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THE BAIRE CATEGORY THEOREM
AND CARDINALS OF COUNTABLE COFINALITY

ARNOLD W. MILLER!

Abstract. Let £ be the least cardinal for which the Baire category theorem fails
for the real line R. Thus £ is the least & such that the real line can be covered by £ many
nowhere dense sets. It is shown that £z cannot have countable cofinality. On the other
hand it is consistent that the corresponding cardinal for 2 be 8,. Similar questions
are considered for the ideal of measure zero sets, other w, saturated ideals, and the ideal
of zero-dimensional subsets of R*'.

A set is nowhere dense iff its closure has no interior. A set is meager (equivalent-
ly first category) iff it is the countable union of nowhere dense sets. Thus 5 is the
least cardinal £ such that there are £ many meager subsets of R whose union is
all of R. Similar cardinals have been considered by the author (1979). If we let
&y be the least cardinal £ such that there exists a nonmeager set of reals of cardi-
nality £, then it is easy to see that £, cannot have countable cofinality. On the other
hand in Solovay’s random real model ; is the cardinality of the continuum
(Martin-Solovay (1970)). Thus £, may be any cardinal of cofinality greater than .
If we let £, be the least £ such that there are # many meager sets of reals whose
union is not meager, then it is easily seen that £, is a regular cardinal. Martin and
Solovay (1970) have shown that Martin’s Axiom implies that £, is the cardinality
of the continuum and so, by results of Solovay and Tennenbaum (1971), £, may
be any regular uncountable cardinal. For any cardinal £ of uncountable cofinality
it is consistent that £z = £. In fact this holds in the Cohen real model of Solovay
and Cohen (see Solovay (1972).)

Other consistency results are given by Hechler (1973). In the author’s paper
(1979) it is shown that it is consistent that x4, = w;, and £z = ky = w,. For any
topological space X define £3(X) to be the least cardinal £ such that X can be
covered by £ many nowhere dense (in X) subsets of X. This is well defined for any
X in which points are nowhere dense. Stepanek and Vopenka (1967), see also
Kulpa and Szymanski (1977), showed that for any nowhere separable metric space
X the cardinal £5(X) is w;. Fleissner and Kunen (1978) and Broughan (1977) have
noted that for any metric space X without isolated points, xz(X) < 5. Balcar,
Pelant, and Simon (1979) have studied £5(8N — N), using n(X) for Novak number
in place of £g(X). Fremlin and Shelah (1978) and Hechler (1974) have asked if
£pcan be 8,. In §1 we show that it cannot be.
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276 ARNOLD W. MILLER

§1. Baire category on-the real line. In this section we prove the following theorem.

THEOREM 1. £g cannot have countable cofinality.

Proor. The following lemma is well known.

LeMMA 1. For any separable, completely metrizable space X without isolated
points kg(X) = kp.

Proor. There exists a meager F, set Y = X such that X — Y is homeomorphic
to the irrationals. To get Y take the countable union of the boundaries of some
basis for X together with a countable dense subset of what is left. X — Yis a G,
set in X and hence completely metrizable. It is easily seen to be zero dimensional
and to have the property that no compact clopen set is nonempty, and so it is
homeomorphic to the irrationals (see Kuratowski (1966) or Hoffman-Jorgensen
and Topsoe (1980)). The lemma follows since if W is comeager in Z, then £5(W) =
kx(Z). O

For P a partial order define D = P to be dense iff every element of P can be
extended to an element of D:

VpePilgeD, q <p.

Define G = P to be a P-filter iff G is upward closed and every two elements of G
are compatible in G.

g>peG=qeG; p, qeG=3AreG((r <p) A (r <q)).

For F a family of dense subsets of P define G to be P-generic over Fiff G is a
P-filter and every member of F intersects G. Let MA, (ctble) be the following weak
version of Martin’s Axiom:

For any countable partial order P and family F of dense subsets of P, if |F| < &,
then there exists a P-generic filter G over F.

The following lemma is well known. It says that forcing with countable partial
orders is the same as Cohen forcing.

LEMMA 2. kg is the greatest g such that MA, (ctble) holds.

Proor. To see that MA_i(ctble) fails consider the partial order P of open inter-
vals with rational endpoints ordered by inclusion. Note that a dense subset of P
corresponds to a family of intervals whose union is a dense open subset of R. One
way to see that MA, (ctble) holds is to translate the partial order statement into
one about complete boolean algebras, as was done for example in §2 of Martin and
Solovay (1970), and then note that any two complete separable atomless boolean
algebras are isomorphic.

Alternatively a direct proof can be given along the following lines. The irrationals
are homeomorphic to the space w®. The topology on w® is generated by sets of the
form N, = {ge w®: s < g} for s € v, where w=* is the set of finite sequences of
elements of w. Dense open subsets D = w® correspond to dense subsets of w<e,
ie. {sew<: N, c D}. Also w<*-generic filters correspond to elements of w®.
Therefore MA, (w<®) holds. Let P be any countable partial order. If there is a
condition p € P such that every two extensions of p are compatible, then {g € P:
g < porp < g} is a P-filter meeting every dense subset of P. If there is no such p,
then for every element of P there exists an infinite, maximal set of incompatible
extensions. Since P is countable this allows one to inductively construct an order
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preserving embedding of w<® onto a dense subset of P (see exercise C4, Chapter
7 of Kunen (1980)). Thus by a well-known theorem of Solovay (1970) we are
done. [J

A subset of 2¢ (2 is the two point discrete space {0, 1}) is perfect iff it is closed,
nonempty, and has no isolated points; or equivalently it is homeomorphic to 2¢.
From now on assume that the cofinality of x5 is w, and let C, for a < 5 be a family
of closed nowhere dense subsets of 2¢ such that 2¢ = ( J{C,|a < &z}. For P < 2¢
we say that P is good iff P is perfect and for every a < 5 the set C, is nowhere
dense (in the relative topology) in P.

LemMaA 3. If Q is good and 3 < kg then there is a good P = Q such that for all
a < (3 the set C, () Pisempty.

Before proving this lemma let us indicate the proof of the theorem. Let £, for
n < o be cofinal in 5. Construct P,; = P, a sequence of good sets with P, = 2
and P, N C, = @ foreveryn < wand a < £,. But then (\{P,:n < 0} # @,
a contradiction.

To prove Lemma 3 we may without loss of generality assume Q = 2e,

Claim. There exists a countable dense set H = 2¢ such that C, | H = @ for all
a < Band C, () H is finite for all « < £p.

PROOF. Let 2<¢ = {s,: n < w} and let x, for n < @ be increasing and cofinal
in g with £y > 8. Choose x, € N, — (J{C,la < &,} (this set is nonempty since
each N, is homeomorphic to 2¢ and each C, is nowhere dense in N,). Let H=
{xsn < 0}. O

Let P = {(X, n) [n < wand H € [X]<*} ([X]< is the set of finite subsets of X),
and define (X, n) < (Y, m) iff n > m, X =2 ¥, and for every x € X thereis ye Y
such that x [ m = y | m. Note that P is countable. We will determine a family F
of dense subsets of P such that |F| = ||, and, for any P-generic filter G over F,
ifK = U{X :3n (X, n) € G} and P is the closure of K, then P will have the desired
properties of Lemma 3. For every n < o let

Dr={X,m):m=nAVxeXdyeX(x £y Axln=yln)

Since H is dense it is easily shown that each D~ is dense in P. The D*’s guarantee
that P will be perfect. If P is not perfect then there is an x € K and n < @ such that
N1 N {x}, but this would imply G | D* = (. Foreacha < §let D, = {(X, n):
Vxe€X N, N Co = B} Since H () C, = @ it can be shown that D, is dense
in P. The set D, guarantees that P () C, = @. If (X, n) € G, then P = | J{N,,,:
xeX};andso if G D, # @, then P\ C, = &. Finally note that for every
a < £p, C, (1 K is finite, since C, () H is finite, and therefore since P is perfect,
P — C, is open dense in P. Letting F = {D": n < w} U {D,: @ < 8} finishes the
proof of Lemma 3 and therefore Theorem 1.

For any cardinal ¢ let (27), be 2¢ with the smallest topology containing the usual
topology and closed under less than x intersections (see Hung and Negrepontis
(1973) and Comfort and Negrepontis (1972)). Then for £ strongly inaccessible the
proof of Thoerem 1 can be generalized to show that the cofinality of £z((2%),)
is greater than £. Note that, assuming the continuum hypothesis, £((2),,) =
k(BN — N). I do not know whether or not the cofinality of £5((21),,) can be less
than w,. This question is also raised by Balcar, Pelant, and Simon (1979).
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§2. Baire category in2¢1, In the rest of this paper the formal statement “Con(ZFC)
implies Con(ZFC + P)’’ will be abbreviated by “It is consistent that P”’.

Since the space 2¢1 is a compact Hausdorff space it cannot be covered by count-
ably many nowhere dense sets. On the other hand £5(2) is less than or equal to
£5(2¢). This follows from the fact that if C = 2¢ is nowhere dense in 2¢ then
C x 2#17¢ is nowhere dense in 2¢1.

THEOREM 2A. It is consistent that kg(291) = §,,.

PRrROOF. Let M be a countable transitive model of ZFC plus GCH. Working in
M let Q be the partial order for adjoining 8, Cohen reals:

Q = {p| dom(p) € [§,]<, range(p) = {0, 1}}.

Let G be a Q-generic filter over M. We claim that for any X € M[G] [ [w]
there is an n < w and Y € M[GIR,] [ [w]* such that ¥ = X. This is true since
for every @ € X there is a pe G and an n < @ such that

dom(p) € 8, and pI“acX”.

Thus there is an n < @ such that ¥ = {¢|3pe GIR, p - “a € X’} is an un-
countable set.

In M[GI&,] the set [w;]* has cardinality 8, so there are only 8, possible Y’s.
For any infinite Y < w, the set {Xe€24: Va € Y X(a) = 1} is closed nowhere
dense, therefore in M[G} it must be that £5(21) < 8,. To see that gz(2°1) > R,
note that given 8, Borel subsets of 21, there exists in M a set 4 = 8, with car-
dinality less than or equal to 8, + 8, such that each of the Borel sets is coded
in M[G!A]. Choose a one-to-one function f: w; — 8,, in M so that the range of
fis disjoint from A. It is easy to check that if X € 2«1 is defined by X(«) = G(f(a))
then X is Qu;-generic over M[G[A] and thus not in any meager Borel subset of
291 coded in M[GlA]. (Quw; = {pe@:dom(p) = 8;}.) O

It is easy to check that in the model of Theorem 24 forevery nwith1 < n <
it happens that £z(2%») = 8,. The simplest way to see this is to note that x < 4
implies £5(2%) < £p(27). It is also true that when &, Cohen reals are added (i.e.
force with {p| dom(p) € [,,]<, range(p) = {0, 1}} over a model of GCH) that

£p(2%) = kp(2°1) = £p(2*2) = R,

The next remark is due to E. van Douwen (letter December, 1979). Consider
the following cardinal functions for a space X. The cellularity (or chain condition)
of X is denoted c¢(X). The density of X is denoted d(X). The z-weight of X, z(X),
is defined to be the minimum cardinality of a z-base for X, where B is a z-base
for X iff B is a family of nonempty open sets and for all nonempty open sets U
there is a Ve B such that ¥V = U. If X is a compact zero-dimensional space,
then z(X) is what Boolean algebraists call the density of the clopen algebra of
X. The weight of X is denoted w(X). For background see Juhasz (1971). Let U(x)
the space of uniform ultrafilters on . Then one has

£t < c(U(k) < d(U(r) < =(Uk)) < w(U(x)) = 2~

Baumgartner (1976) has shown that adding any number of Cohen reals to a
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model of 2" = @, (so that wy — (w)?,) gives a model in which it is impossible
to find w; almost disjoint elements of [w;]*1 (see also Jech (1978), p. 432). Thus it
is consistent to have ¢(U(w;)) < 2“1. Note that in the model of Theorem 2A the
following holds:

20 =29 =R,,; and 3B < [@n]*(|B] = 8, and VX € [w]*3Y € B(Y < X)).

Since £p(2¢1) = R, in fact we have that #(U(w,)) = R8,. Since c(U(w)) = 2¢
we have also that it is consistent that 7(U(w;)) < 7(U(w)). Also we can show
that both

wy = d(U(wy)) < n(U(wy)) = 2t and
wz = d(U(w)) < n(U(wy)) < 22

are consistent. Let M be a model of 291 = @, plus 22 > ¢ and, working in M,
let @, = {p|dom(p) € [£]<, range(p) = {0, 1}}. Then I claim that if G is Q,-
generic over M, then in M[G] it is true that d(U(w;)) = w,. To see this note that
in M, since 2#z > g, it is true that d(2f) = w,, and so @, is the union of w, centered
sets C, for @ < w,. For each X € [w;]** | M and fe€ w§ (| M define the centered
set Ay ; S [w}! in M[G] by

Ye Ay ;iff 3{q,: a € X) € M, a d-system with root in G,

Va e X(qa € Qf(a)’ and 9. - “ae Y”)~

Kunen (unpublished) had previously been able to show the consistency of
d(U(wy)) = w; plus 221 = @3, by an inductive argument in the same model, but
his argument did not generalize to 221 > .

I do not know whether it is possible to have c(U(w,)) < d(U(w,)).

The model of Theorem 2A shows that £5(29) > £g(2¢1) is possible. Our next
theorem brings these cardinals down a little.

THEOREM 2B. It is consistent that kz(2%) = w, and kz(21) = w;.

PRrROOF. Recall that a family of sets F is a 4-system iff there is a set R, called
the root of F, such that R is the intersection of any two distinct elements of F.
A family of partial functions is a 4-system iff the domains of the functions form
a 4d-system and all functions agree on the root. Some versions of the 4-system
lemma seem to be implied by the results of Pondiczery (1944), Sanin (1946),
Marczewski (1947), Bochstein (1948), and Mazur (1952) (see Ross and Stone
(1964) or Comfort and Negrepontis (1972) for these references). The countable
version needed here was first proved by Erdés and Rado, and also independently
by Michael with a different proof. For references to these and another proof due
to Davies, see Williams (1977). A very popular proof based on stationary sets and
the pushing down lemma can be found in the appendix of Shelah (1978). All this
history is to excuse my presentation of yet another proof of the 4-system lemma,
this one based on the Lowenheim-Skolem theorem.

LeEMMA (CH). Every family of w, countable sets contains a A-system of cardinality
w2-

Proor. We may assume we are given F = {A4,: a < wy) with each A4, € [w,]=*.
Let M be an elementary substructure of (H,, ¢) with Fe M, M® = M, and
M| = w. H, is the family of sets whose transitive closure is of cardinality less
than #. We obtain M as the union of an w; length elementary chain with the
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property that M2 = M,,,. Although M is not transitiveitis truethat M () wy =
is an ordinal.

IfT = M ) A, then since 4, is countable and M* = M it must be that T € M.
By elementarity M must model “for unboundedly many y < wy, 4, 1 7 = T.”
And thus by elementarity the same must hold in H,, and it is easy now to build
a 4-system of cardinality w, and root . []

The functional version of the 4-system lemma follows immediately by applying
the lemma to the domains of the functions and noting that if R is the root there
are only 2¢ = w,; possible f | R.

In the stationary set proof one gets some extra information, e.g. a 4-system
with a stationary index set. In this proof we get the extra information that only
w; roots are needed for all but @, of the sets, e.g.,

VF = [a)z]ﬁ“’ IFI = a)ZEIH < [Cl)z]gw
|H| < wy VAe F — H3 Ad-system G  F
A€ G, |G| = w,y, root of Ge H.

32

We now prove Theorem 2B. Let M be a model of GCH. Consider forcing with
P = {p | dom(p) € [ws]"*, range(p) = <} and
p < qiff Va e dom(p) N dom(g), p(a) < g(a).

The partial order P adds w; Cohen reals with countable support. Also w¥ is
collapsed (see exercise E4 of Chapter 8 of Kunen (1980)). For a hint suppose
{g,: n < w) are the first @ many Cohen reals. For each n < w define 4, € w®
inductively by A,(0) = go(n) and h,(m + 1) = g,,.1(h,(m)). Now define z, e 2%
by z,(m) = 3(1 + (=1Y»") and show (2) = {z,: n < w}. By the 4-system
lemma, P has the w, chain condition, and thus o¥'¢? = @}{. Since we are adding
Cohen reals it is not hard to see that in M[G], £5(2%) = w, = &¥. Thus we need
to show that £5(2%1) = w; = w¥f. Work in M. Let p |- “X: ¥ — 2” and choose
g, < p for each a < w) so that g, |- “X(a) = 0” or ¢, - “X(a) = 1”. By
the A-system lemma there is a Y € [w,]*? such that {g,: « € Y} is a 4-system, and
thus for any Z €[Y]e, g, = (J{g,: @« €Z} is in P. It follows that in M[G] for
every X €241 there exists D € [w]*\ M such that XD e M. And so in M[G],
£5(2) = 0. O

Note that if {(S,: & < w,, cf(a) = w) is a club sequence in M, then the proof
of Theorem 3 shows that it is a club sequence on w'¢1 in M[G]. This gives another
proof of a result of Shelah (1979) (see also Devlin (1979)) that club is consistent
with —CH.

Curiously, assuming ¢, forcing with any product of copies of 2<“t with w;
supports does not collapse w,. The argument is similar to that of Theorem 6.7
of Baumgartner (1976).

Before ending this section let us consider two other properties of category in
the space 2¢1. First note that there are w; nowhere dense sets whose union is not
meager. This contrasts with the fact that under MA + —CH any union of &,
nowhere dense subsets of 2¢ is meager. To see why it is true just let C, be the
set of x in 21 such that for all n < w, x(a + n) = 1, then each C, is nowhere
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dense, but the union of the C, cannot be because every meager subset of 2¢1 is
contained in a meager subset of countable support (by the countable chain condi-
tion of 2e1),

Another property we might consider is the following one. Define Unif(X) to
be the smallest cardinality of a nonmeager subset of X. Note that x < A implies
Unif(2%) < Unif(2%), since the projection of a nonmeager subset of 22 onto 2+
must be nonmeager in 2¢. Using the fact that we need only worry about meager
subsets of countable support, one can show that Unif(2¢) = Unif(2¢1). Assuming
the continuum hypothesis the density of (2+?),, is w; (see Comfort and Negrepontis
(1972)). This says that there are functions f,: w; — 2 for a < w; such that for
any X € [wo}=® and g: X — 2 there is an & < w; such that f, | X = g. Thus CH
implies Unif(2%2) = w,. Is it possible to have Unif(2¢) < Unif(2+2)?

§3. The ideal of measure zero sets. For any measure space X define £,,(X) to be
the least cardinal £ such that X can be written as the union of £ many sets of
measure zero (we assume singletons have measure zero). Given any set I the
product measure g on 2! is determined by requiring that g(N,) = 2~ where
dom(s) € [I]?, range(s) = {0, 1}, and N, = {x€2/| x | dom(s) = s}. It is well
known that g, is the same cardinal for 2¢, R with Lebesgue measure, or any
other separable nonatomic measure space (see Halmos (1950)). I do not know if
£(29) = 8, is possible, but the analogue of Theorem 2A can be proved in the
case of measure:

THEOREM 3. It is consistent that £y (29) = 8,1 and £, (21) = K,

ProoF. Let meas(/) denote the boolean algebra of Borel subsets of 2/ modulo
the ideal of measure zero sets. A function G: I — 2 is called random over M
iff the filter generated by G in meas(/)” is meas(/)-generic over M (Solovay
(1970)). Itis well known that if I; and I, are any two disjoint sets in M, then
given any F: I} J I —» 2 and letting F; = FI; and F, = F[I, then F is
(meas(l; U I5)M) random over M iff F;is (meas(/))) random over M and F, is
(meas(I))MF1Y) random over M[Fi] (see (Pincus and Solovay (1977) and Kunen
(1975)). It is proved by using Solovay’s characterization of randomness (i.e. avoid-
ing measure zero sets coded in the ground model), the absoluteness of some meas-
ure-theoretic notions, and Fubini’s theorem in M. A sketch of the proof is to
let A = {{F), Fp)|F = F; U F, is (meas(/)) random over M}, and let B =
{F,| F; is (meas(I)"1]) random over M[Fj]}. Note that 4 has measure one,
and for any F;, the set B has measure one. Suppose there is a Borel set C <
2h x 22 = 2I coded in M such that C forces “Fyis not random over M[F;]”. By
Fubini’s theorém there is an F; such that the measure of (C() 4)g, (cross section)
is one. Choose F, € (C (| A)r, 1 B, but then {Fj, F;) € C so F, cannot be ran-
dom over M[F;}.

If B is any complete boolean algebra and § any sentence, then [0] is the sup
of all p € B such that p |- “9”.

To obtain the model of Theorem 3 let M be a model of GCH, and let G be
(meas(8,,)) random over M. Suppose B, < 2¢ for ¢ < R,, are Borel sets of measure
zero coded in M[G]. Working in M use the countable chain condition of meas(,)
to obtain countable sets 4, = 8, such that for each a, B, is coded in M[GlA,].
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Using a diagonal argument obtain an w sequence 4 = 8, in M such that for
every o the set A (] A, is finite. Let f: @ — A4 enumerate 4, and let y(n) = G(f(n))
for all n. It follows from the (above) product lemma for measure algebras that
y is random over M[G|A4,] and thus y ¢ B, for all a. This shows that £,,(2¢) > R,
in M[G], and since 2¢ = §8,,; we have £,,(29) = 8, 41.

A simpler but similar argument shows that £,,(2¢1) > 8, in M[G]. Next we
prove a lemma due to K. Kunen (z is product measure on 2/).

LeEMMA. Given B; < 2! for i < n with w(B;) = %; then

p{ye2i:|{i:ye B}l = $n}) = §.

PROOF. Let 4’ be the counting measure on n, i.e. y'(4) = |4|/n for any 4 = n,
and let 2 be the product of 4’ and g onn x 2I. Let B = | );,{i} x B;, and note
that integrating along the first coordinate shows that A(B) > 3. For any ye2/
let BP={i: (i, y)eB}={i:yeB;} and letS = {y: |BY| > $n} = {y: /(B = {}.
Then by integrating along the second coordinate we get that

KB) < 5 4@ = 8) + uS) = 3 (L= W) + i) = 3 + 5 uS),

sod < u(S). O
To show that £,,(21) < 8, we show that no z € 21 is random over all M[GI§,]
for n < w. Suppose [z € 21 is random over all M[GR,] for n < w] = 1.
Working in M for each & < w; choose a clopen set C, < 2% such that

wlz(a) = 1]AC,) < %.

Choose finite sets F, = 8, so that for every x, y € 2% if x| F, =y F,,then x € C,,
iff y € C,. Choose m < w and an w-sequence 4 = {a,: n < w} so that for every
a € A the set F, = 8,,. In M[GI§,,] define y: 4 —» 2 by y(a) = 1 iff G € C, (this
can be done since F, < 8,,). Since z is random over M[G[#,,] by the law of large
numbers,

lim {k < n: (o) = z(a)}l _ 1
n—0o n 2°

This says that a random real equals a ground model real about half the time (see
Feller (1950) for the law of large numbers). Choose n < w so that if

B = [I{k < n: ¥ay) = z(@p}/n < 9/16],

then x(B) > %. If B, = [y(s) = z(a;)], then by our choice of C,, the set B,
has measure greater than or equal to 3. Hence by the lemma if S = {X € 2%|
[{k < n: xe B} | > §n}, then u(S) > %. It follows by absoluteness that

S I+ “Kk < nly(ap = z(ap}l/n = 5/8”.
But this contradicts x(S (1 B) > 0, since B forces the negation. [

§4. w;-saturated ideals. A countably additive ideal 7 in the Borel subsets of 2¢
is wp-saturated just in case it is impossible to find w; Borel sets B, such that B, ¢ I
and for all a # @ the set B, A By is in I. This is equivalent, by a well-known
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theorem of Tarski, to saying that the Boolean algebra of Borel sets modulo the
ideal 7 has the countable chain condition. Let MA, be the statement ‘“‘for every
partial order satisfying the countable chain condition and family F of dense
subsets with |F| < g there is a filter meeting each dense set in F”’ (this is equivalent
to A4, of Martin and Solovay (1970)). By the results of Martin and Solovay (1970)
the least £ such that MA, fails is the same as the least £ such that there is a non-
trivial w;-saturated g-ideal I in the Borel subsets of 2¢ such that 2¢ is the union
of x many members of 1. Can £ be singular? It is easy to get a model where, for
example, MA, +—MA,, + 2¢ = w;. To do it start with a model of 2¢ = o,
291 = @y, and 2“2 = @y. Then force MA,, in an w; iteration using at each step
another partial order of cardinality w; (see Burgess (1977) or Solovay and Ten-
nenbaum (1971)). Since in the resulting model 242 = @, we have —=MA, . While
we cannot answer the main question, by a clever change of quantifier we can
prove

THEOREM 4A. It is consistent that there exists an wi-saturated g-ideal I in the
Borel subsets of 2 such that 8, is the least k for which there exists a set J < I of
cardinality k whose union is 2°.

Proor. We will use Solovay’s almost disjoint sets forcing similar to its use to
prove Theorem 2.3 of Martin and Solovay (1970). Let X,, for & < w; be w; almost
disjoint subsets of w. Let @ be the usual finite condition for forcing a Cohen
generic map from «,; into {0, 1} (i.e. @ = {p|dom(p) € [w;]<* and range(p) =
{0, 1}}). We now define a partial order P such that forcing with P produces a
set X = w such that if G: w; — 2 is defined by G(a) = 1 iff X, (| X is finite,
then G is Q-generic. Define

P = {(p, H)|pe Q and H € [w]<}.

P is ordered by (p, H) < (¢, K) iff p 2 ¢q, H 2 K, and for every « if ¢(a) = 1,
then X, N H = K. Note that if p and g are compatible in Q, then (p, H) and
(g, H) are compatible in P. It follows that P has the countable chain condition.
If G is P-generic, then X = (J{H |3p (p, H) € G} has the required property.
For p = (¢, H) an element of P let C, be all the x € 2% which are potentially
(from the point of view of p) the characteristic function of some X. More formally:

xeC,iff [Vne H (x(n) = 1)]
A [Va{(g(@) = 1) = (Vn (x(n) = 1) A (n€ X,)) = (ne H)))}]

Note that each C, is closed in the usual topology on 2¢. Let I be the g-ideal gen-
erated by sets of the form 2¢ — U{Cp: p € D} where D < P is a maximal anti-
chain. To see that I is an w,-saturated g-ideal in the Borel subsets of 2¢ see §2
of Martin and Solovay (1970). If we think of the C, for p € P as basic open sets
of a new topology on 2¢, then in fact I is the g-ideal of meager sets in this new
topology. In the case of the ideal of measure zero sets or the ideal of meager
sets (in 2¢) the next two lemmas are well-known results of Solovay (1970). In
both lemmas M is the ground model.

LEMMA 1. For any Borel set B = 2¢ codedin M, M = “Be I’ iff Be I

ProOF. The statement ““D is a maximal antichain in P’ is absolute since P € M.
For countable sets D, = P the statement “B c (J,.,(2* — (J{C)lpe D,})”
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is T in a code for B and a code for the sequence of D,’s. It follows by IT} ab-
soluteness that if M = “Bel”, then Breally is an element of 1. Conversely if
M = “B¢ I, then there is a pe P such that M = “C, — BeI”, and so for
this p the set C, — Be I and thus B¢ 1. []

Given ye2¢ define G = {p|ye C,}, and conversely, given a nontrivial P-
filter G define y to be the characteristic function of ( J{H: 3p (p, H) € G}.

LEMMA 2. G is P-generic over M iff y is not in any Borel set in I coded in M.

PRrOOF. Suppose we have a maximal antichain D = P whichisin M. If pe G
D, then y € C, and therefore y ¢ (22 — (J{C,: p € D}). Conversely if G D = @,
then for every pe D, y¢ C, and so y € (2@ — U{Cp: p€D}) an element of
I O

Next we prove Theorem 4A. Working in M let P* be the direct sum of 8,
copies of P, i.e. P* = {p|dom(p) € [8,]<® and range(p) = P} with the obvious
ordering. We claim that if M is a model of GCH and G is P*-generic over M,
then in M[G] the least £ such that x many sets from I cover 2¢ is 8,. For any
set A = 8,in Mlet G, = {p € G|dom(p) = A}. Suppose that in M[G] we consider
a family of 8, Borel sets B, contained in /. By the countable chain condition
there exists a set 4 = 8, in M of cardinality less than or equal to &, such that
each of the sets B, is coded in M[G,]. If « is chosen to be an element 8, — 4,
then by Solovay’s product lemma (1970) the filter G, is P-generic over M[G ,].
It follows from Lemmas 1 and 2 that 2¢ # (J{B,la < 8,}. Let {Ba < 8,}
be all the sets in I coded in any M[G,] for n < w. By Lemma 2 if this family
does not cover 2¢, then there exists G P-generic over M[G, ] for all n < w. This
implies that there exists G Q-generic over M[Gy ] for all n < . But the proof
of Theorem 2A shows that in fact for any X € [w;]* there exists n < w such
that [X]e1 | M[G] is nonempty. []

It is well known that MA, is equivalent to the property that no compact Haus-
dorff space X with the countable chain condition can be the union of £ nowhere
dense sets (see Rudin (1977)). One weakening of MA, is the property MA, (o-
centered) which says that no compact separable Hausdorff space X can be the
union of £ many nowhere dense sets. The partial order equivalence of MA,
(o-centered) is gotten by replacing the countable chain condition on P by the
stronger requirement that P is the countable union of centered subsets (g = P
is centered iff for every A € [Q]<“ there is p € P such that for every g€ 4, p < q)
(see Kunen and Tall (1979)). One consequence of MA, (o-centered) (due to
Solovay) is the property P(x). The property P(x) holds iff for every family 4 = [w]®
of cardinality less than or equal to £ with each finite subset of 4 having infinite
intersection there exists a set X €[w]® such that for all Y€ 4 the set ¥ — X
is finite (see Rudin (1977)). Recently M. Bell (1979) has proved the surprising
result that P(x) iff MA, (s-centered). Thus by the next theorem the least £ such
that MA, (o-centered) fails cannot have countable cofinality.

THEOREM 4B. The least k such that P(k) fails cannot have countable cofinality.

PrOOF. Let Y, € [w]® for a < & have the infinite-finite intersection property,
and let £, for n < w be cofinal in . For each n < w choose X, € [w]® so that for
each a < k,, X, — Y, is finite. For each a < ¢ find f, € w® so that for all but
finitely many n the set (X, — f(n)) is included in Y,. By P(x,) (a result of E. van
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Douwen, see remark, p. 498 of Rudin (1977)) there exists g, € w® which eventually
dominates each f, for a < k, (g eventually dominates f means that for all but
finitely many n, g(n) > f(n)). Let h € @ eventually dominate each g, for n < w.
Inductively choose x, > x,_; so that x, € X,, — h(n). If X={x,: n < w} then for
any « the function 4 eventually dominates £, and so X — Y, is finite. []

§5. The ideal generated by zero-dimensional sets. Let 7 denote in this section
the closed unit interval. A topological space is zero dimensional iffit has a clopen
basis. A classical theorem of Hurewicz (1928) states that I« (the Hilbert cube)
is not the union of countably many zero-dimensional subsets (see also Kuratowski
(1966)). Hurewicz (1932) used this theorem to prove that CH is equivalent to
the existence of an uncountable X = I¢ such that every uncountable ¥ < X has
infinite dimension (infinite dimension, for our purposes, just means not a finite
union of zero-dimensional sets). The natural question of how many zero-dimen-
sional sets are necessary to cover /¢ is answered by the following easy proposition.

PROPOSITION. ¢ is the union of w, zero-dimensional sets.

PrOOF. Choose a set {d,: @ < w;} < I which is w; dense, i.e. for any x < y
in I there are uncountably many « such that x < d, < y. For any a < w; let
E, be the zero-dimensional set I — {dyg|3 > a}. If Z, = E¢, then it is easy to
see that 1o = ( J{Z,: & < o1}. O

One might consider the seemingly weaker property that there is an X < I«
of cardinality 2« such that every subset of X of cardinality 2¢ has infinite dimension.
But this too is equivalent to CH. By the proposition, if the cofinality of 2¢ is
greater than w; such an X cannot exist, since some Z, (| X must have cardinality
2¢. On the other hand if 2 has cofinality w; and —CH, then it is easy to alter
the proposition to obtain I« as a strictly increasing union of @, zero-dimensional
sets, say Z,, and thus again some Z, (] X has cardinality 2¢.

Henderson (1967) showed that there is an infinite-dimensional compact metric
space in which every non-zero-dimensional closed set has infinite dimension.
Fedoréuk (1975) showed that assuming CH there is an infinite compact Hausdorff
space in which every zero-dimensional closed set is finite.

Consider the space /1. Since /¢ is homeomorphic to a subspace of it, /*1 cannot
be covered by countably many zero-dimensional sets. Let (/*1); be It with the
topology generated by the Gj subsets of 71. Thus the basic open subsets of (71);
are of the form N, = {x € I1|s = x} for some s € I<v1,

THEOREM 5. Every zero-dimensional subset of 1! is nowhere dense in (I+));.

Let £ be the least cardinal £ such that 7 is the union of £ many zero-dimen-
sional sets.

COROLLARY A. k7 > w.

CoROLLARY B. —CH implies k; = w,.

CoRrROLLARY C. TFAAC (the following are all consistent)

(1) wy < gz = 291

2) 2 =w > wp = £z < 29

B) wy < £z < 21,

Let £ be £5((I“1);), and consider the partial order

P = {p | dom(p) € w,, range(p) = I}.
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Then kjp is the greatest cardinal g such that for every family of dense subsets
of P of cardinality less than £ there is a generic filter. Theorem 5 says that gz <
k2. Corollary A follows since you can always meet w; dense subsets of P. Corollary
B is true since assuming —CH forcing with P collapses w;. To prove Corollary
C let M be a model of GCH, let 7 be any cardinal of M of cofinality greater than
w;, and force y many Cohen subsets of w; with countable support (i.e. force
with Q = {p|dom(p) € [y]<*, range(p) = {0, 1}}). In the resulting model M[G]
we have gp = 291 = y. The easiest way to get (2) is to add to M[G] a family
{fi: @ < wp} = w! such that for every g € wy! there is an & < w, such that for
every 3 <wy, g(B) < f(B). This can be done with an w, iteration of the order
D = {(f,d)|featt, a < w} where (f, @) < (g, B) iff &« = B, /18 = g!B, and
for all 7, f(y) > g(7). To see that k; = wylet I = {x,|a < w,} and for each a < w,
let Z, = {x € I1| if the Bth coordinate of x is X,, then y > f(@)}. Then Z, is
zero dimensional and I = ( J{Z,la < ws}. To get (3) just do this iteration a
little longer.

Next we prove Theorem 5. Suppose Z < It is zero dimensional. We must
show that for every s € /<@ there is a t 2 s such that N, (| Z is empty. We may
as well assume s is the empty sequence, and also that Z is dense in the usual
topology on I“1. Since Z is zero dimensional it has a nontrivial clopen set, so let
U and V be open subsets of It suchthat U V' (| Zisempty, U\ Zand V | Z
are nonempty, and Z < U |J V. Now since Z is dense in J*! it follows that U
and V are disjoint nonempty open sets in 7“1, Let W = int(cl(U)), and note that
C = cl(W) — W is disjoint from Z and nonempty since U <€ Wand W\ V =
@. To find N, = C it is enough to see that C has countable support, i.e. there is
an « < w; such that for any x, y € I1 if xla = yla, thenx € C iff y € C. To see
this it is enough to see that W has countable support. To see this it is enough to
see that the closure of U has countable support. To see this note that 71 satisfies
the countable chain condition and hence if H is a maximal family of disjoint
basic open sets contained in U, then cl(U) = cl({ JH). Of course all of this
is immediate from Bochstein’s theorem (see Ross and Stone (1964)) which says
that open disjoint subsets of 7“1 can be separated by countably supported open
sets. [

R. Pol (letter December, 1979) remarks that another proof of Theorem 5
can be given using some results in Pol and Puzio-Pol (1976), particularly Prop-
osition 3 on p. 66.

We end this section with some open problems.

Can ¢, be strictly greater than £5?

Is “2¢ = @; + 29 = @y + 22 = @5 + I*2 the union of w; zero-dimensional
sets”” consistent?

Is I» with the box topology (i.e. any II,.,U, is open where U, < I is open)
the union of countably many zero-dimensional sets?

NOTE ADDED IN PROOF, SEPTEMBER 1981. Recently D. Fremlin has shown that
the least £ such that MA, fails cannot have countable cofinality. However, K.
Kunen has shown that it is consistent that it be Ro,-
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