Towers on Trees

Martin Goldstern; Mark J. Johnson; Otmar Spinas

557-564.

Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28199410%29122%3A2%3C557%3ATOT%3E2.0.CO%3B2-R

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Proceedings of the American Mathematical Society is published by American Mathematical Society. Please contact
the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained
at http://www.jstor.org/journals/ams.html.

Proceedings of the American Mathematical Society
©1994 American Mathematical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
TOWERS ON TREES

MARTIN GOLDSTERN, MARK J. JOHNSON, AND OTMAR SPINAS

(Communicated by Franklin D. Tall)

ABSTRACT. We show that (under MA) for any \mathcal{C} many dense sets in Laver forcing \mathbb{L} there exists a σ-centered $\mathcal{Q} \subseteq \mathbb{L}$ such that all the given dense sets are dense in \mathcal{Q}. In particular, MA implies that \mathbb{L} satisfies MA and does not collapse the continuum and the additivity of the Laver ideal is the continuum.

1. INTRODUCTION

In [V] a model for ZFC has been constructed where Martin's Axiom holds for perfect set forcing (\mathcal{S}) and the continuum is arbitrarily large. It is clear that for this we cannot just iterate forcing with \mathcal{S} since then we would have to use countable supports and hence would never get the continuum larger than ω_2. Velickovic's method is roughly the following. For \mathcal{P} a forcing notion and \mathcal{C} a class (or property) of forcing notions consider the following statement $\mathcal{C}(\mathcal{P})$:

Whenever \mathcal{D} is a family of at most 2^{\aleph_0} many dense sets in \mathcal{P}, $p \in \mathcal{P}$, then there is a $\mathcal{Q} \in \mathcal{C}$, $p \in \mathcal{Q} \subseteq \mathcal{P}$, such that for every $D \in \mathcal{D}$, $D \cap \mathcal{Q}$ is dense in \mathcal{Q}.

Velickovic constructs a finite support iteration where each iterand is alternately either a carefully chosen finite support product of ccc suborderings of \mathcal{S} or an arbitrary ccc forcing. The delicate point is to show that each of those finite support products is ccc. In that way a model is obtained where simultaneously $\text{ccc}(\mathcal{S})$ (where ccc is the class of all partial orderings satisfying the countable chain condition) and MA hold. Then clearly MA(\mathcal{S}) is also true.

Velickovic proves that MA is not enough to get MA(\mathcal{S}), a fortiori MA does not imply ccc(\mathcal{S}). In [V] it is even shown that PFA implies the failure of ccc(\mathcal{S}).

Velickovic indicates that a construction similar to that he does for \mathcal{S} works for all tree-like forcings. Here we show that at least for Mathias, Laver, and...
Miller forcing there is no need for such a construction. Writing t for the length of the shortest maximal tower in $[\omega]^{\omega}/\text{finite}$, we show:

Theorem. (a) $t = \omega$ implies σ-centered(Mathias).
(b) $t = \omega$ implies σ-centered(Laver).
(c) $\text{MA}(\sigma$-centered) implies σ-centered(Miller).

Our method of proof uses ideas from [JMS]. As corollaries of the theorem we obtain that if MA holds, then first, Mathias, Laver, and Miller forceings do not collapse the continuum—in the case of Laver forcing our proof is a slight improvement of the result "MA(σ-centered) implies that Laver forcing does not collapse cardinals" from [JMS] (recall that MA(σ-centered) easily implies $t = \omega$), for Miller forcing this provides a correction to the proof from [JMS]. Second, MA holds for these forceings, and third, the ideals associated with them have additivity continuum.

2. Capturing density

2.1. **Definition.** If P is a forcing notion, $D \subseteq P$ dense, $Q \subseteq P$, then we say that Q captures the density of D if $D \cap Q$ is dense in Q.

If \mathcal{D} is a family of dense sets, then we say that Q captures the density of \mathcal{D} if and only if Q captures the density of each $D \in \mathcal{D}$.

2.2. **Definition.** If \mathcal{F} is a class of forcing notions, P a forcing notion, then we write $\mathcal{F}(P)$ for the statement

Whenever \mathcal{D} is a family of at most 2^{\aleph_0} many dense sets in P, $p \in P$, then there is a $Q \in \mathcal{F}$, $p \in Q \subseteq P$, which captures the density of \mathcal{D}.

(This notion is due to [V].)

The motivation for this concept is given by the following two facts:

2.3. **Fact.** If MA(\mathcal{F}) and $\mathcal{F}(P)$, then MA(P).

(Here, MA(P) means that for any collection of less than 2^{\aleph_0} many dense sets in P there exists a filter intersecting all of them. MA(\mathcal{F}) means that MA(P) holds for all P in \mathcal{F}. Thus, the usual MA is MA(ccc).)

2.4. **Fact.** If $\text{ccc}(P)$, then P does not change the cofinality of any cardinal $\leq 2^{\aleph_0}$.

Proof. Assume $\text{ccc}(P)$; let $\lambda < \text{cf}(\kappa)$, $\kappa \leq \omega$; and assume that

\[p_0 \vdash f : \lambda \rightarrow \kappa \text{ is cofinal}. \]

For $\alpha < \lambda$ let

\[D_\alpha := \{ p : p \perp p_0 \text{ or } \exists \beta p \vdash f(\check{\alpha}) = \check{\beta} \}, \]

and for $\gamma < \kappa$ let

\[E_\gamma := \{ p : p \perp p_0 \text{ or } \exists \alpha \exists \beta > \gamma p \vdash f(\check{\alpha}) = \check{\beta} \}. \]

Clearly all sets D_α and all sets E_γ are dense.
Let \(Q \subseteq P \) be a ccc set capturing the density of all \(D_\alpha \) and all \(E_\gamma \), with \(p_0 \in Q \). Let \(G \subseteq Q \) be generic, \(p_0 \in G \). Since \(Q \) is ccc,

\[
V[G] \models \text{cf}(\kappa) > \lambda.
\]

Working in \(V[G] \), let

\[
R := \{ (\alpha, \beta) : \alpha < \lambda, \beta < \kappa, \exists p \in G, V \models p \Vdash_{F} \check{\alpha} = \check{\beta} \}.
\]

It is easy to see that (in \(V[G] \)):

1. \(R \) is a function (with domain \(\lambda \)) and
2. the range of \(R \) is cofinal in \(\kappa \).

So \(V[G] \models \text{cof}(\kappa) \leq \lambda \), a contradiction.

3. LAVER FORCING

3.1. Theorem. \(t = c \) implies \(\sigma \)-centered(Laver).

3.2. Notation. \(\mathbb{L} \) will be the set of conditions in Laver forcing. For \(p \in \mathbb{L} \) we let \(\text{stem}(p) \in ^{<\omega}\omega \) be the stem of \(p \) and \(p^{-} := \{ s \in p : \text{stem}(p) \subseteq s \} \), \(\text{succ}_p(s) := \{ i : s \upharpoonright i \in p \} \).

Note that we write forcing "upwards": \(p \geq q \) if and only if \(p \subseteq q \) if and only if \(p \) "extends" \(q \) if and only if \(p \) "has more information than" \(q \).

We write \(p \geq^{0} q \) if and only if \(p \geq q \) and \(\text{stem}(p) = \text{stem}(q) \).

3.3. Definition. Let \(\kappa \) be an ordinal. A sequence \(\mathcal{A} = (A_\alpha : \alpha < \kappa) \) is called a tower of height \(\kappa \) if

1. \(\forall \alpha : A_\alpha \subseteq \omega \) and
2. \(\forall \alpha < \beta : A_\beta \subseteq^* A_\alpha \), i.e., \(A_\beta - A_\alpha \) is finite.

\(\mathcal{A} \) is called maximal if there is no set \(A_\kappa \) such that \((A_\alpha : \alpha < \kappa + 1) \) is a tower.

We let \(t \) be the minimal height of a maximal tower. It is well known that \(\text{MA} \) (or even \(\text{MA}(\sigma \text{-centered}) \)) implies \(t = c \).

3.4. Definition. Let \(\mathcal{A} = (A_s : s \in ^{<\omega}\omega) \) be a family of infinite sets. We let

\[
\mathbb{L}_\mathcal{A} := \{ p \in \mathbb{L} : (\forall s \in p^{-}) A_s \subseteq^* \text{succ}_p(s) \}.
\]

3.5. Definition. For \(\mathcal{A} \) and \(\mathcal{B} \) as in 3.4 we write \(\mathcal{A} \geq^* \mathcal{B} \) if \(\forall s \in ^{<\omega}\omega A_s \subseteq^* B_s \).

Clearly, if \(p, q \in \mathbb{L}_\mathcal{A} \) and \(\text{stem}(p) = \text{stem}(q) \), then also \(p \cap q \in \mathbb{L}_\mathcal{A} \). Hence \(\mathbb{L}_\mathcal{A} \) is \(\sigma \)-centered.

Proof of Theorem 3.1. Let \(\mathcal{D} \) be a collection of \(c \) many dense sets in \(\mathbb{L} \), and \(p_0 \) a condition, and enumerate \(\mathbb{L} \times \mathcal{D} \) as

\[
\mathbb{L} \times \mathcal{D} = \{ (p_\alpha, D_\alpha) : \alpha < c \}.
\]

We will define a sequence

\[
(\mathcal{A}^\alpha : \alpha < c) \quad \mathcal{A}^\alpha = (A^\alpha_s : s \in ^{<\omega}\omega)
\]

satisfying

\[
(\star) \quad \forall s : (A^\alpha_s : \alpha < c) \text{ is a tower}.
\]
The construction proceeds by induction on \(\alpha \). For \(\alpha = 0 \), let
\[
A^\alpha_s := \begin{cases}
\omega & \text{if } s \notin (p_0)^-, \\
\text{succ}_{p_0}(s) & \text{if } s \in (p_0)^-.
\end{cases}
\]

If \(\alpha \) is a limit, we define \(A^\alpha_s \) such that (*) is satisfied, using \(t = c \).

If \(\alpha = \beta + 1 \), we distinguish two cases:

Case 1. For no \(\bar{A} \geq^* \bar{A}^\beta \), \(p_\beta \in L_{\bar{A}} \). In this case we let \(A^\alpha_s = A^\beta_s \) for all \(s \).

Case 2. Otherwise, let \(s_\beta := \text{stem}(p_\beta) \) and
\[
p'_\beta := \{ s \in p_\beta : \forall i \in \text{dom}(s) (i < |s_\beta| \text{ or } s(i) \in A^\beta_{s(i)}) \}.
\]

We claim that \(p'_\beta \) is a condition, \(p'_\beta \geq p_\beta \), and \(\text{stem}(p'_\beta) = \text{stem}(p_\beta) \), and for all \(s \in p'_\beta \) we have \(\text{succ}_{p'_\beta}(s) = \text{succ}_{p_\beta}(s) \cap A^\beta_s \). For this it is enough to see that for each \(s \in p^{-}_{\bar{A}} \), \(\text{succ}_{p_\beta}(s) \cap A^\beta_s \) is infinite. If not, then there is \(s \in p^{-}_{\bar{A}} \) such that
\[
\text{succ}_{p_\beta}(s) \cap A^\beta_s \text{ is finite.}
\]

Since \(p_\beta \in L_{\bar{A}} \) for some \(\bar{A} \geq^* \bar{A}^\beta \) and hence \(A_s \subseteq^* \text{succ}_{p_\beta}(s) \), we conclude that \(A_s \cap A^\beta_s \) is finite—a contradiction, since \(A_s \subseteq^* A^\beta_s \). Now we can find a condition \(q_\beta \geq p'_\beta \), \(q_\beta \in D_\beta \) and define
\[
A^\alpha_s := \begin{cases}
\text{succ}_{q_\beta}(s) & \text{if } s \in q^{-}_\beta, \\
A^\beta_s & \text{otherwise}.
\end{cases}
\]

Note that \(q_\beta \in L_{\bar{A}^0} \).

This concludes the construction of the sequence of \(\bar{A}^\alpha \)’s.

Now we let \(Q := \bigcup\alpha \in \mathcal{L}_{\bar{A}^0} \), and we claim that:

1. \(\forall \beta < \alpha : L_{\bar{A}^0} \subseteq L_{\bar{A}^\beta} \),
2. \(Q \) is \(\sigma \)-centered, and
3. \(Q \) captures the density of \(\mathcal{D} \).

The proof of these claims will finish the proof of the theorem, since clearly \(p_0 \in L_{\bar{A}^0} \subseteq Q \).

Proof of (1). Obvious.

Proof of (2). If \(p, q \in Q \) with \(\text{stem}(p) = \text{stem}(q) \), then there is \(\alpha \) such that \(p, q \in L_{\bar{A}^\alpha} \). So \(p \cap q \in L_{\bar{A}^0} \subseteq Q \).

Proof of (3). Let \(D \in \mathcal{D} \), \(p \in Q \). We claim that there is \(q \in Q \cap D \), \(q \geq p \).

Assume that \((D, p) = (D_\beta, p_\beta) \). We only have to show that \(q_\beta \) is well defined. But this is obvious since by \(p_\beta \in Q \) at stage \(\beta + 1 \) we must have been in Case 2.

3.6. **Remark.** A similar construction, using only one tower instead of a system of towers, shows the analogous result for Mathias forcing.

3.7. **Definition.** Let \(\ell^0 \) denote the \(\sigma \)-ideal of all \(X \subseteq \omega^{\omega} \) such that \(\forall p \in L \exists q \in L (q \geq p \text{ and } [q] \cap X = \emptyset) \). Remember that \(\text{add}(\ell^0) \) is the minimal cardinality of a family of members of \(\ell^0 \) whose union does not belong to \(\ell^0 \).
3.8. Corollary. \(MA \) implies \(\text{add}(\ell^0) = \kappa. \)

\text{Proof.} Let \(\langle \ell^n : \alpha < \kappa \rangle \) be a family in \(\ell^0 \) and \(\kappa < \kappa. \) Let \(D_\alpha = \{ p \in \mathbb{L} : [p] \cap X_\alpha = \emptyset \}. \) Observe that \(D_\alpha \) is \(\geq^0 \)-dense in \(\mathbb{L}, \) i.e., \(\forall p \in \mathbb{L} \exists q \in D_\alpha (q \geq p \) and \(\text{stem}(p) = \text{stem}(q)) \). Now choose a ccc \(Q \subseteq \mathbb{L} \) which captures the density of \(\langle D_\alpha : \alpha < \kappa \rangle. \)

Define “amoeba forcing” for \(Q \) as follows: \(\mathcal{S}(Q) = \{ (p, n) : p \in Q, 1 \leq n < \omega \} \) ordered by

\[(p, n) \geq (q, m) \text{ if and only if } p \geq q \text{ and } n \geq m \text{ and } \forall i < m p(i) = q(i)\]

where \(p(\cdot) \) is the canonical enumeration of \(p^- \). In particular, this implies \(\text{stem}(p) = p(0) = q(0) = \text{stem}(q). \)

If we know that \(D_\alpha^* \) is dense in \(\mathcal{S}(Q) \) and \(\mathcal{S}(Q) \) is ccc, then applying MA to \(\mathcal{S}(Q) \) and \(\langle D_\alpha^* : \alpha < \kappa \rangle \) we could obtain a Laver tree whose branches are disjoint from every \(X_\alpha, \) and since the whole argument could be done above a given tree, we would be done.

But, in fact, without loss of generality we may assume that each \(D_\alpha^* \) is dense. For in the construction of \(Q \) in the proof of 3.1,using the observation that each \(D_\alpha \) is \(\geq^0 \)-dense, at stage \(\alpha = \beta + 1 \) we may choose \(q_\beta \in D_\beta \) such that \(q_\beta \geq^0 p_\beta \). But then each \(D_\alpha \) is \(\geq^0 \)-dense in \(Q \) and hence, as can be easily checked, \(D_\alpha^* \) is dense in \(\mathcal{S}(Q). \) Furthermore, two conditions in \(\mathcal{S}(Q), \) say \((p, n), (q, m) \) are compatible provided \(\text{stem}(p) = \text{stem}(q), \) \(n = m, \) and \(\forall i < n p(i) = q(i) \). This is true since two conditions in \(Q \) with the same stem \(s \) have an extension in \(Q \) with stem \(s^+. \) This shows that \(\mathcal{S}(Q) \) is even \(\sigma \)-centered.

4. Miller forcing

4.1. Theorem. \(MA(\sigma \)-centered) implies \(\sigma \)-centered(Miller).

4.2. Notation. \(\mathcal{F} \) is Miller forcing (also called rational perfect sets). Conditions \(p \in \mathcal{F} \) are superperfect trees \(p \subseteq ^{<\omega} \omega, \) that is, trees which have infinite splitting along every branch. We will consider only the dense subset of superperfect trees \(p \) with the property

\[\forall s \in p : |\text{succ}_p(s)| \in \{ 1, \infty \}. \]

For \(p \in \mathcal{F}, \) \(\text{split}(p) \) is the set of splitting nodes of \(p, \) with smallest element \(\text{stem}(p). \) This set is also partially ordered by \(\subseteq, \) and we write \(\text{Succ}_p(s) \) for the set of direct successors of \(s \) in \(\text{split}(p). \)

Again we recall that \(p \geq q \) means “\(p \) is stronger than \(q, \)”, i.e., \(p \subseteq q \).

In 4.3–4.10 we modify the argument of [JMS] to find a \(\leq^* \) which is transitive.

4.3. Definition. Call a sequence \(\langle P_s : s \in ^{<\omega} \omega \rangle \) good if and only if

1. each \(P_s \subseteq ^{<\omega} \omega \) is infinite,
2. \(t \in P_s \) implies \(s \subseteq t, \) and
3. for \(s \in ^{<\omega} \omega \) if \(t, t' \in P_s \) and \(t \neq t', \) then \(t(n) \neq t'(n). \)

4.4. Definition. Given any good sequence \(P = \langle P_s : s \in ^{<\omega} \omega \rangle \) we determine \(\langle p_s \in \mathcal{F} : s \in ^{<\omega} \omega \rangle \) as follows. For each \(s \) let \(S \) be the smallest subset of \(^{<\omega} \omega \) such that \(s \in S \) and if \(t \in S \) then \(P_s \subseteq S. \) Then \(p_s \) is the unique condition in \(\mathcal{F} \) such that \(S = \text{split}(p_s). \) In other words, \(s = \text{stem}(p_s) \), and if \(t \in \text{split}(p_s) \) then \(\text{Succ}_{p_s}(t) = P_t. \)

If \(Q, P', \) etc., are good, then \(q_s, p'_s, \) etc., will be defined similarly.
4.5. **Definition.** Define \(\langle P_s : s \in \prec \omega \rangle \approx \langle Q_s : s \in \prec \omega \rangle \) if and only if \(P_s \subseteq q_s \) for each \(s \in \prec \omega \). An equivalent definition would be: For all \(s \), \(P_s \subseteq \text{split}(q_s) \).

4.6. **Definition.** Define \(\langle P_s : s \in \prec \omega \rangle \approx \langle Q_s : s \in \prec \omega \rangle \) if and only if

(a) \(\forall s P_s = * Q_s \) and

(b) \(\forall \omega s P_s = Q_s \).

Clearly this is an equivalence relation.

4.7. **Definition.** Let \(\bar{P} \) and \(\bar{Q} \) be good. We will write \(\bar{P} \geq * \bar{Q} \) if and only if

1. There exists \(P' \approx P \) such that \(P' \geq \bar{Q} \).

4.8. **Lemma.** If there exists \(Q' \) such that \(P \geq \bar{Q} \approx Q \); then \(P \geq * \bar{Q} \), i.e., there is \(P' \) such that \(P \approx P' \geq \bar{Q} \). Moreover, we can choose \(P' \) such that \(P' \geq P \).

Schematically, we can write this as follows:

\[
P \geq \approx Q' \iff \exists P' \ \text{ such that } P' \geq \approx Q
\]

Proof. Assume we have \(\bar{P} \geq \bar{Q} \approx \bar{Q} \). Recall that for all \(s \in \prec \omega \) we have \(P_s \subseteq \text{split}(q_s) \). We can define \(P' \) by

\[
P'_s := P_s \cap \text{split}(q_s).
\]

Fix \(s \in \prec \omega \). To understand why \(P_s = * P'_s \) we consider the function \(\rho_s \) defined on \(\text{split}(q'_s) - \text{split}(q_s) \) as follows:

For any \(t \in \text{split}(q'_s) \) we can find a finite sequence \(s = r_0 \subseteq r_1 \subseteq \cdots \subseteq r_n = t \), where for all \(k < n \) we have \(r_{k+1} \in Q_{r_k} \).

For \(t \in \text{split}(q'_s) - \text{split}(q_s) \) we let

\[
\rho_s(t) := \text{ the minimal } r_{k+1} \text{ with } r_{k+1} \notin Q_{r_k}
\]

Note that \(s \subseteq \rho_s(t) \subseteq t \), so \(\rho_s(t)(|s|) = t(|s|) \), hence (by 4.3(3)) the function \(\rho_s \downharpoonright P_s \) is one-to-one. Hence

\[
|\{ t \in P_s : t \notin \text{split}(q_s) \}| \leq \sum_{t} |Q'_t - Q_t| = \text{finite}.
\]

So for all \(s \) we have \(P_s = * P'_s \), in particular, we get that \(P' \) is good.

Let \(A := \{ t \in \prec \omega : \exists s \in \prec \omega : t \subseteq s \wedge Q_s \neq Q'_t \} \). \(A \) is finite (and downward closed), and for \(s \notin A \) we have \(q_s = q'_s \) and hence \(P'_s = P_s \). So \(P' \approx P \).

Finally, it is clear that \(P' \geq \bar{Q} \) and \(P' \geq \bar{P} \).

4.9. **Remark.** This shows that

\[
P \geq * \bar{Q} \iff \text{there is } P' \approx P, P' \geq \bar{Q}, P' \geq P.
\]

Proof. If \(P \approx P_1 \geq \bar{Q} \), then we can apply 4.8 to the relation \(P \geq P \approx P_1 \) and get \(P' \) such that

\[
P \geq \bar{P} \approx P_1 \geq \bar{Q}
\]

4.10. **Corollary.** (a) \(\leq * \) is transitive.

(b) If \(P_1 \geq * P_2 \geq * \cdots \geq * P_n \), then there exists \(P^* \) such that for \(i = 1, \ldots, n \) we have \(P^* \geq P_i \).
Proof. If \(P^* \gtrsim Q \gtrsim R \), then there are \(P' \) and \(Q' \) such that
\[
P \approx P' \gtrsim Q \approx Q' \gtrsim R.
\]
By 4.9 we may assume \(P \leq P' \). By 4.8 we can find \(P^* \) such that
\[
P
\]
\[
f \approx \quad P'
\]
\[
f \approx \quad Q
\]
\[
f \approx \quad Q'
\]
\[
f \approx \quad R
\]
This proves (a), and also (b) for the case \(n = 3 \). For general \(n \) the proof of (b) is similar.

4.11. Fact. For \(P \) good, \(r \in F \), the following are equivalent:

1. \(\forall s \in \text{split}(r) : \text{split}(p_s) \subseteq \text{split}(r) \).
2. \(\forall s \in \text{split}(r) : P_s \subseteq \text{split}(r) \).
3. \(\forall s \in \text{split}(r) : \text{split}(p_s) \subseteq r \).
4. \(\forall s \in \text{split}(r) : p_s \subseteq r \).

Proof. (1) \(\Rightarrow \) (2) As \(P_s \subseteq \text{split}(p_s) \) for all \(s \).
(2) \(\Rightarrow \) (3) By induction on the height of \(t \in \text{split}(p_s) \) we can prove \(t \in \text{split}(r) \).
(3) \(\Rightarrow \) (4) As every node in \(p_s \) is below some node in \(\text{split}(p_s) \) and hence also in \(r \).
(4) \(\Rightarrow \) (1) As splitting points of a stronger condition are also splitting points of the weaker condition.

4.12. Definition. For \(P \) good, we let
\[
F_P := \{ r \in F : \exists P' \approx P, \forall s \in \text{split}(r) : \text{split}(p'_s) \subseteq \text{split}(r) \}.
\]

4.13. Fact. (a) \(F_P \) is \(\sigma \)-centered.
(b) If \(P \approx Q \), then \(F_P = F_Q \).
(c) If \(P \gtrsim Q \), then \(F_P \supseteq F_Q \).

Proof. For (a), assume \(r^1, r^2 \in F_P \), witnessed by \(P^1, P^2 \) respectively, and \(\text{stem}(r^1) = \text{stem}(r^2) = s \). Since \(P^1 \approx P^2 \), we may find \(p^3_s \) such that \(P^3_s = P^i_s \) for \(i = 1, 2 \) and \(\forall t \in P^3_s \forall u(t \subseteq u \rightarrow P^1_u = P^2_u) \). Define \(P^3_t = P^i_t \) for \(t \neq s \). Now clearly we have \(p^3_s \in F_P \), and \(p^3_s \) extends \(r^1, r^2 \). (b) can easily be checked. For (c), consider \(r \in F_Q \). By hypothesis find \(P', Q' \) such that \(P \approx P' \geq Q \approx Q' \), and \(\forall s \in \text{split}(r) \) we have \(q'_s \subseteq r \). By 4.8 we can find \(P'' \approx P' \), \(Q' \leq P'' \). So \(\forall s \in \text{split}(r) \) we have \(p''_s \subseteq q'_s \subseteq r \), hence \(r \in F_{p''} = F_P \).

4.14. Lemma. For all \(p \in F \), all good \(P \), and all dense sets \(D \subseteq F \): If there is \(Q \gtrsim P \) such that \(p \in F_Q \), then there is \(Q \gtrsim P \), \(p \in F_Q \), such that for some \(q \geq p \) we have \(q \in D \cap F_Q \). Moreover, if \(D \) is \(\geq^0 \)-dense, then we may assume \(\text{stem}(p) = \text{stem}(q) \).

Proof. Let \(Q^0 \gtrsim P \) such that \(p \in F_{Q^0} \). Find \(Q^1 \approx Q^0 \) such that \(\forall s \in \text{split}(p) \), \(\text{split}(q^1_s) \subseteq \text{split}(p) \). (So also \(Q^1 \gtrsim P \).) Find \(q \in D \), \(q \subseteq q^1_{\text{stem}(p)} \). So \(\text{split}(q) \subseteq \text{split}(p) \).
Now define \bar{Q} as follows:

1. If $s \in \text{split}(q)$, then $Q_s := \text{Succ}_q(s)$.
2. Otherwise, $Q_s := Q_1$.

So in any case we have $Q_s \subseteq \text{split}(q^1_s)$ and hence $\bar{Q} \geq Q^1 \geq^* P$, and clearly $q \in F_{\bar{Q}}$.

4.15. **Lemma.** Assume $\text{MA}_\kappa(\sigma\text{-centered})$. If $(P_\alpha : \alpha < \kappa)$ is a \geq^*-descending sequence, then there exists P_κ such that for all α, $P_\kappa \geq^* P_\alpha$.

Proof. Given a sequence $(P^\alpha : \alpha < \kappa)$, we define the following forcing notion: Elements are of the form $(F, T_s : s \in S)$, where F is a finite subset of κ, S a finite subset of $<\omega\omega$, and each T_s a finite subset of $<\omega\omega$ with

1. $t \in T_s$ implies $s \subseteq t$ and
2. for $s \in \omega^n$, if $t, t' \in T_s$ and $t \neq t'$, then $t(n) \neq t'(n)$.

We let $(F, T_s : s \in S) \leq (F', T'_s : s \in S')$ if and only if

1. $F \subseteq F'$,
2. $S \subseteq S'$,
3. $\forall s \in S : T_s \subseteq T'_s$, and
4. $\forall s \in S' \forall \alpha \in F : T'_s - T_s \subseteq \text{split}(p^s_\alpha)$ where we let $T_s = \emptyset$ for $s \notin S$.

This forcing is σ-centered (since conditions with the same $(T_s : s \in S)$ are always compatible), and a generic filter G describes a good P via

$$P_t := \{ \eta \in <\omega\omega : \exists (F, T_s : s \in S) \in G, t \in S, \eta \in T_t \}.$$

To check that each P_t is infinite, we use 4.10(b) and a density argument.

Similarly as in the proof for Laver forcing, 4.15 and 4.14 imply that MA (or indeed $\text{MA}(\sigma\text{-centered})$) implies $\text{ccc}(F)$ and that the additivity of the Miller ideal is ϵ.

References

