29. Suppose $f : I \rightarrow J$, U is an ultrafilter on I, and

$$V = \{ X \subseteq J : f^{-1}(X) \in U \}$$

Show that V is an ultrafilter on J. This is the definition of the Rudin-Keisler ordering on ultrafilters and is written $V \leq_{\text{RK}} U$. Show that for any structure \mathfrak{A} there is an elementary embedding of \mathfrak{A}^I/V into \mathfrak{A}^J/U.

30. An ultrafilter U on I is called (κ, ω)-regular iff there exists $I_\alpha \in U$ for $\alpha < \kappa$ such that for any infinite $X \subseteq \kappa$

$$\bigcap\{ I_\alpha : \alpha \in X \} = \emptyset$$

Show that U is (κ, ω)-regular iff there exists a regular ultrafilter V on $[\kappa]^{<\omega}$ such that $V \leq_{\text{RK}} U$. V regular means that for every $\alpha < \kappa$

$$\{ F \in [\kappa]^{<\omega} : \alpha \in F \} \in V$$

31. Let U be a (κ, ω)-regular ultrafilter on I (κ an infinite cardinal) and let \mathfrak{A} be any infinite \mathcal{L}-structure where $|\mathcal{L}| = \kappa$. Show that \mathfrak{A}^I/U is weakly saturated (i.e. realizes every consistent type).

32. Show that if $\mathfrak{A} = (\omega_1, <)$ then \mathfrak{A}^ω/U is not ω_2-saturated for any ultrafilter U on ω.

33. Let T be the theory of $(P(X), \subseteq)$ where X is an infinite set, $P(X)$ is the power set of X, and \subseteq is the binary relation of inclusion restricted to $P(X)$. Show for any infinite cardinal κ, that any κ^+-saturated model of T has cardinality at least 2^κ.

34. Let κ be an infinite singular cardinal. Show that there is no linear order of cardinality κ which is κ-saturated.