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For a review of forcing see Kunen [10] Chapter VII.

Lemma 1 (Fusion) (Perfect set forcing (Sacks) forcing). Suppose pn+1 ≤n
pn for n ∈ ω. Then the fusion

q =
⋂
n∈ω

pn

is a perfect tree and p ≤n pn for all n.

Lemma 2 (Sacks forcing) (uniformly finite antichains) Suppose n < ω and
p τ ∈ M then there exists F ∈ M with |F | ≤ 2n+1 and q ≤n p such that
q τ ∈ F̌ .

Definition 3 (Sacks property) Suppose G is Sacks-generic over M . Then
for every f ∈Mω ∩M [G] there exists F ∈M such that

∀n < ω f(n) ∈ F (n) and |F (n)| ≤ 2n+1.

Corallary 4 Sacks forcing does not collapse ω1. If the ground model satisfies
CH, then no cardinal is collapsed.

Theorem 5 (Sacks [25]) Suppose x ∈ 2ω is Sacks over M , then for every
y ∈M [x]∩2ω either y ∈M or M [y] = M [x]. Furthermore in the latter case,
y is itself is Sacks generic over M .

Let P be the partial order of superperfect subtrees p ⊆ ω<ω. This ordering
satisfies the Fusion Lemma and the uniformly countable antichain Lemma
and hence does not collapse ω1. Also called Miller forcing.

Theorem 6 (Miller [17]) Forcing with superperfect trees P gives a minimal
degree. Any unbounded g ∈M [G] ∩ ωω is itself superperfect generic.

Remark 7 ω-Silver forcing (p : D → ω) collapses the continuum to ω. ω-
Superperfect forcing (splitting nodes have all splits in) adds a Cohen real.

Theorem 8 (Baumgartner-Laver[2]) If G is Sacks generic over M , then no
X ∈ [ω]ω ∩M [G] splits all Y ∈ [ω]ω ∩M (i.e., |Y ∩X| = |Y \X| = ω.
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Same is true for superperfect set forcing [17].

Theorem 9 (Silver) Silver forcing satisfies Fusion, the Sacks property, and
is minimal.

For the proof see Grigorieff [5]. The result is attributed to Silver in
Mathias [14].

Mathias forcing [12] can be thought of as Silver conditions p : D → 2
with D ⊆ ω and D infinite with the additional property that p−1(1) is finite.
It adds an X ⊆ ω which reaps all Y ⊆ ω in the ground model, i.e., X ⊆∗ Y
or X ⊆∗ Y . The enumeration of X is a dominating real.

Basic facts about product forcing, see Solovay [28].

Theorem 10 (Adamowicz [1]) For P Sacks forcing, if G1 × G2 P2-generic
over M , then for every x ∈ 2ω∩M [G1, G2], M [x] is either M , M [G1], M [G2],
or M [G1, G2]. This fails for Silver forcing.

Side-by-side Sacks forcing (products with countable support) P(κ) has the
Sacks property. See Groszek and Slaman [7] for an application of this forcing
to Turing degrees.

Theorem 11 (Shelah) It is consistent to have a model of ZFC+♣+¬CH.

(Miller) Forcing with (ω<ω)(ω3) over a model of V = L yields a model
♣+ ¬CH.

Proposition 12 The following are equivalent for models M ⊆ N .

1. (cnd)M is cofinal in (cnd)N

2. (meager)M is cofinal in (cnd)N

3. (meager)M is cofinal in (meager)N

Theorem 13 For models M ⊆ N we have that (1) implies (2) implies (3).

1. M ⊆ N has the Sacks property.

2. (cnd)M is cofinal in (cnd)N .

3. M ⊆ N is bounded, i.e., for every f ∈ N ∩ ωω there is g ∈ M ∩ ωω
with f(n) < g(n) all n,
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Shelah proved (1) implies (2). (2) implies (3) is the dual form of Thm 1.2
p.94 [18]. Modified Silver forcing (see Miller [18] p.106) satisfies (2) but not
(1), random real forcing satisfies (3) but not (2).

Theorem 14 (Laver [11]) Laver forcing adds a dominating real and iterating
it makes the Borel conjecture true.

Proposition 15 If M ⊆ N has the Laver property and

M |= X ⊆ [0, 1] does not have SMZ

then
M |= X does not have SMZ

Theorem 16 (Miller [15]) No Q-points in Lavers model.

Theorem 17 (Grigorieff [5]) If U is a P-point, then forcing with PU is
bounding.

Remark. (Grigorieff) If U not a P-point, then forcing with PU collapses
the continuum or at least changes its cofinality to ω.

Theorem 18 (Shelah, see Wimmers[24], Shelah [26]) Suppose U is a P-
point in M and G is PωU -generic over M . Then no ultrafilter in M [G] ex-
tending U is a P-point.

Theorem 19 (Ketonen [9]) Suppose d = c, then every filter on ω generated
by few than continuum many sets can be extended to a P-point. The converse
is also true.

Theorem 20 (Mathias [13]) If d = ω1, then there exists a Q-point.

Corallary 21 If c ≤ ω2, then there exists a P-point or there exists a Q-point.

Q. Does ZFC prove that there exists a P-point or there exists a Q-point?

Theorem 22 (Charles Grey, see [6, 8]) Laver forcing is minimal.
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Theorem 23 (Namba [23]) Namba forcing changes the cofinality of ω2 to ω
without adding a new real (assuming CH).

The Prikry collapse of ω1 is the poset of Prikry trees, subtrees p ⊆ ω<ω1

with the property that for every s ∈ p there exists t ⊇ s with tˆ〈α〉 ∈ p for
uncountably many α < ω1.

Theorem 24 (Prikry) If G is Prikry collapse of ω1 - generic over M , then
for any f ∈M [G] such that M [G] |= f : ω → ω1 is unbounded
G ∈M [f ] and f itself is a generic Prikry collapse.

Theorem 25 (Carlson, Kunen, Miller [3]). If the ground model M satisfies
MAω1 and G is the Prikry collapse of ω1 - generic over M , then for every
x ∈ 2ω ∩M [G] either x ∈M or G ∈M [x].

The Carlson collapse of ω1 is the poset of subtrees p ⊆ ω<ω1 with the
property that there is a root s ∈ p such that for every s ⊆ t ∈ p we have
tˆ〈α〉 ∈ p for uncountably many α < ω1.

Theorem 26 (Carlson) If the ground model M satisfies MAω1 and G is the
Carlson collapse of ω1 - generic over M , then for every f ∈ ωω ∩M [G] there
exists g ∈ ωω ∩M such that f(n) < g(n) for all n < ω.

Theorem 27 (Miller [22]) If the ground model M satisfies MAω1 and G is
the Carlson collapse of ω1 - generic over M , then for every x ∈ 2ω ∩M [G]
either x ∈M or G ∈M [x].

The Shelah-Woodin collapse of ω2 is the poset of subtrees p ⊆ ω<ω2 with
the property that for every s ∈ p there is t ⊇ s such that tˆ〈α〉 ∈ p for ω2

many α < ω2. This is used in the proof of:

Theorem 28 (Shelah-Woodin [27]) If there is a transitive model of ZFC,
then there is a countable transitive model W of ZFC+CH and a ⊆ ω in a
generic extension of W such that W [x] models ¬CH and ωW1 = ω

W [a]
1 .

Laver

ω
=

Carlson

ω1

=
Namba

ω2

Miller

ω
=

Prikry

ω1

=
Shelah-Woodin

ω2
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Theorem 29 (Hausdorff 1936) The Hausdorff gap. 2ω can be partitioned
into ω1 pairwise disjoint Fσδ-sets.

Theorem 30 (Fremlin-Shelah [4] ) 2ω can be partitioned into ω1 pairwise
disjoint Gδ-sets iff 2ω is the union of ω1 meager sets.

Theorem 31 (Miller [16]) It is consistent that 2ω can be partitioned into ω1

disjoint Gδ sets but cannot be partitioned into ω1 disjoint closed sets.

Theorem 32 (Galvin-Prikry) For any Borel set B ⊆ [ω]ω there exists H ∈
[ω]ω with [H]ω ⊆ B or [H]ω ∩B = ∅.

Theorem 33 (Ellentuck) Completely Ramsey is the same as having the
property of Baire in the Ellentuck topology. Ramsey null is the same as
meager which is the same as nowhere dense.

For references for Galvin-Prikry and Ellentuck, see Miller [19].

Theorem 34 (Mathias [12]) Mathias forcing has the Laver property. It can
be decomposed as countable ∗ ccc. Every infinite subset of a Mathias generic
is Mathias generic. Mathias forcing is not minimal.

Theorem 35 (Zapletal [29], see also Miller [21]). If A ⊆ ωω is analytic
then either A is disjoint from the infinite branches of a Hechler tree or A
contains the infinite branches of a Laver tree.

Theorem 36 (Miller [20]) In the Cohen real model the hierarchy of ω1-Borel
sets has length at least ω1 + 1 but no more than ω1 + 2.
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