of V, then W is itself a vector space under the operations defined in V.

proof:

The closure axioms are easy since they are practically the same as the definition of subspace. The associative, commutative, distributive axioms are true in W because they are true in V and W is a subset of V. The zero vector $\vec{0}$ is in W because $0u = \vec{0}$ (exercise 1) so (assuming W is nonempty) if anything is in W, then $\vec{0}$ is in W. Similarly $(-1)u = -u$ (exercise 2), so if $u \in W$, then also $-u \in W$. □

Theorem 5 Suppose W is a subset of V (i.e., $W \subseteq V$). Then

1. W is a subspace of V

 iff

2. for every $u, v \in W$ and scalars a, b we have $au + bv \in W$.

proof:

(1) implies (2):

Assume W is a subspace of V. Suppose $u, v \in W$ and a, b are scalars. By the second axiom of subspaces we have that $au \in W$ and $bv \in W$. Letting $w_1 = au$ and $w_2 = bv$ we have that $w_1 \in W$ and $w_2 \in W$, therefore by the first axiom of subspaces we have that $w_1 + w_2 \in W$ and so $au + bv \in W$.

2
(2) implies (1):
Assume (2): for every \(u, v \in W \) and scalars \(a, b \) we have \(au + bv \in W \).
We must show the two axioms of a subspace hold for \(W \). Suppose \(u, v \in W \).
Then letting \(a = b = 1 \) we have that \(1u + 1v \in W \), so \(1u + 1v = u + v \in W \).
For the second axiom, suppose \(u \in W \) and \(a \) any scalar, then we have that \(au + 0u \in W \) by (2), but \(au = au + 0 = au + 0u \) so \(au \in W \). □

Definition 6 For \(u_1, \ldots, u_n \) elements of a vector space \(V \), define their span:

\[
\text{span}\{u_1, u_2, \ldots, u_n\} = \{a_1u_1 + a_2u_2 + \cdots + a_nu_n : a_1, a_2, \ldots, a_n \text{ scalars}\}
\]

Each of the vectors \(a_1u_1 + a_2u_2 + \cdots + a_nu_n \) is called a linear combination of the \(u \)'s so we could also say that the span is the set of all linear combinations.
If \(W = \text{span}\{u_1, u_2, \ldots, u_n\} \), we say that ‘\(W \) is spanned by \(u_1, u_2, \ldots, u_n \)’ or ‘\(u_1, u_2, \ldots, u_n \) span \(W \)’. The closure axioms of a vector space \(V \) guarantee that if \(u_1, u_2, \ldots, u_n \in V \), then \(\text{span}\{u_1, u_2, \ldots, u_n\} \subseteq V \). This is true because the second closure axiom says each \(a_iu_i \) is in \(V \), while the first axiom guarantees that their sum is in \(V \), e.g., if we write \(v_1 = a_1u_1 \), \(v_1, v_2 \in V \) implies \(v_1 + v_2 \in V \) and so \(v_1 + v_2, v_3 \in V \) implies \(v_1 + v_2 + v_3 = (v_1 + v_2) + v_3 \in V \), and so on.

Theorem 7 Suppose \(u_1, u_2, \ldots, u_n \) are elements of \(W \) which is a subspace of \(V \). Then \(\text{span}\{u_1, u_2, \ldots, u_n\} \subseteq W \).

proof:
Suppose \(v \in \text{span}\{u_1, u_2, \ldots, u_n\} \). Then for some scalars, \(a_1, \ldots, a_n \) we have that

\[
v = a_1u_1 + \cdots + a_nu_n.
\]

Since \(W \) is a subspace of \(V \) we have that \(a_iu_i \in W \) for each \(i \). Now let \(v_i = a_iu_i \) to simplify our writing. Since \(v_1 \in W \) and \(v_2 \in W \) we have by the first axiom of subspaces that \(v_1 + v_2 \in W \). Thus we have that the two vectors \(v_1 + v_2 \) and \(v_3 \) are elements of \(W \). This means their sum \((v_1 + v_2) + v_3 \) is in \(W \). Continuing on like this we see that \(v_1 + v_2 + \cdots + v_k \in W \) for each \(k \) and so

\[
v = a_1u_1 + \cdots + a_nu_n = v_1 + v_2 + \cdots + v_n \in W
\]
as we needed to show. □
Theorem 8 Suppose u_1, u_2, \ldots, u_n are elements of a vector space V. Then \(\text{span}\{u_1, u_2, \ldots, u_n\} \) is a subspace of V.

proof:
We verify each of the axioms of a subspace. Let
\[W = \text{span}\{u_1, u_2, \ldots, u_n\}. \]
Suppose v, w are elements of W. Then since W is the span of the u’s there exists scalars c_1, \ldots, c_n and d_1, \ldots, d_n such that
\[v = c_1 u_1 + \cdots + c_n u_n \quad \text{and} \quad w = d_1 u_1 + \cdots + d_n u_n. \]
But then
\[v + w = (c_1 + d_1) u_1 + (c_2 + d_2) u_2 + \cdots + (c_n + d_n) u_n \]
and so $v + u \in \text{span}\{u_1, u_2, \ldots, u_n\} = W$.
For the second axiom, suppose $v \in W$ and a a scalar. Then for some scalars c_1, \ldots, c_n
\[v = c_1 u_1 + \cdots + c_n u_n \]
but then
\[av = a(c_1 u_1 + \cdots + c_n u_n) = (ac_1) u_1 + \cdots + (ac_n) u_n \]
and so $av \in \text{span}\{u_1, u_2, \ldots, u_n\} = W$.
\[\square \]

It follows from these last two theorems that \(\text{span}\{u_1, u_2, \ldots, u_n\} \) is the smallest subspace of V which contains the vectors u_1, u_2, \ldots, u_n.

Theorem 9 Suppose $u \in \text{span}\{u_1, \ldots, u_n\}$ then
\[\text{span}\{u, u_1, \ldots, u_n\} = \text{span}\{u_1, \ldots, u_n\} \]
proof:

To show two sets A and B are equal, $A = B$, show that
$A \subseteq B$ and $B \subseteq A$.

4
To show that \(A \subseteq B \), suppose that \(x \in A \) and then show \(x \in B \).

First we show \(\text{span}(\{u, u_1, \ldots, u_n\}) \subseteq \text{span}(\{u_1, \ldots, u_n\}) \). Since \(u \in \text{span}(\{u_1, \ldots, u_n\}) \) there exists scalars \(b_1, \ldots, b_n \) so that \(u = b_1 u_1 + \cdots + b_n u_n \). Now let \(w \) be any element of \(\text{span}(\{u, u_1, \ldots, u_n\}) \). This means there are scalars \(a, a_1, \ldots, a_n \) such that

\[
w = au + a_1 u_1 + \cdots + a_n u_n.
\]

But then substituting for \(u \):

\[
w = a(b_1 u_1 + \cdots + b_n u_n) + a_1 u_1 + \cdots + a_n u_n
= (ab_1 + a_1) u_1 + \cdots + (ab_n + a_n) u_n
\]

and so \(w \in \text{span}(\{u_1, \ldots, u_n\}) \) as was to be shown.

Second we show \(\text{span}(\{u_1, \ldots, u_n\}) \subseteq \text{span}(\{u, u_1, \ldots, u_n\}) \). This is easier. Suppose \(w \in \text{span}(\{u_1, \ldots, u_n\}) \). Then there are scalars \(c_1, \ldots, c_n \) so that

\[
w = c_1 u_1 + \cdots + c_n u_n
\]

but then

\[
w = 0u + c_1 u_1 + \cdots + c_n u_n
\]

so \(w \in \text{span}(\{u, u_1, \ldots, u_n\}) \) as was to be shown. \(\Box \)

Definition 10 For \(v_1, v_2, \ldots, v_n \) vectors in a vector space \(V \) we say that they are linearly independent iff for any scalars \(a_1, a_2, \ldots, a_n \)

\[
a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = \vec{0} \rightarrow a_1 = a_2 = \cdots = a_n = 0
\]

Definition 11 We say \(v_1, v_2, \ldots, v_n \) are linearly dependent iff \(v_1, \ldots, v_n \) are not linearly independent.

Definition 12 \(v_1, v_2, \ldots, v_n \) is a basis for the vector space \(V \) iff

1. \(v_1, v_2, \ldots, v_n \) are linearly independent and

2. \(V = \text{span}(\{v_1, v_2, \ldots, v_n\}) \).
Theorem 13 Let A be any $n \times n$ matrix. Then A is invertible iff the set of columns of A is a basis for \mathbb{R}^n, i.e., $\text{col}_1(A), \text{col}_2(A), \ldots, \text{col}_n(A)$ is a basis for \mathbb{R}^n.

proof:
Before proving this result we first prove the following Lemma.

Lemma 14 Suppose A is an $m \times n$ matrix and

$$B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

is $n \times 1$. Then

$$AB = A \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = b_1 \text{col}_1(A) + b_2 \text{col}_2(A) + \cdots + b_n \text{col}_n(A) = \sum_{k=1}^{n} b_k \text{col}_k(A)$$

proof:
Write the matrix A as follows:

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n} \end{bmatrix}$$

i.e., $a_{i,j} = \text{entry}_{i,j}(A)$. Then
This proves the Lemma. □ Now to prove the Theorem we first assume that A is invertible and show that the columns of A are a basis for \mathbb{R}^n. To see that they are independent, suppose that

$$b_1 \text{col}_1(A) + \cdots + b_n \text{col}_n(A) = Z$$

where $Z_{n \times 1}$ is the zero vector. By the lemma

$$AB = Z$$

where B is the column vector made from b_1, \ldots, b_n. Since A is invertible we have that $B = A^{-1}Z = Z$ so $B = Z$ and so $b_i = 0$ for all i with $1 \leq i \leq n$. This shows the the columns of A are linearly independent. To see that they span \mathbb{R}^n, let C be an arbitrary element of \mathbb{R}^n so that

$$C = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}.$$
Since A is invertible if we set $B = A^{-1}C$ then we know that $AB = C$ and by
the lemma we have that
\[b_1 \text{col}_1(A) + \cdots + b_n \text{col}_n(A) = C \]
and so C is in the span of the columns of A. This shows that if A is in-
vertible then its columns are a basis. Next we prove the converse, using the
contrapositive.

The contrapositive of the implication:
\[P \text{ implies } Q \]
is
\[(\text{Not } Q) \text{ implies } (\text{Not } P) \]
They are logically equivalent.

Assume that A is not invertible. Then as was shown the algorithm for
attempting to invert A produces a $B_{n \times 1} \neq Z$ such that $AB = Z$. This means
by the Lemma that
\[b_1 \text{col}_1(A) + \cdots + b_n \text{col}_n(A) = Z \]
and since $B \neq Z$ at least one $b_i \neq 0$. But this means that the columns of A
are linearly dependent and hence not a basis. This finishes the proof of the
Theorem. □

Theorem 15 v_1, v_2, \ldots, v_n are linearly dependent iff there are scalars
\[a_1, a_2, \ldots, a_n \]
such that $a_1 v_1 + a_2 v_2 + \cdots + a_n v_n = \vec{0}$ and for at least one i we have $a_i \neq 0$.

proof:

Not For ALL x Statement(x)
is logically equivalent to
There exists x such that Not Statement(x)

So negating linear independence gives us:
There exists scalars a_1, \ldots, a_n such that
Not $[a_1 v_1 + \cdots + a_n = \vec{0}$ implies $a_1 = a_2 = \cdots = a_n = 0]$.

8
The negation of an implication

Not \([P \text{ implies } Q]\)

is logically equivalent to

\(P \text{ and Not } Q\).

So in this case we get

\[a_1 v_1 + \cdots + a_n = \vec{0} \text{ and Not } [a_1 = a_2 = \cdots = a_n = 0].\]

But Not \([a_1 = a_2 = \cdots = a_n = 0]\) is the same as saying ‘at least one of the \(a_i\) is not equal to 0.

\[\Box\]

Exercise 16 Prove that \(v_1, \ldots, v_n\) are linearly dependent iff \(v_1 = \vec{0}\) or \(v_j \in \text{span}(\{v_1, \ldots, v_{j-1}\})\) for some \(j\) with \(1 < j \leq n\).

Lemma 17 (Exchange) Suppose \(v_1, v_2, \ldots, v_{k+1}, w_1, \ldots, w_m\) are vectors in a vector space \(V\) and

1. \(v_1, v_2, \ldots, v_{k+1}\) are linearly independent, and

2. \(\text{span}(\{v_1, v_2, \ldots, v_k, w_1, \ldots, w_m\}) = V\).

Then for some \(i\) with \(1 \leq i \leq m\)

\[\text{span}(\{v_1, v_2, \ldots, v_{k+1}, w_1, w_2, \ldots, w_{i-1}, w_{i+1}, \ldots w_m\}) = V\]

(i.e., we have added \(v_{k+1}\) and removed \(w_i\).)

proof:

By (2) there are scalars \(a_i, b_j\) such that

\[v_{k+1} = a_1 v_1 + a_2 v_2 + \cdots + a_k v_k + b_1 w_1 + b_2 w_2 + \cdots + b_m w_m.\]

It must be that for some \(i\) with \(1 \leq i \leq m\) that \(b_i \neq 0\), because otherwise we would have that

\[v_{k+1} = a_1 v_1 + a_2 v_2 + \cdots + a_k v_k\]

and therefore

\[\vec{0} = a_1 v_1 + a_2 v_2 + \cdots + a_k v_k + (-1)v_{k+1}\]

contradicting their independence (1).

Therefore we have that

\[-b_i w_i = a_1 v_1 + \cdots + a_k v_k + (-1)v_{k+1} + \]

\[+ b_1 w_1 + \cdots + b_{i-1} w_{i-1} + b_{i+1} w_{i+1} + \cdots + b_m w_m\]
and since $b_i \neq 0$

$$w_i = \frac{a_1}{b_i}v_1 + \cdots + \frac{a_k}{b_i}v_k + \frac{(-1)^{k+1}}{b_i}v_{k+1} + \frac{b_i}{b_i}w_1 + \cdots + \frac{b_i}{b_i}w_{i-1} + \frac{b_i}{b_i}w_{i+1} + \cdots + \frac{b_m}{b_i}w_m.$$

Hence

$$w_i \in \text{span}\{v_1, \ldots, v_{k+1}, w_1, \ldots, w_{i-1}, w_{i+1}, \ldots, w_m\}$$

and so by Theorem 9 we have

$$\text{span}\{v_1, v_2, \ldots, v_{k+1}, w_1, w_2, \ldots, w_{i-1}, w_{i+1}, \ldots, w_m\} = \text{span}\{v_1, v_2, \ldots, v_{k+1}, w_1, w_2, \ldots, w_m\}$$

and by (2) we have

$$\text{span}\{v_1, v_2, \ldots, v_{k+1}, w_1, w_2, \ldots, w_m\} = V$$

and so we are done. \(\square\)

Theorem 18 *(Main Theorem)* If a vector space V can be spanned by n vectors, then any set of $n+1$ vectors in V is linearly dependent.

proof:

Suppose for contradiction that $\text{span}\{u_1, \ldots, u_n\} = V$ and v_1, \ldots, v_{n+1} are linearly independent.

Step 1. Apply the Exchange Lemma with $k = 0$ to obtain i so that $\text{span}\{v_1, u_1, \ldots, u_{i-1}, u_{i+1}, \ldots u_n\} = V$.

Step 2. Rename (relabel? reorder?) the u’s so that

$$(w_1, \ldots, w_{n-1}) = (u_1, \ldots, u_{i-1}, u_{i+1}, \ldots u_n)$$

and apply the Exchange Lemma with $k = 1$ to obtain i so that

$$\text{span}\{v_1, v_2, w_1, \ldots, w_{i-1}, w_{i+1}, \ldots w_{n-1}\} = V.$$

Step k. Given $\{w_1, \ldots, w_{n-k}\} \subseteq \{u_1, \ldots, u_n\}$ such that

$$\text{span}\{v_1, v_2, \ldots, v_k, w_1, \ldots, w_{n-k}\} = V,$$

and so we are done. \(\square\)
apply the Exchange Lemma to find \(i \) so that

\[
\text{span}(\{v_1, v_2, \ldots, v_k, v_{k+1}, w_1, \ldots, w_{i-1}, w_{i+1}, \ldots w_{n-k}\}) = V
\]

Last Step: Given that \(\text{span}(\{v_1, v_2, \ldots, v_{n-1}, w_1\}) = V \), apply the Exchange Lemma to get that

\[
\text{span}(\{v_1, v_2, \ldots, v_n\}) = V.
\]

But this is a contradiction, since \(v_{n+1} \in \text{span}(\{v_1, v_2, \ldots, v_n\}) \) implies that

\[
v_{n+1} = a_1v_1 + \cdots + a_nv_n
\]

for some scalars \(a_i \), but then

\[
\vec{0} = (-1)v_{n+1} + a_1v_1 + \cdots + a_nv_n
\]

and therefore \(v_1, \ldots, v_{n+1} \) would be linearly dependent, a contradiction. \(\square \)

Definition 19 The **dimension** of a vector space \(V \) is \(n \), written \(\dim(V) = n \) iff \(V \) has a basis of size \(n \).

Theorem 20 Any two bases for a vector space \(V \) have the same size.

proof:

Otherwise, if \(u_1, \ldots, u_m \) is a basis for \(V \) and \(v_1, \ldots, v_n \) is another basis for \(V \) and \(m < n \), then since the \(u \)'s span \(V \) it must be that the \(v \)'s are linearly dependent (by 18), contradicting that they are a basis. \(\square \)

Theorem 21 If \(V \) is a vector space, \(\dim(V) = n \), and \(u_1, \ldots, u_n \in V \) are linearly independent, then \(u_1, \ldots, u_n \) are a basis for \(V \).

proof:

It is enough to show \(\text{span}(\{u_1, \ldots, u_n\}) = V \). By the main theorem (18) for any \(v \in V \) we know that \(u_1, u_2, \ldots, u_n, v \) are linearly dependent. Hence there are scalars \(a_1, a_2, \ldots, a_n, a \) (at least one of which is nonzero) such that

\[
a_1u_1 + a_2u_2 + \cdots + a_nu_n + av = \vec{0}.
\]

Since \(u_1, \ldots, u_n \) are linearly independent, it cannot be that \(a = 0 \) and so

\[
v = -\frac{1}{a}(a_1u_1 + a_2u_2 + \cdots + a_nu_n)
\]

and so \(v \in \text{span}(\{u_1, \ldots, u_n\}) \) and since \(v \) was an arbitrary element of \(V \) we have that \(\text{span}(\{u_1, \ldots, u_n\}) = V. \square \)
Theorem 22 Suppose $\dim(V) = n$ and
\[
\text{span}(\{u_1, \ldots, u_n\}) = V.
\]
Then u_1, \ldots, u_n is a basis for V.

proof:
It is enough to prove that u_1, \ldots, u_n are linearly independent.

In a proof by contradiction assume the negation of what you are trying to prove and then reason to a contradiction. It follows logically that what you are trying to prove must be true.

Suppose for contradiction that they are linearly dependent. Then there are scalars a_1, \ldots, a_n such that
\[
a_1 u_1 + \cdots + a_n u_n = \vec{0}
\]
and for some i we have $a_i \neq 0$. But then we have that
\[
u_i \in \text{span}(\{u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_n\})
\]
and so by Theorem 9, we have that V is spanned by $n - 1$ vectors. This would imply by the main theorem (18) that any set of n vectors is linearly dependent, contradicting the fact the dimension of V is n. □

Theorem 23 Every vector space has a basis.

proof:
This theorem is true in general but requires a more sophisticated proof for the infinite dimensional case. Here we prove it just for the case that our vector space W is a subspace of a vector space V with finite dimension. Suppose the dimension of V is n.

If $W = \{\vec{0}\}$, then the dimension of W is 0 and the empty set is a basis for it. Otherwise let $v_1 \in W$ be an arbitrary vector in W not equal to the zero vector, $\vec{0}$. If v_1 spans W, then the dimension of W is 1 and v_1 is a basis for it. Otherwise choose any $v_2 \in W$ such that $v_2 \notin \text{span}\{v_1\}$. Continue this procedure. That is given $v_1, \ldots, v_k \in W$, if v_1, \ldots, v_k span W, then stop. Otherwise choose $v_{k+1} \in W$ arbitrary but not in the span of v_1, \ldots, v_k. By an exercise 16 v_1, \ldots, v_k are linearly independent for every k. By the main theorem $k \leq n$ so this process must stop after $\leq n$ steps and when it stops we have found a basis for W. □
Exercise 24 Prove:
If \(\dim(V) = n \) and \(u_1, \ldots, u_m \in V \) are linearly independent, then we can extend this sequence to a basis of \(V \). That is, we can find \(u_{m+1}, u_{m+2}, \ldots, u_n \) so that \(u_1, \ldots, u_n \) is a basis for \(V \).

Exercise 25 If \(u_1, \ldots, u_n \) span a vector space \(V \), then there exists
\[
\{v_1, \ldots, v_m\} \subseteq \{u_1, \ldots, u_n\}
\]
such that \(v_1, \ldots, v_m \) is a basis for \(V \). In other words, any spanning set contains a basis.

Theorem 26 If \(W \) is a subspace of \(V \) and \(\dim(V) = n \), then \(\dim(W) = m \) for some \(m \leq n \). If \(m = n \) then \(W = V \).

proof:
Any basis for \(W \) is a set of \(m \) linearly independent vectors in \(V \). But the main theorem (18) implies that \(m \leq n \). Suppose \(m = n \), then let \(u_1, \ldots, u_n \) be a basis for \(W \). Since they are linearly independent vectors in \(V \), by Theorem 21 they must also be a basis for \(V \), and so
\[
W = \text{span}(\{u_1, \ldots, u_n\}) = V.
\]
\(\square\)