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Introduction to Mathematical Logic

I have used these questions or some variations four times to teach a begin-
ning graduate course in Mathematical Logic. I want to thank the many stu-
dents who hopefully had some fun doing them, especially, Michael Benedikt,
Tom Linton, Hans Mathew, Karl Peters, Mark Uscilka, Joan Hart, Stephen
Mellendorf, Ganesan Ramalingam, Steven Schwalm, Garth Dickie, Garry
Schumacher, Krung Sinapiromsaran, Stephen Young, Brent Hetherwick, Ma-
ciej Smuga-Otto, and Stephen Tanner.

Instructions

Do not read logic books during this semester, it is self-defeating. You
will learn proofs you have figured out yourself and the more you have to
discover yourself the better you will learn them. You will probably not learn
much from your fellow student’s presentations (although the one doing the
presenting does). And you shouldn’t! Those that have solved the problem
should be sure that the presented solution is correct. If it doesn’t look right
it probably isn’t. Don’t leave this up to me, if I am the only one who objects
I will stop doing it. For those that haven’t solved the problem, you should
regard the presented solution as a hint and go and write up for yourself a
complete and correct solution. Also you might want to present it to one of
your fellow students outside the classroom, if you can get one to listen to
you.
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The Moore Method

From P.R. Halmos1:
“What then is the secret–what is the best way to learn to solve problems?

The answer is implied by the sentence I started with: solve problems. The
method I advocate is sometimes known as the ‘Moore method’, because R.L.
Moore developed and used it at the University of Texas. It is a method of
teaching, a method of creating the problem-solving attitude in a student,
that is a mixture of what Socrates taught us and the fiercely competitive
spirit of the Olympic games.”

From F.Burton Jones2:
“What Moore did: . . . After stating the axioms and giving motivating

examples to illustrate their meaning he would then state definitions and
theorems. He simply read them from his book as the students copied them
down. He would then instruct the class to find proofs of their own and also
to construct examples to show that the hypotheses of the theorems could not
be weakened, omitted, or partially omitted.

. . .
“When a student stated that he could prove Theorem x, he was asked

to go to the blackboard and present the proof. Then the other students,
especially those who hadn’t been able to discover a proof, would make sure
that the proof presented was correct and convincing. Moore sternly prevented
heckling. This was seldom necessary because the whole atmosphere was one
of a serious community effort to understand the argument.”

From D.Taylor3:
“Criteria which characterize the Moore method of teaching include:

(1) The fundamental purpose: that of causing a student to develop his power
at rational thought.
(2) Collecting the students in classes with common mathematical knowledge,
striking from membership of a class any student whose knowledge is too
advanced over others in the class.

1The teaching of problem solving, Amer. Math. Monthly, (1975)82, 466-470.
2The Moore method, Amer. Math. Monthly, (1977)84, 273-278.
3Creative teaching: heritage of R.L.Moore, University of Houston, 1972, QA 29 M6

T7, p149.
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(3) Causing students to perform research at their level by confronting the
class with impartially posed questions and conjectures which are at the limits
of their capability.
(4) Allowing no collective effort on the part of the students inside or outside
of class, and allowing the use of no source material.
(5) Calling on students for presentation of their efforts at settling questions
raised, allowing a feeling of “ownership” of a theorem to develop.
(6) Fostering competition between students over the settling of questions
raised.
(7) Developing skills of critical analysis among the class by burdening stu-
dents therein with the assignment of “refereeing” an argument presented.
(8) Pacing the class to best develop the talent among its membership.
(9) Burdening the instructor with the obligation to not assist, yet respond to
incorrect statements, or discussions arising from incorrect statements, with
immediate examples or logically sound propositions to make clear the objec-
tion or understanding.”

Taylor’s (2) and (4) are a little too extreme for me. It is OK to collaborate
with your fellow students as long as you give them credit. In fact, it is a good
idea to try out your argument first by presenting it to fellow student. Avoid
reading logic if you can, at least this semester, but if you do give a reference.

For more readings on the Moore method see:
Paul R. Halmos, What is Teaching?, Amer. Math. Monthly, 101 (1994),

848-854.
Donald R. Chalice, How to teach a class by the modified Moore method,

Amer. Math. Monthly, 102 (1995), 317-321.

Quote From P.R. Halmos:

“A famous dictum of Pólya’s about problem solving is that if you can’t
solve a problem, then there is an easier problem that you can’t solve–find
it!”
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Propositional Logic and the Compactness Theorem

The syntax (grammar) of propositional logic is the following. The logical
symbols are ∧,∨,¬,→, and ⇐⇒ . The nonlogical symbols consist of an arbi-
trary nonempty set P that we assume is disjoint from the set of logical sym-
bols to avoid confusion. The set P is referred to as the set of atomic sentences
or as the set of propositional letters. For example, {P,Q,R}, {P0, P1, P2, . . .},
or {Sr : r ∈ R}. The set of propositional sentences S is the smallest set of
finite strings of symbols such that P ⊆ S, and if θ ∈ S and ψ ∈ S, then
¬θ ∈ S, (θ∧ψ) ∈ S, (θ∨ψ) ∈ S, (θ → ψ) ∈ S, and (θ ⇐⇒ ψ) ∈ S.

The semantics (meaning) of propositional logic consists of truth evalua-
tions. A truth evaluation is a function e : S → {T, F}, that is consistent
with the following truth tables:

θ ψ ¬θ (θ∧ψ) (θ∨ψ) (θ → ψ) (θ ⇐⇒ ψ)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

For example if e(θ) = T and e(ψ) = F , then e(θ → ψ) = F . Also e(¬θ) = T
iff e(θ) = F . For example, if P = {Px : x ∈ R} and we define e(Px) = T
if x is a rational and e(Px) = T if x is a irrational, then e((P2 ∧¬P√2)) =
T . However if we define e′(Px) = T iff x is an algebraic number, then
e′((P2 ∧¬P√2)) = F .

A sentence θ is called a validity iff for every truth evaluation e, e(θ) = T .
A sentence θ is called a contradiction iff for every truth evaluation e, e(θ) = F .

We say that two sentences θ and ψ are logically equivalent iff for every
truth evaluation e, e(θ) = e(ψ). A set of logical symbols is adequate for
propositional logic iff every propositional sentence is logically equivalent to
one whose only logical symbols are from the given set.

1.1 Define S0 = P the atomic sentences and define

Sn+1 = Sn ∪ {¬θ : θ ∈ Sn} ∪ {(θ#ψ) : θ, ψ ∈ Sn,# ∈ {∧,∨,→, ⇐⇒ }}

Prove that S = S0 ∪ S1 ∪ S2 ∪ · · ·.
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1.2 Prove that for any function f : P → {T, F} there exists a unique truth
evaluation e : S → {T, F} such that f = e � P . The symbol e � P stands for
the restriction of the function e to P .

1.3 Let θ and ψ be two propositional sentences. Show that θ and ψ are logically
equivalent iff (θ ⇐⇒ ψ) is a validity.

1.4 Suppose θ is a propositional validity, P and Q are two of the propositional
letters occurring in θ, and ψ is the sentence obtained by replacing each oc-
currence of P in θ by Q. Prove that ψ is a validity.

1.5 Can you define ∨ using only →? Can you define ∧ using only →?

1.6 Show that {∨,¬} is an adequate set for propositional logic.

1.7 The definition of the logical connective nor ( ⊕ ) is given by the following
truth table:

θ ψ (θ ⊕ ψ)
T T F
T F F
F T F
F F T

Show that {⊕} is an adequate set for propositional logic.

1.8 (Sheffer) Find another binary connective that is adequate all by itself.

1.9 Show that {¬} is not adequate.

1.10 Show that {∨} is not adequate.

1.11 How many binary logical connectives are there? We assume two connectives
are the same if they have the same truth table.

1.12 Show that there are exactly two binary logical connectives that are adequate
all by themselves. Two logical connectives are the same iff they have the
same truth table.

1.13 Suppose P = {P1, P2, . . . , Pn}. How many propositional sentences (up to
logical equivalence) are there in this language?

1.14 Show that every propositional sentence is equivalent to a sentence in disjunc-
tive normal form, i.e. a disjunction of conjunctions of atomic or the negation
of atomic sentences:

m
∨
i=1

(
ki∧
j=1

θij)
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where each θij is atomic or ¬atomic. The expression ∨ni=1 ψi abbreviates
(ψ1 ∨(ψ2 ∨(· · · ∨(ψn−1 ∨ψn))) · · ·).

In the following definitions and problems Σ is a set of propositional sen-
tences in some fixed language and all sentences are assumed to be in this
same fixed language. Σ is realizable iff there exists a truth evaluation e such
that for all θ ∈ Σ, e(θ) = T. Σ is finitely realizable iff every finite subset of
Σ is realizable. Σ is complete iff for every sentence θ in the language of Σ
either θ is in Σ or ¬θ is in Σ.

1.15 Show that if Σ is finitely realizable and θ is any sentence then either Σ∪ {θ}
is finitely realizable or Σ ∪ {¬θ} is finitely realizable.

1.16 Show that if Σ is finitely realizable and (θ∨ψ) is in Σ, then either Σ∪ {θ} is
finitely realizable or Σ ∪ {ψ} is finitely realizable.

1.17 Show that if Σ is finitely realizable and complete and if θ and (θ → ψ) are
both in Σ, then ψ is in Σ.

1.18 Show that if Σ is finitely realizable and complete, then Σ is realizable.

1.19 Suppose that the set of all sentences in our language is countable, e.g., S =
{θn : n = 0, 1, 2, . . .}. Show that if Σ is finitely realizable, then there exists a
complete finitely realizable Σ′ with Σ ⊆ Σ′.

1.20 (Compactness theorem for propositional logic) Show that every finitely
realizable Σ is realizable. You may assume there are only countably many
sentences in the language.

A family of sets C is a chain iff for any X, Y in C either X ⊆ Y or Y ⊆ X.
The union of the family A is⋃

A = {b : ∃c ∈ A, b ∈ c}.

M is a maximal member of a family A iff M ∈ A and for every B if B ∈ A
and M ⊆ B, then M = B. A family of sets A is closed under the unions of
chains iff for every subfamily, C, of A which is a chain the union of the chain,⋃ C, is also a member of A.

Maximality Principle: Every family of sets closed under the unions of
chains has a maximal member.
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1.21 Show that the family of finitely realizable Σ is closed under unions of chains.

1.22 Show how to prove the compactness theorem without the assumption that
there are only countably many sentences. (You may use the Maximality
Principle.)

1.23 Suppose Σ is a set of sentences and θ is some sentence such that for every
truth evaluation e if e makes all sentences in Σ true, then e makes θ true.
Show that for some finite {ψ1, ψ2, ψ3, . . . ψn} ⊆ Σ the sentence

(ψ1 ∧ψ2 ∧ψ3 ∧ · · · ∧ψn)→ θ

is a validity.

A binary relation R on a set A is a subset of A × A. Often we write xRy
instead of 〈x, y〉 ∈ R. A binary relation ≤ on a set A is a partial order iff

a. (reflexive) ∀a ∈ A a ≤ a;
b. (transitive) ∀a, b, c ∈ A [(a ≤ b∧ b ≤ c)→ a ≤ c]; and
c. (antisymmetric) ∀a, b ∈ A [(a ≤ b∧ b ≤ a)→ a = b].

Given a partial order ≤ we define the strict order < by

x < y ⇐⇒ (x ≤ y ∧x 6= y)

A binary relation ≤ on a set A is a linear order iff ≤ is a partial order and
d. (total) ∀a, b ∈ A(a ≤ b∨ b ≤ a).
A binary relation R on a set A extends a binary relation S on A iff S ⊆ R.

1.24 Show that for every finite set A and partial order ≤ on A there exists a linear
order ≤∗ on A extending ≤.

1.25 Let A be any set and let our set of atomic sentences P be:

P = {Pab : a, b ∈ A}

For any truth evaluation e define ≤e to be the binary relation on A defined
by

a ≤e b iff e(Pab) = T.

Construct a set of sentences Σ such that for every truth evaluation e,
e makes Σ true iff ≤e is a linear order on A.
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1.26 Without assuming the set A is finite prove for every partial order ≤ on A
there exists a linear order ≤∗ on A extending ≤.

In the next problems n is an arbitrary positive integer.

1.27 If X ⊆ A and R is a binary relation on A then the restriction of R to X is the
binary relation S = R ∩ (X ×X). For a partial order ≤ on A, a set B ⊆ A
is an ≤-chain iff the restriction of ≤ to B is a linear order. Show that given
a partial order ≤ on A:

the set A is the union of less than n ≤-chains iff every finite subset of A
is the union of less than n ≤-chains.

1.28 A partial order ≤ on a set A has dimension less than n+ 1 iff there exists n
linear orders {≤1,≤2,≤3, . . . ,≤n} on A (not necessarily distinct) such that:

∀x, y ∈ A [x ≤ y iff (x ≤i y for i = 1, 2, . . . , n)].

Show that a partial order ≤ on a set A has dimension less than n+ 1 iff for
every finite X included in A the restriction of ≤ to X has dimension less
than n+ 1.

1.29 A binary relation E (called the edges) on a set V (called the vertices) is a
graph iff

a. (irreflexive) ∀x ∈ V ¬xEx; and
b. (symmetric) ∀x, y ∈ V (xEy → yEx).

We say x and y are adjacent iff xEy. (V ′, E ′) is a subgraph of (V,E) iff
V ′ ⊆ V and E ′ is the restriction of E to V ′. For a graph (V,E) an n coloring
is a map c : V → {1, 2, . . . , n} satisfying ∀x, y ∈ V (xEy → c(x) 6= c(y)), i.e.
adjacent vertices have different colors. A graph (V,E) has chromatic number
≤ n iff there is a n coloring on its vertices. Show that a graph has chromatic
number ≤ n iff every finite subgraph of it has chromatic number ≤ n.

1.30 A triangle in a graph (V,E) is a set ∆ = {a, b, c} ⊆ V such that aEb, bEc,
and cEa. Suppose that every finite subset of V can be partitioned into n or
fewer sets none of which contain a triangle. Show that V is the union of n
sets none of which contain a triangle.

1.31 (Henkin) A transversal for a family of sets F is a one-to-one choice function.
That is a one-to-one function f with domain F and for every x ∈ F f(x) ∈ x.
Suppose that F is a family of finite sets such that for every finite F ′ ⊆ F ,F ′
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has a transversal. Show that F has a transversal. Is this result true if F
contains infinite sets?

1.32 Let F be a family of subsets of a set X. We say that C ⊆ F is an exact cover
of Y ⊆ X iff every element of Y is in a unique element of C. Suppose that
every element of X is in at most finitely many elements of F . Show that
there exists an exact cover C ⊆ F of X iff for every finite Y ⊆ X there exists
C ⊆ F an exact cover of Y . Is it necessary that every element of X is in at
most finitely many elements of F?

1.33 If F is a family of subsets of X and Y ⊆ X then we say Y splits F iff for any
Z ∈ F , Z ∩ Y and Z \ Y are both nonempty. Prove that if F is a family of
finite subsets of X then F is split by some Y ⊆ X iff every finite F ′ ⊆ F is
split by some Y ⊆ X. What if F is allowed to have infinite sets in it?

1.34 Given a set of students and set of classes, suppose each student wants one
of a finite set of classes, and each class has a finite enrollment limit. Show
that if each finite set of students can be accommodated, they all can be
accommodated.

1.35 Show that the compactness theorem of propositional logic is equivalent to the
statement that for any set I, the space 2I , with the usual Tychonov product
topology is compact, where 2 = {0, 1} has the discrete topology. (You should
skip this problem if you do not know what a topology is.)
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The Axioms of Set Theory

Here are some. The whole system is known as ZF for Zermelo-Fraenkel
set theory. When the axiom of choice is included it is denoted ZFC. It was
originally developed by Zermelo to make precise what he meant when he
said that the well-ordering principal follows from the axiom of choice. Latter
Fraenkel added the axiom of replacement. Another interesting system is
GBN which is Gödel-Bernays-von Neumann set theory.

Empty Set:
∃x∀y(y /∈ x)

The empty set is usually written ∅.

Extensionality:

∀x∀y(x = y ⇐⇒ ∀z(z ∈ x ⇐⇒ z ∈ y))

Hence there is only one empty set.

Pairing:
∀x∀y∃z∀u(u ∈ z ⇐⇒ u = x∨u = y)

We usually write z = {x, y}.

Union:
∀x∃y (∀z(z ∈ y ⇐⇒ (∃uu ∈ x∧ z ∈ u))

We usually write y = ∪x. A ∪ B abbreviates ∪{A,B}. z ⊆ x is an
abbreviation for ∀u (u ∈ z → u ∈ x).

Power Set:
∀x ∃y ∀z(z ∈ y ⇐⇒ z ⊆ x)

We usually write y = P (x). For any set x , x+ 1 = x ∪ {x}.

Infinity:
∃y (∅ ∈ y ∧∀x(x ∈ y → x+ 1 ∈ y))

The smallest such y is denoted ω, so ω = {0, 1, 2, . . .}.

Comprehension Scheme:

∀z∃y∀x[x ∈ y ⇐⇒ (x ∈ z ∧ θ(x))]
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The comprehension axiom is being invoked when we say given z let

y = {x ∈ z : θ(x)}.

The formula θ may refer to z and to other sets, but not to y. In general
given a formula θ(x) the family {x : θ(x)} is referred to as a class, it may
not be a set. For example, the class of all sets is

V = {x : x = x}.

Classes that are not sets are referred to as proper classes. Every set a is a
class, since the formula “x ∈ a” defines it. The comprehension axioms say
that the intersection of a class and a set is a set. We use boldface characters
to refer to classes.

2.1 Define X ∩ Y , X \ Y , and
⋂
X and show they exist.

2.2 The ordered pair is defined by

〈x, y〉 = {{x}, {x, y}}.

Show it exists. Show the 〈x, y〉 = 〈u, v〉 iff x = u and y = v.

2.3 The cartesian product is defined by

X × Y = {〈x, y〉 : x ∈ X and y ∈ Y }.

Show it exists.

2.4 A function is identified with its graph. For any sets X and Y we let Y X be
the set of all functions with domain X and range Y . Show this set exists.

2.5 Given a function f : A 7→ B and set C ⊆ A the restriction of f to C, written
f � C is the function with domain C and equal to f everywhere in C. Show
that it exists. f ′′C is the set of all elements of B that are in the image of C.
Show that it exists.

2.6 Prove ω exists (i.e. that there does exist a smallest such y). Prove for any
formula θ(x) if θ(0) and ∀x ∈ ω(θ(x)→ θ(x+ 1)), then ∀x ∈ ω θ(x).

2.7 Suppose G : Z → Z. Show that for any x ∈ Z there exists a unique f : ω → Z
such that f(0) = x and for all n ∈ ω f(n+ 1) = G(f(n)).
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2.8 Let (V,E) be a graph. Informally, two vertices in any graph are connected
iff (either they are the same or) there is a finite path using the edges of the
graph connecting one to the other. Use the preceding problem to formally
define and prove that the relation x is connected to y, written x ∼ y, exists
and is an equivalence relation on V . Equivalence classes of ∼ are called the
components of the graph.

2.9 Let A and B be disjoint sets and f : A → B and g : B → A be one-to-one
functions. Consider the bipartite graph V which has vertices A∪B and edges
given by the union of the graphs of f and g, i.e., there is an edge between
a ∈ A and b ∈ B iff either f(a) = b or g(b) = a. Describe what the finite
components of V must look like as a subgraph of V . Describe the infinite
components of V .

2.10 Define |X| = |Y | iff there is a one-to-one onto map from X to Y . We say X
and Y have the same cardinality. Define |X| ≤ |Y | iff there is a one-to-one
map from X to Y . Define |X| < |Y | iff |X| ≤ |Y | and |X| 6= |Y |. (Cantor-
Shröder-Bernstein) Show that if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

2.11 Show that |A| ≤ |A|. Show that if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|.

2.12 Show that |P (X)| = |{0, 1}X |.

2.13 (Cantor) Show that |X| < |P (X)|.

2.14 Show that the class of sets, V, is not a set.

2.15 Show that |A× (B × C)| = |(A×B)× C|.

2.16 Show that |AB×C | = |(AB)
C |.

2.17 Show that if there is a function f : A 7→ B that is onto, then |B| ≤ |A|. 4

A set is finite iff it can be put into one-to-one correspondence with an
element of ω A set is countable iff it is either finite or of the same cardinality
as ω. A set is uncountable iff it is not countable. R is the set of real numbers
and we use c = |R| to denote its cardinality which is also called the cardinality
of the continuum. Below, you may use whatever set theoretic definitions
of the integers, rationals and real numbers that you know. For example, you
may regard the reals as either Dedekind cuts in the rationals, equivalences

4This requires the axiom of choice. It is open if it is equivalent to AC.
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classes of Cauchy sequences of rationals, infinitely long decimals, or ?points
on a line.

2.18 Show that the set of integers Z is countable.

2.19 Show that the set of odd positive integers is countable.

2.20 Show that the set of points in the plane with integer coordinates is countable.

2.21 Show that the countable union of countable sets is countable. 5

2.22 For any set X let [X]<ω be the finite subsets of X. Show that the set of
finite subsets of ω, which is written [ω]<ω, is countable.

2.23 Show that if there are only countably many atomic sentences then the set of
all propositional sentences is countable.

2.24 Show that the set of rationals Q is countable.

2.25 A number is algebraic iff it is the root of some polynomial with rational
coefficients. Show that the set of algebraic numbers is countable.

2.26 Show that any nontrivial interval in R has cardinality c.

2.27 Show that P (ω) has cardinality c.

2.28 Show that the set of all infinite subsets of ω, which is written [ω]ω, has cardi-
nality c.

2.29 Show that the cardinality of R× R is c.

2.30 For any set X let [X]ω be the countably infinite subsets of X. Show that
|Rω| = |[R]ω| = c. 6

2.31 Show that the cardinality of the set of open subsets of R is c.

2.32 Show that the set of all continuous functions from R to R has size c.

2.33 Show that ωω has cardinality c.

2.34 Show that the set of one-to-one, onto functions from ω to ω has cardinality c.

2.35 Show that there is a family A of subsets of Q such that |A| = c and for any
two distinct s, t ∈ A the set s ∩ t is finite. A is called an almost disjoint
family.

5Do you think you needed to use the Axiom of Choice?
6See previous footnote.
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2.36 Show that there is a family F of functions from ω to ω such that |F| = c and
for any two distinct f, g ∈ F the set {n ∈ ω : f(n) = g(n)} is finite. These
functions are called eventually different.
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Wellorderings

A linear order (L,≤) is a wellorder iff for every nonempty X ⊆ L there
exists x ∈ X such that for every y ∈ X x ≤ y (x is the minimal element of
X). For an ordering ≤ we use < to refer to the strict ordering, i.e x < y iff
x ≤ y and not x 6= y. We use > to refer to the converse order, i.e. x > y iff
y < x.

3.1 Let (L,≤) be a well ordering. Let (L×L,≤′) be defined in one of the following
ways:

a. (x, y) ≤′ (u, v) iff x < u or (x = u and y ≤ v)
b. (x, y) ≤′ (u, v) iff x ≤ u and y ≤ v
c. (x, y) ≤′ (u, v) iff max{x, y} < max{u, v} or [max{x, y} = max{u, v}

and (x < u or (x = u and y ≤ v)].
Which are well-orderings?

3.2 Prove: Let (L,≤) be any well-ordering and f : L→ L an increasing function
(∀x, y ∈ L (x < y → f(x) < f(y))). Then for every x in L x ≤ f(x).

3.3 For two binary relations R on A and S on B we write (A,R) ' (B, S) iff
there exists a one-to-one onto map f : A→ B such that

for every x, y in A (xRy iff f(x)Sf(y)).
Such a map is called an isomorphism. If (L1,≤1) and (L2,≤2) are well-
orders and (L1,≤1) ' (L2,≤2) then show the isomorphism is unique. Is this
true for all linear orderings?

3.4 Let (L,≤) be a wellorder and for any a ∈ L let La = {c ∈ L : c < a}. Show
that (L,≤) is not isomorphic to (La,≤) for any a ∈ L.

3.5 (Cantor) Show that for any two wellorders exactly one of the following occurs:
they are isomorphic, the first is isomorphic to an initial segment of the second,
or the second is isomorphic to an initial segment of the first.

3.6 Let (A,≤) be a linear order such that

∀X ⊆ A(X ' A or (A \X) ' A).

Show that A is a well order or an inverse well order.

3.7 Show that a linear order (L,≤) is a wellorder iff there does not exist an infinite
sequence xn for n = 0, 1, 2, . . . with xn+1 < xn for every n. Does this use
AC?
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Axiom of Choice

(AC) Axiom of Choice: For every family F of nonempty sets there exists a
choice function, i.e. a function f with domain F such that for every x in F ,
f(x) ∈ x.

(WO) Well-ordering Principle : Every nonempty set can be well ordered.

(TL) Tuckey’s Lemma: Every family of sets with finite character has a maxi-
mal element. A family of sets F has finite character iff for every set X, X ∈ F
iff for every finite Y ⊆ X, Y ∈ F . (MP) Maximality Principle: Every family

of sets closed under the unions of chains has a maximal member.

(ZL) Zorn’s Lemma: Every family of sets contains a maximal chain.

4.1 Show that ZL implies MP.

4.2 Show that MP implies TL.

4.3 Show that TL implies AC.

4.4 (Zermelo) Show that AC implies WO.

4.5 Given a nonempty family F let < be a strict well-ordering of F . Say that a
chain C ⊆ F is greedy iff for every a ∈ F if

{b ∈ C : b < a} ∪ {a}

is a chain, then either a ∈ C or b < a for every b ∈ C. Show that the union
of all greedy chains is a maximal chain. Conclude that WO implies ZL.

4.6 Given a nonempty set X let ∗ be a point not in X and let Y = X ∪ {∗}.
Give Y the topology where the open sets are {∅, Y,X, {∗}}. Prove that Y is
a compact topological space and X is a closed subspace of Y .

4.7 (Kelley) The product of a family of sets is the same as the set of all choice
functions. Show that Tychonov’s Theorem that the product of compact
spaces is compact implies the Axiom of Choice.

16



Ordinals

A set X is transitive iff ∀x ∈ X (x ⊆ X). A set α is an ordinal iff it is
transitive and strictly well ordered by the membership relation (define x ≤ y
iff x ∈ y or x = y, then (α,≤) is a wellordering). We also include the empty
set as an ordinal. For ordinals α and β we write α < β for α ∈ β. The first
infinite ordinal is written ω. We usually write

0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, . . . , n = {0, 1, . . . , n− 1}, · · · , ω = {0, 1, 2, . . .}

5.1 Show: If α is an ordinal then so is α+ 1. (Remember α+ 1 = α∪{α}.) Such
ordinals are called successor ordinals. Ordinals that are not successors are
called limit ordinals.

5.2 Show: If α is an ordinal and β < α, then β is an ordinal and β ⊆ α and
β = {γ ∈ α : γ ∈ β}.
Axiom of Regularity:

∀x x 6= ∅ → ∃y(y ∈ x∧¬∃z (z ∈ y ∧ z ∈ x))

Another way to say this is that the binary relation R = {(u, v) ∈ x× x :
u ∈ v} has a minimal element, i.e., there exist z such that for every y ∈ x it
is not the case that zRy. Note: a minimal element is not the same as a least
element.

5.3 Show α is an ordinal iff α is transitive and linearly ordered by the membership
relation.

5.4 For any ordinals α and β show that α ∩ β = α or α ∩ β = β. Show any two
ordinals are comparable, i.e., for any two distinct ordinals α and β either
α ∈ β or β ∈ α.

5.5 The union of set A of ordinals is an ordinal, and is sup(A).

5.6 Show that the intersection of a nonempty set A of ordinals is the least element
of A, written inf(A). Hence any nonempty set of ordinals has a least element.

5.7 Prove transfinite induction: Suppose φ(0) and ∀α ∈ ORD if ∀β < α φ(β),
then φ(α). Then ∀α ∈ ORD φ(α).

Replacement Scheme Axioms:

∀a ([∀x ∈ a∃!y ψ(x, y)]→ ∃b∀x ∈ a∃y ∈ b ψ(x, y))
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The formula ψ may refer to a and to other sets but not to b. Replacement
says that for any function that is a class the image of a set is a set. If F is
a function, then for any set a there exists a set b such that for every x ∈ a
there exists a y ∈ b such that F(x) = y.

5.8 (von Neumann) Let (L,≤) be any well-ordering. Show that the following is
a set:

{(x, α) : x ∈ L, α ∈ ORD, and (Lx,≤) ' α}.

Show that every well ordered set is isomorphic to a unique ordinal.

Let ORD denote the class of all ordinals.
Transfinite Recursion:

If F is any function defined on all sets then there exists a unique function
G with domain ORD such that for every α in ORD G(α) = F(G � α).

This is also referred to as a transfinite construction of G.

5.9 Suppose F : V→ V, i.e., a class function. Define g (an ordinary set function)
to be a good guess iff dom(g) = α ∈ ORD, g(0) = F(∅), and g(β) = F(g � β)
for every β < α. Show that if g is a good guess, then g � β is good guess for
any β < α.

5.10 Show that if g and g′ are good guesses with the same domain, then g = g′.

5.11 Show that for every α ∈ ORD there exists a (necessarily unique) good guess
g with domain α.

5.12 (Fraenkel) Prove transfinite recursion.

5.13 Explain the proof of WO implies ZL in terms of a transfinite construction.

For an example, consider the definition of Vα for every ordinal α. Let
V0 = ∅, Vα+1 = P (Vα) (power set) for successor ordinals, and for limit ordinals
Vλ = ∪β<λVβ. Thus if we define F as follows:

F(x) =


P (x(α)) if x is a function with domain α + 1 ∈ ORD⋃
α<λ x(α) if x is a function with domain limit ordinal λ

P (∅) if x = ∅
−π otherwise

then G(α) = Vα.
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5.14 Show that if α ≤ β, then Vα ⊆ Vβ and if α < β, then Vα ∈ Vβ. Show that
each Vα is transitive.

5.15 Show that every set is included in a transitive set. Show that for every tran-
sitive set x there exists an ordinal α such that x ∈ Vα, i.e., V = ∪α∈ORDVα.

Ordinal arithmetic: (α, β are ordinals, and λ is a limit ordinal.)

Addition:
α + 0 = α
α + (β + 1) = (α + β) + 1
α + λ = sup{α + β : β < λ}

Multiplication:
α0 = 0
α(β + 1) = (αβ) + α
αλ = sup{αβ : β < λ}

Exponentiation:
α0 = 1
αβ+1 = αβα
αλ = sup{αβ : β < λ}

So for example the addition function + : ORD×ORD 7→ ORD exists
by transfinite recursion. For each α ∈ ORD define a function Fα on all sets
as follows:

Fα(g) = g(β) + 1 if g is a map with domain an ordinal β + 1,
Fα(g) = sup{g(γ) : γ < λ} if g is a map with domain a limit ordinal λ,

and
Fα(g) = α otherwise.

Hence for each α we have a unique Gα : ORD 7→ ORD which will exactly
be Gα(β) = α+ β. Since each Gα is unique we have defined the function +
on all pairs of ordinals.

Note that more intuitively α+ β is the unique ordinal isomorphic to the
well-order ({0}×α)∪({1}×β) ordered lexicographically. Similarly α·β is the
unique ordinal isomorphic to the well-order β × α ordered lexicographically.
Exponentiation is much harder to describe.

5.16 Show that α + (β + γ) = (α + β) + γ.
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5.17 Assume α, β, and γ are ordinals, which of the following are always true?

α + β = β + α

α + (β + γ) = (α + β) + γ

αβ = βα

α(βγ) = (αβ)γ

α(β + γ) = (αβ) + (αγ)

(α + β)γ = (αγ) + (βγ)

αβγ = (αβ)γ

αβαγ = αβ+γ

(αβ)γ = αγβγ

α + β = α + γ → β = γ

β < γ ⇐⇒ α + β < α + γ

β + α = γ + α → β = γ

(α > 0 ∧ αβ = αγ) → β = γ

(α > 1 ∧ β < γ) → αβ < αγ

5.18 For any ordinals α and β > 0 show there exists unique ordinals γ and δ such
that α = βγ + δ and δ < β.

5.19 Is the previous problem true for α = γβ + δ?

5.20 Show for any β > 0 there exists unique ordinals γ1, . . . , γn, d1, . . . , dn such
that γ1 > γ2 > · · · > γn ; 0 < d1, d2, . . . , dn < ω and

β = ωγ1d1 + ωγ2d2 + . . .+ ωγndn

This is called Cantor normal form.

5.21 Sort the following set of five ordinals:

(ωω)(ω + ω) (ω + ω)(ωω) ωωω + ωωω
ωωω + ωωω ωωω + ωωω

5.22 An ordinal α is indecomposable iff it satisfies any of the following.
a) ∃β α = ωβ
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b) ∀β∀γ if α = β + γ then α = β or α = γ
c) ∀X ⊆ α [(X,<) ' (α,<) or (α \X,<) ' (α,<)]
d) ∀β < α β + α = α
Show they are all equivalent.

5.23 (Goodstein) The complete expansion of a positive integer in a base is gotten by
writing everything possible including exponents and exponents of exponents
etc. as powers of the base. For example the number 36 written in complete
base two is:

2(22+1) + 22

The same number in complete base 3 is:

33 + 32

Let an be a sequence described as follows. Given ak calculate ak+1 by writing
ak in base k then substitute k+1 for every k, then subtract one. For example:

a2 = 36 = 2(22+1) + 22 → a3 = 3

(
33+1

)
+ 33 − 1 = 2.2876 . . .× 1013

or for example if a6 = 64 + 2 · 63 = 1728, then

a7 = (74 + 2 · 73)− 1 = 74 + 73 + 6 · 72 + 6 · 71 + 6 = 3086

Show that given any pair of positive integers n and m, if we let an = m then
for some k > n we get ak = 0.

5.24 Let S be a countable set of ordinals. Show that

{β : ∃〈αn : n ∈ ω〉 ∈ Sω β = Σn<ωαn}

is countable. (Σn<ωαn = sup{Σn<mαn : m < ω})
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Cardinal Arithmetic

An ordinal κ is a cardinal iff for every α < κ, |α| < |κ|. The cardinality
of a set A is the least cardinal κ, |A| = |κ| and we write |A| = κ. The αth

uncountable cardinal is written either ℵα or ωα.

6.1 Show that for any ordinal α the cardinal ℵα exists.

6.2 Is there a cardinal such that ℵα = α ?

For cardinals κ and γ we define κγ to be the cardinality of the cross
product and κ + γ to be the cardinality of the union of A and B where A
and B are disjoint and |A| = κ and |B| = γ.

6.3 Let κ be an infinite cardinal. Define the lexicographical order ≤l on κ × κ
by (x, y) ≤l (u, v) iff x < u or (x = u and y ≤ v). Define ≤′ on κ × κ by
(x, y) ≤′ (u, v) iff max{x, y} < max{u, v} or [(max{x, y} = max{u, v} and
(x, y) ≤l (u, v)]. Show that (κ,≤) ' (κ× κ,≤′).

6.4 Show that for infinite cardinals κ and γ, κ+ γ = κγ = max{κ, γ}.

6.5 Show that for any infinite cardinal κ the union of κ many sets of cardinality
κ has cardinality κ.

The cofinality of an infinite limit ordinal β, cf(β), is the least α ≤ β
such that there is a map f : α→ β whose range is unbounded in β.

6.6 For λ a limit ordinal show the following are all equivalent:
a. α is the minimum ordinal such that ∃X ⊆ λ unbounded in λ such that

(X,≤) ' (α,≤).
b. α is the minimum ordinal such that ∃f : α→ λ such that f is one-to-

one, order preserving, and the range of f is cofinal (unbounded) in λ.
c. cf(λ) = α

6.7 For κ an infinite cardinal show that cf(κ) = α iff α is the minimum cardinal
such that κ is the union of α many sets of cardinality less than κ.

6.8 Let α and β be limit ordinals and suppose f : α → β is strictly increasing
and cofinal in β. Show cf(α) = cf(β).
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6.9 κ is regular iff cf(κ) = κ. κ is singular iff cf(κ) < κ. Show that for any limit
ordinal β, cf(β) is a regular cardinal.

6.10 κ+ is the least cardinal greater than κ. Show that for any infinite cardinal
κ , κ+ is a regular cardinal.

6.11 For α a limit ordinal show that cf(ℵα) = cf(α).

κγ is the set of all functions from γ to κ, but we often use it to denote its
own cardinality. κ<γ is ∪{κα : α < γ}, but we often use it to denote its own
cardinality, i.e., κ<γ = |κ<γ|. Note in the section all exponentiation
is cardinal exponentiation.

6.12 Show that |κ<ω| = |[κ]<ω| = κ for any infinite cardinal κ. [κ]<ω is the set of
finite subsets of κ.

6.13 Show that ℵω < ℵωω. Show that for any cardinal κ, κ < κcf(κ).

6.14 (König) Show that cf(2κ) > κ.

6.15 Show (∀n ∈ ω 2ℵn = ℵn+1)→ 2ℵω = (ℵω)ω.

6.16 Show that (2<κ)cf(κ) = 2κ.

6.17 Show (∀n ∈ ω 2ℵn = ℵω+17)→ 2ℵω = ℵω+17.

6.18 Let κ be the least cardinal such that 2κ > 2ω. Show that κ is regular.

6.19 Prove that for every infinite regular cardinal κ, there is a cardinal λ such that
ℵλ = λ and λ has cofinality κ.

6.20 Show that cf(2<κ) = cf(κ) or cf(2<κ) > κ.

6.21 Show that if ω ≤ λ ≤ κ then (κ+)λ = max{κλ, κ+}.

6.22 For any set X Hartog’s ordinal h(X) is defined by:

h(X) = sup{α ∈ ORD : ∃ onto f : X → α}

Show without AC that h is well defined and with AC h(X) = |X|+. Show
that AC is equivalent to the statement that for every two sets X and Y either
|X| ≤ |Y | or |Y | ≤ |X|.

6.23 Given sets Aα ⊆ κ for each α < κ each of cardinality κ, show there exists
X ⊆ κ such that

∀α < κ |Aα ∩X| = |Aα \X| = κ
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6.24 Show there exists X ⊆ R which contains the rationals and the only automor-
phism of (X,≤) is the identity, i.e., any order preserving bijection from X to
X is the identity.

6.25 Show there exists X ⊆ R2 such that for every x ∈ X and positive r ∈ R there
is a unique y ∈ X with d(x, y) = r where d is Euclidean distance.

6.26 (Sierpiński) Show that there exists X ⊆ R2 such that for every line L in the
plane, |L ∩X| = 2.

6.27 (Jech) Without using AC show that ω2 is not the countable union of countable
sets.
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First Order Logic and the Compactness Theorem

Syntax

We begin with the syntax of first order logic. The logical symbols are
∨,¬,∃,= and for each n ∈ ω a variable symbol xn. There are also grammat-
ical symbols such as parentheses and commas that we use to parse things
correctly but have no meaning. For clarity we usually use x, y, z, u, v, etc.
to refer to arbitrary variables. The nonlogical symbols consist of a given
set L that may include operation symbols, predicate symbols, and constant
symbols. The case where L is empty is referred to as the language of pure
equality. Each symbol s ∈ L has a nonnegative integer #(s) called its arity
assigned to it. If #(s) = 0, then s is a constant symbol. If f is an operation
symbol and #(f) = n then f is an n-ary operation symbol. Similarly if R is
a predicate symbol and #(R) = n then R is an n-ary predicate symbol. In
addition we always have that “=” is a logical binary predicate symbol.

For the theory of groups the appropriate language is L = {e, ·,−1 } where
“e” is a constant symbol, so #(e) = 0, “·” is a binary operation symbol,
so #(·) = 2, and “−1” is a unary operation symbol, so #(−1) = 1. For the
theory of partially ordered sets we have that L = {≤} where ≤ is a binary
relation symbol, so #(≤) = 2.

Our next goal is to define what it means to be a formula of first order
logic. Let L be a fixed language. An expression is a finite string of symbols
that are either logical symbols or symbols from L.

The set of terms of L is the smallest set of expressions that contain
the variables and constant symbols of L (if any), and is closed under the
formation rule: if t1, t2, . . . , tn are terms of L and f is an n-ary operation
symbol of L, then t = f(t1, t2, . . . , tn) is a term of L. If L has no function
symbols then the only terms of L are the variables and constant symbols. So
for example if c is a constant symbol, f is a 3-ary operation symbol, g is a
binary operation symbol, and h is a unary operation symbol, then

h(f(g(x, h(y)), y, h(c)))

is a term.
The set of atomic formulas of L is the set of all expressions of the form

R(t1, t2, . . . , tn), where t1, t2, . . . , tn are terms of L and R is a n-ary predicate
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symbol of L. Since we always have equality as a binary relation we always
have atomic formulas of the form t1 = t2.

The set of formulas of L is the smallest set of expressions that includes
the atomic formulas and is closed under the formation rule: if θ and ψ are L
formulas and x is any variable, then

• (θ∨ψ),

• ¬θ, and

• ∃x θ

are L formulas. We think of other logical connectives as being abbreviations,
e.g.,

• (θ∧ψ) abbreviates ¬(¬θ∨¬ψ),

• (θ → ψ) abbreviates (¬θ∨ψ),

• ∀x θ abbreviates ¬∃x¬θ, and so forth.

We often add and sometimes drop parentheses to improve readability.
Also we write x 6= y for the formally correct but harder to read ¬x = y.

It is common practice to write symbols not only in prefix form as above
but also in postfix and infix forms. For example in our example of group
theory instead of writing the term ·(x, y) we usually write it in infix form x·y,
and −1(x) is usually written in postfix form x−1. Similarly in the language
of partially ordered sets we usually write x ≤ y instead of the prefix form
≤ (x, y). Binary relations such as partial orders and equivalence relations
are most often written in infix form. We regard the more natural forms we
write as abbreviations of the more formally correct prefix notation.

Next we want to describe the syntactical concept of substitution. To do
so we must first describe what it means for an occurrence of a variable x in
a formula θ to be free. If an occurrence of a variable x in a formula θ is not
free it is said to be bound. Example:

(∃x x = y ∨x = f(y))

Both occurrences of y are free, the first two occurrences of x are bound, and
the last occurrence of x is free. In the formula:

∃x (x = y ∨x = f(y))
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all three occurrences of x are bound.
Formally we proceed as follows. All occurrences of variables in an atomic

formula are free. The free occurrences of x in ¬θ are exactly the free occur-
rences of x in θ. The free occurrences of x in (θ∨ψ) are exactly the free
occurrences of x in θ and in ψ. If x and y are distinct variables, then the
free occurrences of x in ∃y θ are exactly the free occurrences of x in θ. And
finally no occurrence of x in ∃x θ is free. This gives the inductive definition
of free and bound variables.

We show that x might occur freely in θ by writing θ(x). If c is a constant
symbol the formula θ(c) is gotten by substituting c for all free occurrences
(if any) of x in θ. For example: if θ(x) is

∃y (y = x∧∀x x = y),

then θ(c) is

∃y (y = c∧∀x x = y).

We usually write θ(x1, x2, . . . , xn) to indicate that the free variables of θ
are amongst the x1, x2, . . . , xn. A formula is called a sentence if no variable
occurs freely in it.

Semantics

Our next goal is to describe the semantics of first order logic. A structure
A for the language L is a pair consisting of a set A called the universe of A

and an assignment or interpretation function from the nonlogical symbols of
L to individuals, relations, and functions on A. Thus

• for each constant symbol c in L we have an assignment cA ∈ A,

• for each n-ary operation symbol f in L we have a function fA : An → A,
and

• for each n-ary predicate symbol R we have a relation RA ⊆ An.

The symbol = is always interpreted as the binary relation of equality, which
is why we consider it a logical symbol, i.e., for any structure A we have =A

is {(x, x) : x ∈ A}. We use the word structure and model interchangeably.
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For example, suppose L is the language of group theory. One structure
for this theory is

Q = (Q,+,−x, 0)

where

• the universe is the rationals,

• ·Q is ordinary addition of rationals,

• −1Q

is the function which takes each rational r to −r, and

• eQ = 0.

Another structure in this language is

R = (R+,×, 1

x
, 1)

where

• the universe is the set of positive real numbers,

• ·R is multiplication ×,

• −1R

is the function which takes x to 1
x
, and

• eR = 1.

Another example is the group Sn of permutations. Here ·Sn is composition of
functions, −1

Sn
is the functional which takes each permutation to its inverse,

and eSn is the identity permutation. Of course there are many examples of
structures in this language which are not groups.

For another example, the language of partially ordered sets is L = {≤}
where ≤ is a binary relation symbol. The following are all L-structures which
happen to be partial orders:

• (R, {(x, y) ∈ R2 : x ≤ y}),

• (Q, {(x, y) ∈ Q2 : x ≥ y}), and

• (N, {(x, y) ∈ N2 : x divides y}).

28



For any nonempty set A and R ⊆ A2, (A,R) is an L-structure. If in addition
the relation R is transitive, reflexive, and antisymmetric, then (A,R) is a
partial order.

A |= θ

Next we define what it means for an L structure A to model or satisfy an
L sentence θ (written A |= θ). For example,

(Q,+, 0) |= ∀x∃y x · y = e,

because for all p ∈ Q there exists q ∈ Q such that p+ q = 0.
Usually it is not the case that every element of a model has a constant

symbol which names it. But suppose this just happened to be the case. Let’s
suppose that for ever a ∈ A there is a constant symbol ca in the language L
so that cAa = c. The interpretation function can be extended to the variable
free terms of L by the rule:

(f(t1, t2, . . . , tn))A = fA(tA1 , t
A
2 , . . . , t

A
n)

Hence for each variable free term t we get an interpretation tA ∈ A. For
example, if L = {S, c} where S is a unary operation symbol and c is a
constant symbol, and Z is the L-structure with universe Z and where SZ(x) =
x+ 1 and cZ = 0, then S(S(S(S(c))))Z = 4.

Our definition of |= is by induction on the logical complexity of the sen-
tence θ, i.e. the number of logical symbols in θ.

1. A |= R(t1, . . . , tn) iff (tA1 , . . . , t
A
n) ∈ RA.

2. A |= ¬θ iff not A |= θ.

3. A |= (θ∨ψ) iff A |= θ or A |= ψ.

4. A |= ∃x θ(x) iff there exists a b in the universe A such that A |= θ(cb).

Now we would like to define A |= θ for arbitrary languages L and L-
structures A. Let LA = L ∪ {ca : a ∈ A} where each ca is a new constant
symbol. Let (A, a)a∈A be the LA structure gotten by augmenting the struc-
ture A by interpreting each symbol ca as the element a.
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If θ is an L-sentence and A is and L-structure, then we define A |= θ iff θ
is true in the augmented structure, i.e., (A, a)a∈A.

If L1 ⊆ L2 and A is a L2 structure, then the reduct of A to L1, written
A � L1, is the L1 structure with the same universe as A and same relations,
operations, and constants as A for the symbols of L1.

Lemma 1 Let L1 ⊆ L2 and A be an L2 structure. Then for any θ an L1

sentence,
A |= θ iff A � L1 |= θ

proof:
We prove by induction on the number of logical symbols in the sentence

that for any L1A sentence θ:

(A, a)a∈A |= θ iff (A, a)a∈A � L1A |= θ

Let A2 = (A, a)a∈A and A1 = (A, a)a∈A � L1A.

Atomic sentences: By induction on the size of the term, for any L1A

variable free term t we have that tA1 = tA2 .
For any n-ary relation symbol R in L1 we have RA1 = RA2 (since A1 is a

reduct of A2). Hence for any atomic L1A-sentence R(t1, . . . , tn),

A1 |= R(t1, . . . , tn)

iff

〈tA1
1 , . . . t

A1
n 〉 ∈ RA1

iff

〈tA2
1 , . . . t

A2
n 〉 ∈ RA2

iff

A2 |= R(t1, . . . , tn).

Negation:
A1 |= ¬θ
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iff

not A1 |= θ

iff (by induction)

not A2 |= θ

iff

A2 |= ¬θ.

Disjunction:
A1 |= (θ∨ ρ)

iff

A1 |= θ or A1 |= ρ

iff (by induction)

A2 |= θ or A2 |= ρ

iff

A2 |= (θ∨ ρ).

Existential quantifier:
A1 |= ∃xθ(x)

iff

there exists a ∈ A such that A1 |= θ(ca)

iff

there exists a ∈ A such that A2 |= θ(ca)

iff

A2 |= ∃xθ(x).

2

31



Compactness Theorem

The compactness theorem (for countable languages) was proved by Kurt
Gödel in 1930. Malcev extended it to uncountable languages in 1936. The
proof we give here was found by Henkin in 1949.

We say that a set of L sentences Σ is finitely satisfiable iff every finite
subset of Σ has a model. Σ is complete iff for every L sentence θ either θ is
in Σ or ¬θ is in Σ.

Lemma 2 For every finitely satisfiable set of L sentences Σ there is a com-
plete finitely satisfiable set of L sentences Σ′ ⊇ Σ.

proof:
Let B = {Q : Q ⊇ Σ is finitely satisfiable}. B is closed under unions of

chains, because if C ⊆ B is a chain, and F ⊆ ∪C is finite then there exists
Q ∈ C with F ⊆ Q, hence F has a model. By the maximality principal,
there exists Σ′ ∈ B maximal. But for every L sentence θ either Σ′ ∪ {θ} is
finitely satisfiable or Σ′ ∪ {¬θ} is finitely satisfiable. Otherwise there exists
finite F0, F1 ⊆ Σ′ such that F0 ∪ {θ} has no model and F1 ∪ {¬θ} has no
model. But F0∪F1 has a model A since Σ is finitely satisfiable. Either A |= θ
or A |= ¬θ. This is a contradiction.
2

Lemma 3 If Σ is a finitely satisfiable set of L sentences, and θ(x) is an L
formula with one free variable x, and c a new constant symbol (not in L),
then Σ ∪ {(∃x θ(x))→ θ(c)} is finitely satisfiable in the language L ∪ {c}.

proof:
This new sentence is called a Henkin sentence and c is called the Henkin

constant. Suppose it is not finitely satisfiable. Then there exists F ⊆ Σ
finite such that F ∪ {(∃x θ(x)) → θ(c)} has no model. Let A be an L-
structure modeling F . Since the constant c is not in the language L we are
free to interpret it any way we like. If A |= ∃x θ(x) choose c ∈ A so that
(A, c) |= θ(c), otherwise choose c ∈ A arbitrarily. In either case (A, c) models
F and the Henkin sentence.
2

We say that a set of L sentences Σ is Henkin iff for every L formula
θ(x) with one free variable x, there is a constant symbol c in L such that
(∃x θ(x))→ θ(c) ∈ Σ.
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Lemma 4 If Σ is a finitely satisfiable set of L sentences, then there exists
Σ′ ⊇ Σ with L′ ⊇ L and Σ′ a finitely satisfiable Henkin set of L′ sentences.

proof:
For any set of Σ of L sentences, let

Σ∗ = Σ ∪ {(∃x θ(x))→ θ(cθ) : θ(x) an L formula with one free variable}

The language of Σ∗ contains a new constant symbol cθ for each L formula
θ(x). Σ∗ is finitely satisfiable, since any finite subset of it is contained in a
set of the form

F ∪ {(∃x θ1(x))→ θ(cθ1), . . . , (∃x θn(x))→ θ(cθn)}

where F ⊆ Σ is finite. To prove this set has a model use induction on n and
note that from the point of view of

Σ ∪ {(∃x θ1(x))→ θ(cθ1), . . . , (∃x θn−1(x))→ θ(cθn−1)}

cθn is a new constant symbol, so we can apply the last lemma.
Now let Σ0 = Σ and let Σm+1 = Σ∗m. Then

Σ′ = ∪m<ωΣm

is Henkin. It is also finitely satisfiable, since it is the union of a chain of
finitely satisfiable sets.
2

If Σ is a set of L sentences, then the canonical structure A built from Σ
is the following.

• Let X be the set of all variable free terms of L.

• For t1, t2 ∈ X define t1 ∼ t2 iff (t1 = t2) ∈ Σ.

• Assuming that ∼ is an equivalence relation let [t] be the equivalence
class of t ∈ X.

• The universe of the canonical model A is the set of equivalence classes
of ∼.

33



• For any constant symbol c we define

cA = [c].

• For any n-ary operation symbol f we define

fA([t1], [t2], . . . , [tn]) = [f(t1, t2, . . . , tn)].

• For any n-ary relation symbol R we define

([t1], [t2], . . . , [tn]) ∈ RA iff R(t1, t2, . . . , tn) ∈ Σ.

Lemma 5 If Σ is a finitely satisfiable complete Henkin set of L sentences,
then the canonical model A built from Σ is well defined and for every L
sentence θ,

A |= θ iff θ ∈ Σ.

proof:
First we show that ∼ is an equivalence relation. Suppose t, t1, t2, t3 are

variable free terms.

t ∼ t: If t = t /∈ Σ then, since Σ is complete we have that ¬t = t ∈ Σ.
But clearly ¬t = t has no models and so Σ is not finitely satisfiable.

t1 ∼ t2 implies t2 ∼ t1: If not, by completeness of Σ we must have that
t1 = t2 and ¬t2 = t1 are both in Σ. But then Σ is not finitely satisfiable.

(t1 ∼ t2 and t2 ∼ t3) implies t1 ∼ t3: If not, by completeness of Σ we
must have that t1 = t2, t2 = t3, and ¬t1 = t3 are all in Σ. But then Σ is not
finitely satisfiable.

So ∼ is an equivalence relation. Next we show that it is a congruence
relation.

Suppose t1, . . . , tn, t
′
1, . . . , t

′
n are variable free terms and f is an n-ary

operation symbol.
If t1 ∼ t′1, . . . , tn ∼ t′n then f(t1, . . . , tn) ∼ f(t′1, . . . , t

′
n).

This amounts to saying if

{t1 = t′1, . . . , tn = t′n} ⊆ Σ,

then
f(t1, . . . , tn) = f(t′1, . . . , t

′
n) ∈ Σ.
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But again since Σ is complete we would have

f(t1, . . . , tn) 6= f(t′1, . . . , t
′
n) ∈ Σ

but
{t1 = t′1, . . . , tn = t′n, f(t1, . . . , tn) 6= f(t′1, . . . , t

′
n)}

has no models and so Σ wouldn’t be finitely satisfiable.
By a similar argument: Suppose t1, . . . , tn, t

′
1, . . . , t

′
n are variable free

terms and R is an n-ary operation symbol.
If t1 ∼ t′1, . . . , tn ∼ t′n then R(t1, . . . , tn) ∈ Σ iff R(t′1, . . . , t

′
n) ∈ Σ.

This shows the canonical model is well defined.

Now we prove by induction on the number of logical symbols that for any
L sentence θ,

A |= θ ⇐⇒ θ ∈ Σ.

The atomic formula case is by definition.

¬:
A |= ¬θ

iff

not A |= θ

iff(by induction)

not θ ∈ Σ

iff(by completeness)

¬θ ∈ Σ.

∨:
A |= (θ∨ ρ)

iff

A |= θ or A |= ρ

iff(by induction)

θ ∈ Σ or ρ ∈ Σ
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iff

(θ∨ ρ) ∈ Σ.

This last “iff” uses completeness and finite satisfiability of Σ. If (θ∨ ρ) /∈
Σ then by completeness ¬(θ∨ ρ) ∈ Σ but {θ, ρ,¬(θ∨ ρ)} has no model.
Conversely if θ /∈ Σ and ρ /∈ Σ, then by completeness ¬θ ∈ Σ and ¬ρ ∈ Σ,
but {(θ∨ ρ),¬θ,¬ρ} has no model.

∃:
A |= ∃xθ(x) implies there exists a ∈ A such that A |= θ(a). This implies

(by induction) θ(a) ∈ Σ. Which in turn implies ∃xθ(x) ∈ Σ, since otherwise
¬∃xθ(x) ∈ Σ but {¬∃xθ(x), θ(a)} has no model. Hence A |= ∃xθ(x) implies
∃xθ(x) ∈ Σ.

For the other direction suppose ∃xθ(x) ∈ Σ. Then since Σ is Henkin for
some constant symbol c we have (∃xθ(x)) → θ(c) ∈ Σ. Using completeness
and finite satisfiability we must have θ(c) ∈ Σ. By induction A |= θ(c) hence
A |= ∃xθ(x). Hence ∃xθ(x) ∈ Σ implies A |= ∃xθ(x).
2

Compactness Theorem. For any language L and set of L sentences Σ, if
every finite subset of Σ has a model, then Σ has a model.

proof:
First Henkinize Σ, then complete it. Take its canonical model. Then

reduct it back to an L-structure.
2

Problems

7.1 We say that T a set of L sentences is an L theory iff there exists a set Σ of L
sentences such that T is the set of all L sentences true in every model of Σ.
In this case we say that Σ is an axiomatization of T or that Σ axiomatizes the
theory T . Prove that any theory axiomatizes itself. Give an axiomatization
of the theory of partially ordered sets. The theory of groups is just the set
of all sentences of group theory which are true in every group. Give an
axiomatization of the theory of abelian groups.
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7.2 Suppose that T is a theory with a model. Show that T is complete iff for
every sentence θ in the language of T either every model of T is a model of
θ or every model of T is a model of ¬θ.

7.3 A theory T is finitely axiomatizable iff there is a finite Σ which axiomatizes
T . Let T be the set of sentences in the language of pure equality which are
true in every infinite structure. Prove that T is a theory by finding axioms
for it. Show that no finite set of these axioms axiomatizes T .

7.4 The theory of A, Th(A), is defined as follows:

Th(A) = {θ : θ is an L sentence and A |= θ}

Prove that Th(A) is a complete theory.

7.5 A and B are elementarily equivalent (written A ≡ B) iff Th(A) = Th(B).
Show that A ≡ B iff for every sentence θ if A |= θ, then B |= θ.

7.6 Suppose T is a theory with a model. Show the following are equivalent:

• T is complete

• any two models of T are elementarily equivalent

• T = Th(A) for some model of T

• T = Th(A) for all models of T

7.7 Show that for any set of sentences Σ and sentence θ, every model of Σ is a
model of θ iff there exists a finite Σ′ ⊆ Σ such that every model of Σ′ is a
model of θ.

7.8 Suppose that T is a finitely axiomatizable theory and Σ is any axiomatization
of T . Show that some finite Σ′ ⊆ Σ axiomatizes T .

7.9 (Separation) Let M(T ) be the class of all models of T . Suppose T and T ′

are theories in a language L andM(T )∩M(T ′) = ∅. Show that for some L
sentence θ,

M(T ) ⊆M(θ) and M(θ) ∩M(T ′) = ∅.

7.10 Let L be a first order language and suppose Ti, i ∈ I are theories in L such
that every L structure is a model of exactly one of the Ti’s. If I is finite does
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it then follow that each of the Ti’s is finitely axiomatizable? What about
infinite I?

7.11 Show that any theory with arbitrarily large finite models must have an infinite
model.

7.12 Suppose that T is an L-theory with an infinite model. Let X be any nonempty
set and {cx : x ∈ X} be new constant symbols not appearing in L. Prove
that the set of sentences T ∪ {cx 6= cy : x, y ∈ X, x 6= y} has a model. Prove
that any theory with an infinite model has an uncountable model.

7.13 Let the language of fields be {+, ·, 0, 1}. Give an axiomatization for fields of
characteristic 0. Show that this theory is not finitely axiomatizable. Show
that for any sentence θ true in all fields of characteristic 0 there is a k such
that θ is true in all fields of characteristic > k.

7.14 The cardinality of a model is the number of elements in its universe. Give an
example of a theory T such that for all n,

T has a model of cardinality n iff n is even.

Can you find a finitely axiomatizable T?

7.15 Is there a finitely axiomatizable theory with only infinite models? What if
the language consists of a single unary operation symbol? What about the
languages which contain only unary relation symbols?

7.16 Suppose that T is any theory in a language which includes a binary relation
symbol ≤ such that for every model A of T ≤A is a linear order. Show that
if T has an infinite model then T has a model B such that there is an order
embedding of the rationals into ≤B, i.e., there is a function f : Q→ B such
that p ≤ q iff f(p) ≤B f(q) for every p, q ∈ Q.

7.17 Let A = (A,≈) be the equivalence relation with exactly one equivalence class
of cardinality n for each n = 1, 2, . . . and no infinite equivalence classes. Show
that there exists B ≡ A which has infinitely many infinite equivalence classes.

7.18 A theory is consistent iff it has a model, i.e., it is realizable. Let T be a finitely
axiomatizable theory with only a countable number of complete consistent
extensions (ie T ′ ⊇ T ) in the language of T . Prove that one of these complete
consistent extensions is finitely axiomatizable.

7.19 For each of the following prove or give a counterexample:
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1. Let Tn for n ∈ ω be finite sets of sentences and S be a finite set of
sentences. Assume for all n ∈ ω that Tn ⊆ Tn+1, and there is a model
of Tn which is not a model of S. Then there is a model of ∪n∈ωTn which
is not a model of S.

2. Let Sn and Tn for n ∈ ω be finite sets of sentences. Assume that for all
n ∈ ω, Sn ⊆ Sn+1, Tn ⊆ Tn+1, and there is a model of Tn which is not a
model of Sn. Then there is a model of ∪n∈ωTn which is not a model of
∪n∈ωSn.

7.20 Let T0 ⊆ T1 ⊆ T2 ⊆ . . . be a sequence of L theories such that for each n ∈ ω
there exists a model of Tn which is not a model of Tn+1. Prove that ∪n∈ωTn
is not finitely axiomatizable. If L is finite, prove that ∪n∈ωTn has an infinite
model.
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Lowenheim-Skolem Theorems

The first version of the Lowenheim-Skolem Theorem was proved in 1915.
The final version that is presented here was developed by Tarski in the 1950’s.

Lemma 6 The number of L formulas is |L|+ ℵ0.

proof:
There are only countably many logical symbols. Hence if κ = |L| + ℵ0

then every formula may be regarded as an element of κ<ω and we know
|κ<ω| = κ.
2

Theorem For any theory T in a language L if T has a model, then it has
one of cardinality less than or equal to |L|+ ℵ0.
proof:

The canonical model of the completion of Henkinization of T has cardi-
nality ≤ |L|+ ℵ0. It is enough to see that the language of the Henkinization
of T has cardinality ≤ |L| + ℵ0, since the canonical models universe is the
set of equivalence classes of variable free terms. The Henkinization language
is ∪n<ωLn where L0 = L and Ln+1 is Ln plus one more constant symbol for
each formula of Ln. But by Lemma 6 there are |Ln|+ ℵ0 formulas of Ln. It
follows that if κ = |L|+ ℵ0, then |Ln| = κ for all n and so | ∪n<ω Ln| = κ.
2

A ⊆ B means that A is a substructure of B; equivalently B is an extension
or superstructure of A. This means that both structures are in the same
language L, A ⊆ B, for every n-ary relation symbol R of L, RA = RB ∩ An,
for every n-ary function symbol f of L, fA = fB � An, and for every constant
symbol c of L, cA = cB.

A � B means that A is an elementary substructure of B; equivalently B is
an elementary extension of A. This means that A ⊆ B and for every formula
θ(x1, x2, . . . , xn) of the language L and for every a1, a2, . . . , an ∈ A we have

(A, a)a∈A |= θ(ca1 , ca2 , . . . , can) iff (B, a)a∈A |= θ(ca1 , ca2 , . . . , can)

To ease the notational complexity we will write A |= θ(a1, . . . , an) instead of
(A, a)a∈A |= θ(ca1 , ca2 , . . . , can). It should be kept in mind that the language
L may have no constant symbols in it.
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Example. Let A = (ω,<) and let B = (Evens,<). Then B ⊆ A but B is
not an elementary substructure of A. This is because A |= ∃x 0 < x < 2 but
B |= ¬∃x 0 < x < 2.

Lemma 7 (Tarski-Vaught criterion) Suppose A ⊆ B are L structures and
for every L formula θ(x, y1, y2, . . . , yn), for all a1, a2, . . . , an ∈ A, and b ∈ B

B |= θ(b, a1, a2, . . . , an) implies there exists a ∈ A B |= θ(a, a1, a2, . . . , an).

Then A � B.

proof:
The proof is by induction on the number of logical symbols in the formula

θ. The atomic formula case is trivial because A is a substructure of B.
¬: A |= ¬θ iff not A |= θ iff(by induction) not B |= θ iff B |= ¬θ.
∨: A |= (θ∨ ρ) iff A |= θ or A |= ρ iff(by induction) B |= θ or B |= ρ iff

B |= (θ∨ ρ).
∃: A |= ∃xθ(x, a1, . . . , an) implies there exists a ∈ A such that A |=

θ(a, a1, . . . , an) which implies (by induction) B |= θ(a, a1, . . . , an). For the
other direction we use the criterion. B |= ∃xθ(x, a1, . . . , an) implies there
exists a ∈ A such that B |= θ(a, a1, . . . , an). Hence by induction A |=
θ(a, a1, . . . , an) and so A |= ∃xθ(x, a1, . . . , an).
2

Lemma 8 Suppose X ⊆ B and |X| = κ ≥ |L| + ℵ0 where B is an L
structure. Then there exists X∗ ⊇ X, |X∗| = κ, and for every formula
θ(x, y1, y2, . . . , yn), for all a1, a2, . . . , an ∈ X, and b ∈ B

B |= θ(b, a1, a2, . . . , an) implies ∃a ∈ X∗ B |= θ(a, a1, a2, . . . , an)

proof:
Fix ≤ a wellordering of B. For any L-formula θ(x, y1, . . . , yn) and

a1, . . . , an ∈ B,

define aθ(x,a1,...,an) ∈ B to be the ≤ least element b of B such that B |=
θ(b, a1, . . . , an) if one exists otherwise let it be arbitrary. Now let X0 = X,
L0 = L, and for any m < ω let Xm+1 =

{aθ(x,a1,...,an) : θ(x, y1, . . . , yn) is an Lm formula and {a1, . . . , an} ⊆ Xm}
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and let Lm+1 ⊇ Lm be the language with all these new constant symbols ad-
joined. Clearly if Xm and Lm have cardinality κ then so do Xm+1 and Lm+1,
since |κ<ω| = κ. Let X∗ = ∪m<ωXm, then it has cardinality κ since it is the
countable union of sets of cardinality κ. For every formula θ(x, a1, a2, . . . , an)
there exist some m < ω such that {a1, a2, . . . , an} ⊆ Xm and so the criterion
for θ(x, a1, a2, . . . , an) is satisfied at stage m+ 1.
2

Definition: |A| is the cardinality of the universe A of A.

Downward Lowenheim-Skolem Theorem. Suppose B is an infinite
structure in the language L, κ is a cardinal such that ℵ0 + |L| ≤ κ ≤ |B|,
and X ⊆ B such that |X| ≤ κ. Then there is a structure A such that A � B,
X ⊆ A, and |A| = κ.

proof:
By the lemma there exists X∗ ⊇ X of cardinality κ satisfying the crite-

rion. But note that the criterion implies that X∗ is closed under the opera-
tions of B. (Just look at the sentence ∃x x = f(a1, . . . , an).) Consequently
there is a substructure A of B with universe A = X∗. By the Tarski-Vaught
criterion A � B.
2

A ' B means that A and B are isomorphic, that is, there is a bijec-
tion j : A → B such that for every n-ary relation symbol R and for every
a1, a2, . . . , an ∈ A,

〈a1, a2, . . . , an〉 ∈ RA iff 〈j(a1), j(a2), . . . , j(an)〉 ∈ RB

and for every n-ary function symbol f and for every a1, a2, . . . , an ∈ A,

j(fA(a1, a2, . . . , an)) = fB(j(a1), j(a2), . . . , j(an))

(for n=0 this means that for every constant symbol c, j(cA) = cB.)

Lemma 9 Suppose j is an isomorphism between the L structures A and B.
Then for any L formula θ(x1, x2, . . . , xn) and any a1, a2, . . . , an ∈ A,

A |= θ(a1, a2, . . . , an) iff B |= θ(j(a1), j(a2), . . . , j(an))
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proof:
First show by induction that for every L-term τ(x1, . . . , xn) and sequence

a1, . . . , an ∈ A that

j(τA(a1, . . . , an)) = τB(j(a1), . . . , j(an)).

The proof of the lemma is by induction on the logical complexity of θ. For
atomic formula it follows from the definition of isomorphism. The proposi-
tional steps are easy and the quantifier step is handled by using that j is
onto.
2

A map j : A → B is an elementary embedding iff it is an isomorphism of
A with an elementary substructure of B. We write A �j B.

Lemma 10 A map j : A→ B is an elementary embedding iff for any formula
θ(x1, x2, . . . , xn) and any a1, a2, . . . , an ∈ A,

A |= θ(a1, a2, . . . , an) iff B |= θ(j(a1), j(a2), . . . , j(an))

proof:

Just unravel the definitions.
��
��

��
��
&%
'$
-

j
A

B
A′

2

Lemma 11 Suppose that A �j B, then there exists a structure B′ isomorphic
to B such that A � B′. Furthermore j is the restriction of this isomorphism
to A.

proof:
Let B′ be a superset of A such that the map j can be extended to a

bijection j : B′ → B, (which we also will call j). Now define fB′ and RB′ in
such away as to make j an isomorphism. This means that

RB′ = {(b1, . . . , bn) : (j(b1), . . . , j(bn)) ∈ RB}

and
fB′(b1, . . . , bn) = j−1(fB(j(b1), . . . , j(bn))
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for all b1, . . . , bn ∈ B′. Now check that B′ works.
2

The elementary diagram of A is defined as follows:

D(A) = {θ : θ is an LA sentence and (A, a)a∈A |= θ}

This means that D(A) is the theory of A with constants adjoined for each
element of the universe.

Lemma 12 If A is an L structure and B is an LA structure such that B |=
D(A), then there is a j such that A �j B � L.

proof:
Define j : A→ B by j(a) = cBa .

2

Upward Lowenheim-Skolem Theorem. For any infinite structure A in
the language L and cardinal κ such that |A|+ |L| ≤ κ, there is a structure B

such that A � B and |B|=κ.

proof:
Let Σ = D(A)∪{cα 6= cβ : α, β ∈ κ, α 6= β} where the cα are new constant

symbols.
Σ is finitely satisfiable. To see this let F ⊆ Σ be finite. Then there exists

a finite G ⊆ κ such that F ⊆ D(A) ∪ {cα 6= cβ : α, β ∈ G,α 6= β}. Since the
model A is infinite we can choose distinct elements of aα ∈ A for α ∈ G and
then (A, aα)α∈G |= F .

It follows from the compactness theorem that Σ has a model. Since
the language of Σ has cardinality κ by the downward Lowenheim Skolem
theorem Σ has a model C of cardinality κ. By the lemma there exists j such
that A �j C � L. By the other lemma C � L is isomorphic to a model B such
that A � B.
2

Problems

8.1 If an L theory T has an infinite model, then for any κ ≥ ℵ0 + |L|, T has a
model of cardinality κ.
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8.2 Let T be a consistent theory in a countable language. Suppose that T has
only countably many countable models up to isomorphism. Show that for
some sentence θ in the language of T that T ∪ {θ} axiomatizes a complete
consistent theory.

8.3 Show that if A ' B, then A ≡ B. Is the converse true? Show that if A � B,
then A ≡ B. Is the converse true?

8.4 Assume that A ⊆ B. Show that A � B iff for any n and a1, a2, . . . , an ∈ A we
have

(A, a1, a2, . . . , an) ≡ (B, a1, a2, . . . , an).

8.5 A subset X of a model A is definable iff for some formula θ(x) in the language
of A

X = {b ∈ A : A |= θ(b)}.

Show that if U ⊆ A is definable then for any isomorphism j : A→ A we have
U = {j(x) : x ∈ U}. Show that the only definable subsets of (Z,≤) are the
empty set and Z the set of all integers.

8.6 A theory T is categorical in power κ iff every two models of T of cardinality κ
are isomorphic. Suppose that T is a consistent theory that has only infinite
models and for some infinite cardinal κ ≥ |L|, T is κ categorical. Show that
T must be complete. This is called the ?Los-Vaught test. Is the assumption
of no finite models necessary?

8.7 Let the language of Ts be {S, c} and

1. θ ≡ ∀x∀y (S(x) = S(y)→ x = y)

2. ρ ≡ ∀x (x 6= c ⇐⇒ ∃yS(y) = x)

3. ψn ≡ ∀xSn(x) 6= x, where Sn(x) abbreviates S(S(· · ·S(x) · · ·)) where
we have n S’s.

4. Let Ts be the theory axiomatized by {θ, ρ} ∪ {ψn : n = 1, 2, . . .}.

Show that NSc = (ω, Sc, 0) is a model of Ts, where Sc is the successor function
(Sc(n) = n+ 1). Show that Ts is not finitely axiomatizable.

8.8 Is Ts categorical in some power? Show that Ts is complete.
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8.9 Let N∗Sc be the model consisting of (ω, Sc, 0) plus a disjoint copy of (Z, Sc).
Show that if a subset of N∗Sc is definable then it must either contain all of the
Z part or none of it. A set is cofinite iff it is the complement of a finite set.
Show that a subset of NSc is definable iff it is finite or cofinite.

8.10 Show that ≤ is not definable in NSc.

8.11 Axiomatize the theory of algebraically closed fields of characteristic k. Show
that this theory is categorical in every uncountable power. Hence this theory
is complete. Show that the reals are not a definable subset of (C,+, ·, 0, 1)
where C is the complex numbers.

8.12 Let A be a countable structure in a countable language that includes a unary
predicate symbol U such that UA is infinite. Show that there is a countable
B � A such that UB 6= UA.

8.13 Axiomatize the theory of dense linear orders without endpoints (DLO). That
is linear orders without greatest or least element such that between any
two distinct elements lies a third. For example, the rationals or the reals
under their usual order are dense linear orders. (Cantor) Show that any two
countable dense linear orders are isomorphic. Show that (Q,≤) � (R,≤)
where Q is the rationals and R is the reals. Is this true if we add to our
structures + and ·?

8.14 Can a theory have exactly ℵ0 nonisomorphic models? Can such a theory be
in a finite language?

8.15 Show that for any wellordering B = (B,≤) there is a countable wellordering
elementarily equivalent to it.

8.16 Prove or disprove: (A � C∧B � C∧A ⊆ B)→ A � B.

8.17 Prove or disprove: (A � B∧A � C∧B ⊆ C)→ B � C.

8.18 Prove or disprove: (A ⊆ B∧A ' B)→ A � B.

8.19 Prove or disprove: (A � B � C)→ A � C.

8.20 Prove or disprove: if A is isomorphic to a substructure of B and B is isomor-
phic to a substructure of A, then A ' B.

8.21 Prove or disprove: (∃j A �j B∧∃k B �k A)→ A ' B.

8.22 The atomic diagram of an L structure A (written D0(A)) is the set of quantifier
free sentences in D(A). Show that for any L structure A and LA structure
B that B |= D0(A) iff A is isomorphic to a substructure of B � L.
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8.23 Let A and B be two infinite linear orderings. Show that B is isomorphic to a
substructure of some elementary extension of A.

8.24 Let A � B and A ⊆ A′ and A′ ∩ B = A. Show that there exists B′ ⊇ B such
that A′ � B′.

8.25 Find a structure A in a countable language such that A has exactly ω1 elemen-
tary substructures and every proper elementary substructure is countable.

8.26 Suppose that A is a finite model and A ≡ B. Show that A ' B. Warning: the
language of A may be infinite.

8.27 Suppose
A0 � A1 � A2 � . . .

and let B = ∪n<ωAn. Show that for each n < ω, An � B. This is called
Tarski’s Elementary Chain Lemma.

8.28 A family F of structures is directed iff any two structures of F are elementary
substructures of some other structure in F . Show that every structure in a
directed family is an elementary substructure of the union.

8.29 Suppose T is a theory in a countable language which has an infinite model.
Show that T has a countable model that is not finitely generated. A structure
A is finitely generated iff there is a finite set F ⊆ A such that no proper
substructure of A contains F .

8.30 (DCLO) Axiomatize the theory of discrete linear orders without endpoints.
That is linear orders without greatest or least elements and any element has
an immediate successor and predecessor, for example the integers Z (nega-
tive and positive) under their usual ordering. Let A be any model of DCLO.
Define for x, y ∈ A x ≈ y iff there are only finitely many elements of A
between x and y. Show this is an equivalence relation and each equivalence
class is isomorphic to Z, call such a class a Z chain. Describe any model of
DCLO. Show that for any countable model of DCLO and any two Z chains
in the model there is an a countable elementary extension with a Z chain in
between. Show that any countable model of DCLO is an elementary sub-
structure of a model with countably many chains ordered like the rationals,
i.e. Z× Q. Show that DCLO is a complete theory.

8.31 Let N be the model (ω,+, ·,≤, 0, 1). If N∗ is any proper elementary extension
of N we refer to it as a nonstandard model of arithmetic. The elements of
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N∗ \N are the infinite integers of N∗. Show that the twin prime conjecture
is true, i.e. there are infinitely many p such that p and p + 2 are prime iff
in every nonstandard model of arithmetic N∗ there is an infinite p such that
N∗ |= “p and p+ 2 are prime”.

8.32 Let N∗ be any countable nonstandard model of arithmetic. Show that

(N∗,≤∗) ' (ω + (Z× Q),≤)

8.33 Show that for any set X of primes that there exist a countable model M ≡ N

and an x ∈M such that for every prime number p

p ∈ X iff M |= ∃y x = py.

Show that N has c many pairwise nonisomorphic countable elementary ex-
tensions.

8.34 Let Nfull be the model with universe ω and having a relation symbol R for
every relation R of any arity on ω, operation symbol f for every operation
on ω, and a constant symbol n for each element of ω. This is known as full
arithmetic. Show that the language of full arithmetic has cardinality c. Show
that every proper elementary extension of full arithmetic has cardinality ≥ c.

8.35 Let g(n) be the number of distinct prime divisors or n, with g(0) = g(1) = 0.
Prove that in every nonstandard model N∗ of full arithmetic, there is an
element b such that in N∗,

b > g(b) > g(g(b)) > g(g(g(b))) > · · ·

8.36 Find a set of sentences T in an uncountable language such that T has arbi-
trarily large finite models but no countable infinite model.

8.37 Find a theory T in an uncountable language that has no finite models and
has exactly one countable model up to isomorphism, but is not complete.

48



Turing Machines and Recursive Functions

A Turing machine is a partial function m such that for some finite sets
A and S the domain of m is a subset of S ×A and range of m is a subset of
S × A× {l, r}.

partial m : S × A→ S × A× {l, r}
We call A the alphabet and S the states.

For example, suppose S is the set of letters {a, b, c, . . . , z} and A is the
set of all integers less than seventeen, then

m(a, 4) = (b, 6, l)

would mean that when the machine m is in state a reading the symbol 4 it
will go into state b, erase the symbol 4 and write the symbol 6 on the tape
square where 4 was, and then move left one square.

˜ 0 3 4 ˜

head
read

6

machine m

in state a

˜ ˜ 0 3 6 ˜

head
read

6

machine m

in state b

If (a, 4) is not in the domain of m, then the machine halts. This is the
only way of stopping a calculation.

Let A<ω be the set of all finite strings from the alphabet A. The Turing
machine m gives rise to a partial function M from A<ω to A<ω as follows.

partial M : A<ω → A<ω

We suppose that A always contains the blank space symbol:

˜
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and S contains the starting state a. Given any word w from A<ω we imagine
a tape with w written on it and blank symbols everywhere else. We start the
machine in state a and reading the leftmost symbol of w. A configuration
consists of what is written on the tape, which square of tape is being read, and
the state the machine is in. Successive configurations are obtained according
to rules determined by m, namely if the machine is in state q reading symbol
s and m(q, s) = (q′, s′, d) then the next configuration has the same tape
except the square we were reading now has the symbol s′ on it, the new state
is q′, and the square being read is one to the left if d = l and one to the right
if d = r. If (q, s) is not in the domain of m, then the computation halts and
M(w) = v where v is what is written on the tape when the machine halts.

Suppose B is a finite alphabet that does not contain the blank space
symbol (˜). Then a partial function

partial f : B<ω → B<ω

is a partial recursive function iff there is a Turing machine m with an alphabet
A ⊇ B such that f = M � B<ω. A partial recursive function is recursive iff it
is total. A function f : ω → ω is recursive iff it is recursive when considered
as a map from B<ω to B<ω where B = {1}. Words in B can be regarded
as numbers written in base one, hence we identify the number x with x ones
written on the tape.

For example, the identity function is recursive, since it is computed by
the empty machine. The successor function is recursive since it is computed
by the machine:

--

1

(1,r)

˜ (1,r)

"!
# 

"!
# 

a b

m(a, 1) = (a, 1, r)
m(a, ˜) = (b, 1, r)

In the diagram on the left, states are represented by circles. The arrows
represent the state transition function m. For example, the horizontal arrow
represents the fact that when m is in state a and reads (˜), it writes 1, moves
right, and goes into state b.

The set of strings of zeros and ones with an even number of ones is
recursive. Its characteristic function (parity checker) can be computed by
the following machine:
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(˜, r)

1 (˜, r)

1(˜, r)

˜
(1, r) (˜, r)

˜
0

(˜, r)
m(a, 0) = (a, ˜, r)
m(a, 1) = (b, ˜, r)
m(b, 0) = (b, ˜, r)
m(b, 1) = (a, ˜, r)
m(a, ˜) = (c, 1, r)
m(b, ˜) = (c, ˜, r)

The following problems are concerned with recursive functions and pred-
icates on ω.

9.1 Show that any constant function is recursive.

9.2 A binary function f : ω×ω → ω is recursive iff there is a machine such that for
any x, y ∈ ω if we input x ones and y ones separated by “,”, then the machine
eventually halts with f(x, y) ones on the tape. Show that f(x, y) = x+ y is
recursive.

9.3 Show that g(x, y) = xy is recursive.

9.4 Let x−̇y = max{0, x − y}. Show that p(x) = x−̇1 is recursive. Show that
q(x, y) = x−̇y is recursive.

9.5 Suppose f(x) and g(x) are recursive. Show that f(g(x)) is recursive.

9.6 Formalize a notion of multitape Turing machine. Show that we get the same
set of recursive functions.

9.7 Show that we get the same set of recursive functions even if we restrict our
notion of computation to allow only tapes that are infinite in one direction.

9.8 Show that the family of recursive functions is closed under arbitrary com-
positions, for example f(g(x, y), h(x, z), z). More generally, if f(y1, . . . , ym),
g1(x1, . . . , xn), . . ., and gm(x1, . . . , xn) are all recursive, then so is

f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

9.9 Define

sgn(n) =

{
0 if n = 0
1 otherwise

Show it is recursive.
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9.10 A set is recursive iff its characteristic function is. Show that the binary
relation x = y is recursive. Show that the binary relation x ≤ y is recursive.

9.11 Show that if A ⊆ ω is recursive then so is ω \ A. Show that if A and B are
recursive, then so are A ∩B and A ∪B.

9.12 Suppose g(x) and h(x) are recursive and A is a recursive set. Show that f is
recursive where:

f(x) =

{
g(x) if x ∈ A
h(x) if x /∈ A

9.13 Show that the set of even numbers is recursive. Show that the set of primes
is recursive.

9.14 Show that e(x, y) = xy is recursive. Show that f(x) = x! is recursive.

9.15 Suppose that h(z) and g(x, y, z) are recursive. Define f by recursion,

• f(0, z) = h(z)

• f(n+ 1, z) = g(n, z, f(n, z)).

Show that f is recursive.

9.16 We say that a set A ⊆ ω is recursively enumerable (re) iff it is the range of a
total recursive function or the empty set. Show that a set is re iff it is the
domain of a partial recursive function.

9.17 Show that every recursive set is re. Show that a set is recursive iff it and its
complement are re.

9.18 Show that if f is an increasing total recursive function then the range of f is
recursive.

9.19 Suppose that f : ω → ω and g : ω → ω are recursive functions such that
f(m) < g(n) whenever m < n. Prove that either the range of f or the range
of g (or both) is recursive.

9.20 Let f(n) be the nth digit after the “.” in the decimal expansion of e. (f(1) = 7,
f(2) = 1, f(3) = 8). Prove that the function f is computable.

9.21 Show that there does not exist a total recursive function f(n,m) such that for
every total recursive function g(m) there is an n such that f(n,m) = g(m)
for every m.
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Church’s Thesis

One day in the 1930’s Alonzo Church said “Say, fellas, I think that every
function that is effectively computable is recursive. I think we have captured
this intuitive notion by this formal definition. From now on why don’t we
just assume if we describe an effective procedure it is possible to write done
a Turing machine that does it. This will save a lot of time verifying silly
details.”7 This philosophical position is known as Church’s Thesis.

Here is an excerpt in support of Church’s Thesis from Alan M. Turing8.
Note that Turing uses the word computer for the person that is performing
some effective procedure.

“Computing is normally done writing certain symbols on paper. We may
suppose this is divided into squares like a child’s arithmetic book. In ele-
mentary arithmetic the two-dimensional character of the paper is sometimes
used. But such a use is always avoidable, and I think that it will be agreed
that the two-dimensional character of paper is not essential for computa-
tion. I assume then that the computation is carried out on one-dimensional
paper, i.e., on a tape divided into squares. I shall also suppose that the
number of symbols which may be printed is finite. If we were to allow an
infinity of symbols, then there would be symbols differing to an arbitrarily
small extent. The effect of this restriction of the number of symbols is not
very serious. It is always possible to use sequences of symbols in the place
of a single symbol. Thus an Arabic numeral 17 or 9999999999999999999 is
normally treated as a single symbol. Similarly in any European language
words are treated as single symbols (Chinese, however, attempts to have an
infinity of symbols). The differences from our point of view between the
single and compound symbols is that the compound symbols, if they are too
lengthy, cannot be observed at one glance. This is in accordance with expe-
rience. We cannot tell at one glance whether 9999999999999999999999999
and 99999999999999999999999999 are the same.

“The behavior of the computer at any moment is determined by the
symbols which he is observing, and his ‘state of mind’ at that moment. We
may suppose that there is a bound B to the number of symbols or squares

7Actually these were probably not his exact words, in particular, he was interested in
some bizarre notion known as the lambda calculus.

8“On computable numbers, with an application to the Entscheidungsproblem”, Pro-
ceedings of the London Mathematical Society, 2-32(1936), 230-265.
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which the computer can observe at one moment. If he wishes to observe
more, he must use successive observations. We will also suppose that the
number of states of mind which need be taken into account is finite. The
reasons for this are of the same character as those which restrict the number
of symbols. If we admitted an infinity of states of mind, some of them will
be ‘arbitrarily close’ and will be confused. Again, the restriction is not one
which seriously affects computation, since the use of more complicated states
of mind can be avoided by writing more symbols on the tape.

“Let us imagine the operations performed by the computer to be split
up into ‘simple operations’ which are so elementary that it is not easy to
imagine them further divided. Every such operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special order),
and the state of mind of the computer. We may suppose that in a simple
operation not more than one symbol is altered. Any other changes can be
split up into simple changes of this kind. The situation in regard to squares
whose symbols may be altered in this way is the same as in regard to the
observed squares. We may, therefore, without loss of generality, assume that
the squares whose symbols are changed are always ‘observed’ squares.

“Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares must
be immediately recognizable by the computer. I think it is reasonable to
suppose that they can only be squares whose distance from the closest of
the immediately previously observed squares does not exceed a certain fixed
amount....

“The operation actually performed is determined, as has been suggested
above, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation.”

Other evidence for Church’s thesis is the fact that all other ways peo-
ple have come up with to formalize the notion of recursive functions (eg
RAM machines, register machines, generalized recursive functions, etc) can
be shown to define the same set of functions.

In his paper Turing also proved the following remarkable theorem.

54



Universal Turing Machine Theorem There is a partial recursive func-
tion f(n,m) such that for every partial recursive function g(m) there is an
n such that for every m, f(n,m) = g(m).

Equality here means either both sides are defined and equal or both sides
are undefined.
proof:

Given the integer n we first decode it as a sequence of integers by taking its
prime factorization, n = 2k13k2 · · · pkmm (pm is the mth prime number). Then
we regard each integer kj as some character on the typewriter (if kj too big
we ignore it). If the message coded by n is a straight forward description of
a Turing machine, then we carry out the computation this machine would
do when presented with input m. If this simulated computation halts with
output k, then we halt with output k. If it doesn’t halt, then neither does
our simulation. If n does not in a straight forward way code the description
of a Turing machine, then we go into an infinite loop, i.e., we just never halt.

2

9.22 Let f be the universal function above and let K = {n : 〈n, n〉 ∈ dom(f)}.
Show that K is re but not recursive.

9.23 The family of re sets can be uniformly enumerated by 〈We : e ∈ ω〉 where
We = {n : (e, n) ∈ dom(f)}. Show there exists a recursive function d : ω → ω
such that for any e ∈ ω if K∩We = ∅, then d(e) /∈ K∪We. This d effectively
witnesses that the complement of K is not re.
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Completeness theorem

The completeness theorem was proved by Kurt Gödel in 1929. To state
the theorem we must formally define the notion of proof. This is not because
it is good to give formal proofs, but rather so that we can prove mathematical
theorems about the concept of proof.

There are many systems for formalizing proofs in first order logic. One of
the oldest is the Hilbert-Ackermann style natural deduction system. Natural
systems seek to mimic commonly used informal methods of proofs. Another
such system is the Beth semantic tableau method where a proof looks like a
tree of formulas. This system is often used to teach undergraduates how to
do formal proofs.9

Other systems, such as Gentzen style sequence calculus, were invented
with another purpose in mind, namely to analyze the proof theoretic strength
of various versions of arithmetic.

Some proof systems were invented to be easy for a computer to use.
Robinson’s resolution method is popular with artificial intelligence people
who try to get the computer to prove mathematical theorems. On the other
hand it is hard for a human being to read a proof in this style.

The proof system we will use is constructed precisely to make the com-
pleteness theorem easy to prove.

Definition of proof: If Σ is a set of sentences and θ is any sentence, then
Σ proves θ (and we write Σ ` θ) iff there exists a finite sequence θ1, . . . , θn
of sentences such that θn = θ and for each i with 1 ≤ i ≤ n

1. θi is an element of Σ, or

2. θi a logical axiom, or

3. θi can be obtained by a logical rule from the earlier θj for j < i.

Logical axioms and rules depend of course on the system being used.

Completeness Theorem: For any set of sentences Σ and sentence θ we
have that:

9Corazza, Keisler, Kunen, Millar, Miller, Robbin, Mathematical Logic and
Computability.
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Σ ` θ iff every model of Σ is a model of θ.
MM proof system: In the MM proof system (for Mickey Mouse) the

logical axioms and logical rules are the following. We let all validities be
logical axioms, i.e., if a sentence θ is true in every model, then θ is a logical
axiom. In the MM system there is only one logical rule: Modus Ponens.
This is the rule that from (ψ → ρ) and ψ we can infer ρ. So in a proof if
some θi = (ψ → ρ) and some θj = ψ and k > i, j, then we can apply Modus
Ponens to get θk = ρ.

proof of completeness: The easy direction of the completeness theorem
is often called the soundness theorem: if Σ ` θ then every model of Σ is a
model of θ. To check that MM is sound is an easy induction on the length of
the proof: If θ1, . . . , θn is a sequence of sentences such that each θi is either
an element of Σ, a logical validity, or can be obtained by Modus Ponens from
the earlier θj for j < i; then by induction on j ≤ n every model of Σ is a
model of θj.

Now we prove the other direction of the completeness theorem. So sup-
pose that every model of Σ is a model of θ, we need to show that Σ ` θ.
Since every model of Σ is a model of θ the set of sentences Σ ∪ {¬θ} has no
models. By the compactness theorem there exists {θ1, . . . , θn} ⊆ Σ such that
{θ1, . . . , θn,¬θ} has no model. This means that

(θ1 → (θ2 → (· · · → (θn → θ) · · ·)))

is a validity and hence it is a logical axiom of system MM. Now it is easy
to show that Σ ` θ: just write down θ1, . . . , θn, and this logical axiom, and
then apply Modus Ponens n times.
2

Corollary 1 of the Completeness Theorem:
If Σ axiomatizes a theory T , then T = {θ : Σ ` θ}.

A set of sentences Σ is inconsistent iff there exists a propositional contra-
diction # such that Σ ` #. All contradictions are logically equivalent so we
write them #. Note that if Σ is inconsistent, then Σ proves every sentence,
because if # is a contradiction, then (#→ θ) is a propositional validity, so if
Σ ` #, then Σ ` θ. A set of sentences Σ is consistent iff it is not inconsistent.

Corollary 2 of the Completeness Theorem:
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Every consistent set of sentences has a model.

The poor MM system went to the Wizard of OZ and said, “I want to be
more like all the other proof systems.”

And the Wizard replied, “You’ve got just about everything any other
proof system has and more. The completeness theorem is easy to prove in
your system. You have very few logical rules and logical axioms. You lack
only one thing. It is too hard for mere mortals to gaze at a proof in your
system and tell whether it really is a proof. The difficulty comes from taking
all logical validities as your logical axioms.”

The Wizard went on to give MM a subset V al of logical validities that
is recursive and has the property that every logical validity can be proved
using only Modus Ponens from V al.

Let L be the largest countable language you can think of, i.e., for each
n,m < ω an operation symbol fn,m of arity m and a relation symbol Rn,m of
arity m. Note that we think of the fn,0 as constant symbols and the Rn,0 as
propositional symbols. The symbols of L can be written in a finite alphabet
if we imagine that each n < ω is a string of the symbols {0, 1, 2, . . . , 9}. Since
there are only finitely many logical symbols and variables are written xn for
n < ω, the following definition makes sense.

A set Σ of formulas in the language L is recursive iff there exists an
effective procedure which will decide whether θ is in Σ. That is, there exists
a machine which when given any string θ of symbols in this finite alphabet
will eventually halt and say “yes” or “no” depending on whether θ is in Σ.
A set Σ of formulas is recursively enumerable iff there exists an effective
procedure that will list all the formulas in Σ.

10.1 Show that the set of sentences of L is recursive.

10.2 Show that the set of propositional sentences of L that are validities is recursive.

10.3 An L formula θ is in prenex normal form iff

θ = Q1x1 Q2x2 · · ·Qn xnψ

where ψ is quantifier free and each Qi is either ∀ or ∃ (i.e., all quantifiers
occur up front). Show there exists a recursive map p from L-formulas to
prenex normal form L-formulas such that θ and p(θ) are logically equivalent
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for every θ. Two formulas θ(x1, . . . , xn), ψ(x1, . . . , xn) are logically equivalent
iff ∀x1 · · · ∀xn(θ(x1, . . . , xn) ⇐⇒ ψ(x1, . . . , xn)) is a logical validity.

10.4 Let f is a new operation symbol not in appearing in θ(x, y). Show ∀x∃yθ(x, y)
has a model iff ∀xθ(x, f(x)) has a model.

10.5 (Skolemization) An L formula θ is universal iff it is in prenex normal form
and all the quantifiers are universal (Qi is ∀ for each i). Show there exists a
recursive map s from L sentences to universal L sentences such that

θ has a model iff s(θ) has a model

for every θ an L sentence.

10.6 Similarly an L formula is existential iff it is in prenex normal form and all the
quantifiers are existential ( Qi is ∃ for each i). Show there exists a recursive
map e from L sentences to existential L sentences such that

θ is a validity iff e(θ) is a validity
for every θ an L sentence.

10.7 (Herbrand) Suppose we have an existential L sentence θ of the form

∃x1 . . . ∃xn ψ(x1, . . . , xn)

where ψ is quantifier free. Show that θ is a validity iff for some m < ω there
exists a sequence

~τ1, ~τ2, . . . ~τm

such that each ~τi is a n-tuple of variable free terms of L and

[ψ(~τ1)∨ψ(~τ2)∨ · · · ∨ψ( ~τm)] is a validity.

10.8 Show that the set of quantifier free sentences of L that are validities is recur-
sive.

10.9 Prove that the set of logical validities of L is recursively enumerable.

10.10 Find a recursive set of logical validities V al in the language L such that
every logical validity in L can be proved using only Modus Ponens and logical
axioms from V al.
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In the following problems assume all languages are recursive
subsets of L.

10.11 Show that for any recursive set Q of sentences the set of all θ such that Q ` θ
is recursively enumerable.

10.12 A theory is said to be recursively axiomatizable iff it can be axiomatized by
a recursive set of sentences. (Craig) Show that any recursively enumerable
theory is recursively axiomatizable.

10.13 A theory axiomatized by Σ is decidable iff the set {θ : Σ ` θ} is recursive.
Show that any complete recursively axiomatizable theory is decidable. Show
that the theory of (ω, Sc, 0) is decidable. Show that the theory of dense linear
orderings with no end points is decidable. Show that the theory of (R, E) is
decidable, where E = {(x, y) : (x − y) ∈ Q}. Show that the Th(C,+, ·) is
decidable.

10.14 Show that any undecidable recursively axiomatizable theory is incomplete.

10.15 Let T be a theory in a finite language without any infinite models. Show that
T is decidable.

10.16 Suppose that T is a recursively axiomatizable theory. Show that T is decid-
able iff the set of sentences θ such that T ∪ {θ} has a model is recursively
enumerable.

10.17 Show that the set of validities in the language of pure equality is decidable.

10.18 Show that the theory of one equivalence relation is decidable.

10.19 Let T be a consistent recursively axiomatizable theory. Call a formula θ(x)
in the language of T strongly finite iff in every model A of T , only a finite
number of elements satisfy θ(x). Prove that the set of strongly finite formulas
is recursively enumerable.

10.20 Suppose T is a decidable theory and θ is a sentence in the language of T .
Show that T ∪{θ} is decidable. Hence finite extensions of decidable theories
are decidable.

10.21 Suppose T is a consistent decidable theory. Show there exists a complete
consistent decidable T ′ ⊇ T in the same language as T .
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10.22 Suppose T is a consistent decidable theory in a language L. Suppose that
L′ = L ∪ {c} is the bigger language with one new constant symbol. Prove
that the L′ theory axiomatized by T is decidable.

10.23 Suppose T is a consistent decidable theory. Show there exists a consistent
Henkin T ′ ⊇ T which is decidable.

10.24 Suppose T is a consistent decidable theory. Show that T has a recursive
model (i.e., a model whose universe is a recursive subset of ω and such that
all relations and operations are recursive).
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Undecidable Theories

The incompleteness theorem was proved by Kurt Gödel in 1930. It was
improved by Barkley Rosser in 1936. A vague statement of it is that any
theory which can be recursively axiomatized and is strong enough to prove
elementary facts about multiplication and addition on the natural numbers
must be incomplete. Here we will develop a version of this theorem based on
a small fragment of the theory of finite sets.

HF is the set of all hereditarily finite sets. A set is hereditarily finite iff
the set is finite, all elements of it are finite, all elements of elements of it are
finite, etc, etc. The formal definition is that HF = ∪n<ωVn where V0 = ∅
and Vn+1 is the set of all subsets of Vn.

11.1 Show that if x, y ∈ HF then 〈x, y〉 ∈ HF . Show that if X, Y ∈ HF then
X × Y ∈ HF . Let Y X be the set of all functions with domain X and range
Y . Show that if X, Y ∈ HF then Y X ∈ HF .

11.2 Prove that HF is transitive.

The ∆0 formulas are the smallest set of formulas containing x ∈ y, x = y
(i.e., all atomic formulas), closed under ∨ and ¬ and bounded quantifiers
∀x ∈ y and ∃x ∈ y. By this we mean that if θ is a ∆0 formula and x and
y are any two variables, then ∃x ∈ y θ and ∀x ∈ y θ are ∆0 formulas. The
formal definition of ∃x ∈ y θ is ∃x(x ∈ y ∧ θ) and ∀x ∈ y θ written formally
is ∀x(x /∈ y ∨ θ).

A formula is Σ1 iff it has the form:

∃x1∃x2 . . . ∃xnφ

where φ is a ∆0 formula. A subset X of HF is ∆0 iff there exists a
formula θ(x) (which may have constant symbols for elements of HF ) and
X = {a ∈ HF : (HF,∈) |= θ(a)}. Similarly for Σ1 subsets. A subset of HF
is ∆1 iff it and its complement are Σ1.

11.3 Show that ω is a definable subset of (HF,∈). Show that ω is a ∆1 subset of
(HF,∈).

11.4 A<ω is the set of all functions with domain some n ∈ ω and range contained
in A. Show for any A ∈ HF that A<ω is ∆1.
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11.5 Suppose partial m : S × A → S × A × D is a partial function in HF and
B ⊆ A and f : B<ω → B<ω is the associated partial recursive function.
Show there exists a Σ1 formula θ(x, y) such that for every u, v ∈ B<ω

f(u) = v iff (HF,∈) |= θ(u, v)

11.6 Show that a set X ⊆ B<ω is recursively enumerable iff it is a Σ1 subset of
HF .

11.7 Show that for any B ∈ HF every recursive subset of B<ω is a ∆1 subset of
HF . Show that every ∆1 subset of B<ω is recursive.

11.8 Assume that every recursively enumerable subset of ω is a definable subset of
HF . Show that the complete theory Th(HF,∈) is undecidable. Show that
every recursively axiomatizable T ⊆ Th(HF,∈) is incomplete.

11.9 Consider the following theory of finite sets FIN. The language of FIN has only
one binary relation E which we like to write using infix notation. There are
four axioms:

Empty Set. ∃x ∀y¬(yEx)
Extensionality. ∀x∀y(x = y ⇐⇒ ∀z(zEx ⇐⇒ zEy))
Pairing. ∀x∀y∃z∀u(uEz ⇐⇒ (u = x∨u = y))
Union. ∀x ∃y (∀z(zEy ⇐⇒ (∃uuEx∧ zEu))

Prove that (HF,∈) is a model of FIN.

11.10 The theory FIN has no constant symbols, however the empty set is unique and
can be defined by θ(x) = ∀y¬(yEx). Show there exists an effective mapping
from HF into ∆0 formulas (without parameters and having one free variable
x), say a→ θa(x), such that

(HF,∈) |= θa(a)

and

FIN ` ∃!x θa(x).

11.11 If M and N are models of FIN we say that M ⊆e N iff M is a substructure
of N and N is an end extension of M , this means that for any a ∈ M if
N |= bEa then b ∈ M . Show that for every model N of FIN there exists
M ⊆e N such that M is isomorphic to (HF,∈).
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11.12 Let θ(u) be any Σ1 formula. Show that for any u ∈ HF :

(HF,∈) |= θ(u) iff FIN ` θ(u)

Since FIN has no constant symbols we really mean ∃x(θu(x)∧ θ(x)) where
we have written θ(u).

11.13 Show that FIN is not a decidable theory, i.e., the set

{θ : FIN ` θ}

is not recursive.

11.14 (Church) By considering validities of the form ∧FIN→ θ, show that the set
of validities in the language of one binary relation is not recursive.

11.15 Let T be any consistent recursively axiomatizable theory in one binary relation
that is consistent with FIN (eg ZFC). Show that T is incomplete.

11.16 (Mostowski, Robinson, Tarski) Call a theory T strongly undecidable iff T
is finitely axiomatizable and every theory T ′ in the language of T that is
consistent with T is undecidable. Show that FIN is strongly undecidable.

11.17 We say that a model A is interpretable in B iff the universe of A and the
relations and operations of A are definable in B. They may have completely
different languages, say La and Lb. Assume these languages are finite. Show
there exists a recursive map r from La sentences to Lb such that

A |= θ iff B |= r(θ)

for any La sentence θ. This technique is called relativization of quantifiers.

11.18 Call a structure strongly undecidable iff it models some strongly undecidable
theory. Suppose B is a structure in which a strongly undecidable structure
A is definable. Show that B is strongly undecidable.

11.19 Show the theory of graphs is undecidable, i.e., the set of sentences true in
every graph is not recursive. Hint: Let (A,R) be any binary relation and
find a graph (V,E) and a pair of formulas U(x) and Q(x, y) in the language
of graph theory such that A = {v ∈ V : (V,E) |= U(v)} and R = {(u, v) :
(V,E) |= Q(u, v)}.

11.20 Show that the theory of partially ordered sets is undecidable.
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11.21 Show that the theory of two unary operation symbols is undecidable.

11.22 Show that the structure (ω,+, ·, 0, 1,≤, xy) is strongly undecidable. Hint:
Use only positive integers. Define xEy iff there exists a prime p such that px

divides y but px+1 does not. Say that z is transitive iff for any x, y if xEy
and yEz then xEz. Define the x ≈ y iff for all z zEx iff zEy. Define x to
be minimal iff for all y ≈ x we have x ≤ y. Let H be the set of all x such
there exists a transitive z with xEz and every y such that yEz is minimal.
Show that there exists an isomorphism from (H,E) to (HF,∈).

The next goal is show that the structure (ω,+, ·) is strongly undecidable.
To do this we need a little number theory.

11.23 Prove the Chinese Remainder Theorem. Given any finite sequence of pair-
wise relatively prime integers 〈p0, . . . , pn−1〉 and given any finite sequence of
integers 〈x0, . . . , xn−1〉 there exists an integer x such that xi = x mod pi for
all i < n. Two integers are relatively prime iff their greatest common divisor
is one.

11.24 Prove that pi = 1 + (i+ 1)(n!) for i < n are pairwise relatively prime.

11.25 Show there exists a formula θ(i, u, x, y) in the language of (ω,+, ·) such that
for every 〈x0, . . . , xn−1〉 ∈ ω<ω there exists x, y ∈ ω such that for each i < n
xi is the unique u such (ω,+, ·) |= θ(i, u, x, y).

11.26 Show that the structure (ω,+, ·) is strongly undecidable.

11.27 Show that the structure (Z,+, ·) is strongly undecidable. Hint:Lagrange
proved that every positive integer is the sum of four squares.

11.28 Prove that the theory of rings is undecidable.

11.29 Show that the structure (Z,+, x divides y) is strongly undecidable.

11.30 (Tarski) Show that the theory of groups is undecidable. Hint: Let G be the
group of all bijections of Z into itself where the group operation is composi-
tion. Let s ∈ G be defined by s(x) = x + 1. Embed Z into G by mapping
i to si. Show that for any t ∈ G that t commutes with s iff t = si for some
integer i. Show that i divides j iff every element of G that commutes with
si commutes with sj. Show therefore that (Z,+, i divides j) can be defined
in G.

11.31 Julia Robinson showed that Z is explicitly definable in the structure (Q,+, ·).
Prove that the theory of fields is undecidable.
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11.32 Show that Z is not definable in (C,+, ·).

11.33 (Julia Robinson) Show that plus is definable in (ω, ·, Sc). Hence the structure
(ω, ·, Sc) is strongly undecidable. Hint: Let a + b = c and multiply out
(ac+ 1)(bc+ 1).

11.34 Prove or give a counterexample: Let S be a decidable set of sentences in
propositional logic using the propositional letters {Pn : n < ω}. Then

{θ : S ` θ}

is decidable.

11.35 Let T be a recursively axiomatizable theory with no decidable consistent
complete extensions. Show that there are c many distinct complete extensions
of T .

11.36 Let T be a consistent recursively axiomatizable extension of FIN. Let A ⊆ ω
be a nonrecursive set of integers. Show there exists a model A of T that is
an end extension of (HF,∈) and such that for no formula θ(x) is

A = {n < ω : A |= θ(n)}.

11.37 Prove that the following set is recursively enumerable but not recursive:

{θ : θ is an L sentence with a finite model}

11.38 Another way to see that the structure (ω,+, ·, 0, 1,≤) is strongly undecidable
is to use Robinson’s theory Q. The axioms of Q are

1. 0 6= 1

2. ∀x(x+ 0 = x)

3. ∀x∀y(x+ (y + 1) = (x+ y) + 1

4. ∀x(x · 0 = 0)

5. ∀x∀y(x · (y + 1) = x · y + 1)

6. ∀x∀y(x ≤ y ⇐⇒ ∃z(x+ z = y))
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Then the ∆0 are the smallest family of formulas containing the atomic formu-
las, closed under ∨,¬ and bounded quantification, i.e., ∃x ≤ y and ∀x ≤ y.
Show that a set A ⊆ ω is recursively enumerable iff there exists a Σ1 formula
θ(x) such that for n < ω

n ∈ A iff Q ` θ(n)

11.39 The theory of Peano arithmetic, PA, is axiomatized by Q plus the induction
axioms. For each formula θ(x, ~y) the following is an axiom of PA:

∀~y[(θ(0, ~y)∧∀x(θ(x, ~y)→ θ(x+ 1, ~y)))→ ∀xθ(x, ~y)]

The analogue of PA in set theory is ZFCFIN. ZFCFIN is ZFC minus the
axiom of infinity plus the negation of the axiom of infinity. PA and ZFCFIN
have exactly the same strength. There is a correspondence between models
and theorems of these two theories. Formalize these statements and prove
them.
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The second incompleteness theorem

Gödel’s second incompleteness theorem may be paraphrased by saying
that a consistent recursively axiomatizable theory that is sufficiently strong
cannot prove its own consistency unless it is inconsistent. To prove it we
must give a more explicit proof of the first incompleteness theorem.

Thruout this section we will be assuming T is a consistent recursively
axiomatizable theory in a language that contains a symbol n for each n ∈ ω.
(More generally it would be enough to suppose these constants were nicely
definable in T , as for example they are in set theory.)

We say that the partial recursive functions are representable in T iff for
every partial recursive function f : ω 7→ ω there exists a formula θ(x, y) such
that for every n,m ∈ ω

f(n) = m iff T ` θ(n,m)

and furthermore
T ` ∀x∃≤1y θ(x, y)

the quantifier ∃≤1y meaning there exists at most one y. Note that we do not
demand that f is total.

We say that the recursively enumerable sets are representable in T iff for
every recursively enumerable set A ⊆ ω there is a formula of θ(x) such that
for every n ∈ ω,

n ∈ A iff T ` θ(n)

We have already seen that a consistent recursively axiomatizable theory in
which every recursively enumerable set is representable must be incomplete,
since there exist recursively enumerable sets that are not recursive.

12.1 Show that if every partial recursive function is representable in T then every
recursively enumerable set is representable in T .

Now since T is recursively axiomatizable the formulas of the language
of T are a recursive set. We use θ 7→ pθq to mean a recursive map from
the sentences of the language of T to ω. One could get tricky and do this
in some unnatural way, but we assume here that is done simply, as follows.
First number all the symbols of T and the logical symbols. We assume that
the type and arity of each symbol is given by recursive functions and also our
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special symbols ‘n’ correspond to a recursive set. The map that takes n to
the number that codes the symbol n should be recursive. Then each formula
is a finite string of symbols and so corresponds to a sequence of numbers
〈a1, a2, . . . , an〉. Map this to 2a13a2 . . . pann where pn is the nth prime number.
Such a map (from sentences to numbers) is called a Gödel numbering.

Fixed point lemma: Suppose T is a consistent recursively axiomati-
zable theory in which every partial recursive function is representable. Let
ψ(x) be any formula with one free variable. Then there exists a sentence θ
such that

T ` ‘θ ⇐⇒ ψ(pθq)’

proof:
The sentence θ says in effect “I have the property defined by ψ”. Consider

the recursive map ρ(x) 7→ ρ(pρq). That is, given a formula ρ(x) with one
free variable map it to the formula gotten by substituting the Gödel number
of ρ into the free variable of ρ. Since this function is recursive there exist a
formula χ(x, y) such that for any τ and ρ(x) we have that

τ = ρ(pρq) iff T ` χ(pτq, pρq)

and

T ` ∀x∃≤1y χ(x, y)

Now define σ(x) = ∃y(χ(x, y)∧ψ(y)) and let θ = σ(pσq). We claim that
T ` ψ(pθq) ⇐⇒ θ. To see this let A be any model of T . If A |= θ then
A |= ∃y(χ(pσq, y)∧ψ(y)), by the definition of θ. But T ` χ(pσq, pθq), hence
A |= ψ(pθq). Alternatively suppose A |= ψ(pθq) then A |= χ(pσq, pθq)∧ψ(pθq)
Hence A |= ∃y χ(pσq, y)∧ψ(pθyq), and so A |= θ.
2

12.2 (Tarski, truth is not definable.) Suppose T is a consistent recursively axioma-
tizable theory in which every partial recursive function is representable and A

is a model of T . Let Truth= {pθq : A |= θ}. Show that Truth is not definable
in A.

12.3 (The First Incompleteness Theorem.) If T is a consistent recursively axioma-
tizable theory in which every partial recursive function is representable, then
the theorems of T are a recursively enumerable set. Hence there exists a
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formula in the language of T such that for any θ a sentence in the language
of T

T ` Prf(pθq) iff T ` θ
Show there exists a sentence θ that asserts its own unprovability, that is

T ` ‘θ ⇐⇒ ¬Prf(pθq)’

Show that this θ is neither provable nor refutable in T .

The Second Incompleteness Theorem: From now on fix a consistent
recursively axiomatizable theory T in which every partial recursive function
is representable. The statement which stands for T is consistent can now be
thought of as a sentence in the language of T :

con(T ) = ¬Prf(p0 = 1q)

We wish to show that T does not prove con(T ). However there are many
different Prf formulas and for some of these it may be possible to prove
con(T )!

12.4 Let Prf∗(x) be the formula (Prf(x)∧x 6= p0 = 1q). Show that T ` con∗(T )
where con∗(T ) = ¬Prf∗(p0 = 1q), and for every sentence θ we have T ` θ iff
T ` Prf∗(pθq).

We say that the Prf(x) is a reasonable proof predicate for a theory T iff
it satisfies:

1. T ` Prf(pθq) iff T ` θ.

2. T `‘(Prf(pθq)∧Prf(p(θ → ρ)q)→ Prf(pρq)’.

3. T `‘Prf(pθq)→ Prf(pPrf(pθq)q)’.

The second condition is kind of a Modus ponens for proofs while the last
condition basically says that if you can prove θ, then you can prove that you
can prove θ.

12.5 Show that ZFC has a reasonable proof predicate.

12.6 Suppose that T is a theory with a reasonable proof predicate Prf(x) and θ is
a sentence which asserts its own unprovability:

T ` θ ⇐⇒ ¬Prf(pθq)
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Show that T ` con(T )→ θ. Conclude that T 6` con(T ).

12.7 (Löb) Let θ be a sentence of ZFCsuch that

ZFC ` ‘θ ⇐⇒ Prf(pθq)’

Show that ZFC` θ.

12.8 Suppose ZFCis consistent. Show that there exists a recursively axiomatizable
consistent T extending ZFCsuch that T ` ¬con(T ).

12.9 Find a consistent theory T ⊇ ZFC and a first order sentence (in any language)
such that

T ` θ has a finite model
but θ does not have a finite model.

12.10 Suppose T is a recursively axiomatizable theory contained in Th(ω,+, ·).
Show that there exists a model A of T and a formula θ(x) such that the
least n ∈ A such that A |= θ(n) is infinite.
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