Abstract

A Laver tree is a tree in which each node splits infinitely often. A Hechler tree is a tree in which each node splits cofinitely often. We show that every analytic set is either disjoint from the branches of a Hechler tree or contains the branches of a Laver tree. As a corollary we deduce Silver Theorem that all analytic sets are Ramsey. We show that in Godel’s constructible universe that our result is false for co-analytic sets (equivalently it fails for analytic sets if we switch Hechler and Laver). We show that under Martin’s axiom that our result holds for Σ^1_2 sets. Finally we define two games related to this property.

Definition 1 A subtree $H \subseteq \omega^{<\omega}$ is Hechler iff $\forall s \in H \forall^{\infty} n \ s n \in H$. A subtree $L \subseteq \omega^{<\omega}$ is Laver iff $\forall s \in L \exists^{\infty} n \ s n \in L$.

These definitions are motivated by well-known forcing notions of Laver [4] and Hechler [3]. In the classical Hechler forcing the cofinite sets on the n^{th} level of the tree would all be the same.

Definition 2 For any subtree $T \subseteq \omega^{<\omega}$ define

$$[T] = \{x \in \omega^\omega : \forall n \ x \upharpoonright n \in T\}$$

Theorem 3 For any Σ^1_1 set $A \subseteq \omega^\omega$ either there exists a Hechler tree H with $[H] \cap A = \emptyset$ or there exists a Laver tree L with $[L] \subseteq A$.

These results were obtained in December 2002 while visiting the Fields Institute at the University of Toronto. Thanks to its director Juris Steprans and his staff for their hospitality and also for the discussions we had with Steprans at that time. It was presented to the SEALs conference in Gainesville Florida in March 2003, and in a topics course at the University of Wisconsin, Madison in the fall of 2009. Last revised April 2012..

Mathematics Subject Classification 2010: 03E15; 03E05; 03E02

Keywords: Analytic sets, trees, constructible sets, Martin’s Axiom, games.
Proof
Since analytic sets are projections of closed sets there exists a tree T on $\omega^{<\omega} \times \omega^{<\omega}$ such that

$$A = p[T] = \{ x \in \omega^\omega : \exists y \in \omega^\omega \forall n \ (x \upharpoonright n, y \upharpoonright n) \in T \}.$$

Assume that for every Hechler H that A meets $[H]$ and we will show there is a Laver L with $[L] \subseteq A$.

For $s, t \in \omega^{<\omega}$ define

$$A_{s,t} = \{ x \in \omega^\omega \ : \ s \subseteq x \exists y \supseteq t \ (x, y) \in [T] \}.$$

Definition 4 We say that H is Hechler with root s if for all $t \in H$ either $s \subseteq t$ or $t \subseteq s$ and beneath s there is cofinite splitting.

Lemma 5 Suppose for every Hechler H with root s that $A_{s,t} \cap [H] \neq \emptyset$. Then there are infinitely many n such that for every Hechler H with root s_n that $A_{s_n,t} \cap [H] \neq \emptyset$.

Proof
Otherwise for all but finitely many n (say $n > N$) there exists a Hechler H_n with root s_n which misses $A_{s_n,t}$. But then the Hechler tree: $H = \bigcup_{n > N} H_n$ misses $A_{s,t}$ and has root s.

QED

Lemma 6 Suppose for every Hechler H with root s that $A_{s,t} \cap [H] \neq \emptyset$. Then there exists an infinite well-founded tree $T \subseteq \{ r : s \subseteq r \}$ with root s and terminal nodes $B \subseteq T$ such that

(1) The nonterminal nodes of T are ω-splitting, i.e., if $r \in T \setminus B$, then there are infinitely many n with $rn \in T$, and

(2) For every $r \in B$ there exists n such that for every Hechler tree H with root r, $A_{r,tn} \cap [H] \neq \emptyset$.

Proof
For each ordinal α define a set $B_\alpha \subseteq \{ r : s \subseteq r \}$ as follows.

(a) $r \in B_0$ iff there exists n such that for every Hechler tree H with root r, $A_{r,tn} \cap [H] \neq \emptyset$.

(b) $B_{\alpha+1} = B_\alpha \cup \{ r : \exists^\infty n \ r n \in B_\alpha \}$

(c) $B_\lambda = \bigcup_{\alpha < \lambda}$ for λ a limit ordinal.
Define function rank\((r)\) on \(r \supseteq s\) as follows, \(\text{rank}(r) = \alpha\) if \(\alpha\) is the least ordinal with \(r \in B_\alpha\) and \(\text{rank}(r) = \infty\) if there is no such ordinal.

Case 1. \(\text{rank}(s)\) is an ordinal. In this case it is easy to build \(T\) and \(B\) as required.

Case 2. \(\text{rank}(s) = \infty\). We show that this is impossible. Note that if \(\text{rank}(r) = \infty\) then for all but finitely many \(n\) we must have that \(\text{rank}(rn) = \infty\). Hence we may construct a Hechler tree \(H\) with root \(s\) such that \(\text{rank}(r) = \infty\) for all \(r \in H\) below the root. For each \(n < \omega\) for each \(r \in \omega^{n+|s|} \cap H\) there exists a Hechler \(H_r\) with root \(r\) such that

\[
[H_r] \cap A_{s,tn} = \emptyset.
\]

Define

\[
K_n = \bigcup \{H_r : r \in \omega^{n+|s|} \cap H\}
\]

Note that \(K_n\) is a Hechler tree with root \(s\) whose \(n + |s|\) level is the same as \(H\). It also true that \(K_n \cap A_{s,tn} = \emptyset\). Because they are so wide \(K = \bigcap_{n<\omega} K_n\) is a Hechler tree with root \(s\) such that \([K] \cap \bigcup_n A_{s,tn} = \emptyset\). This contradicts the hypothesis of the Lemma since \(\bigcup_n A_{s,tn} = A_{s,t}\).

Finally, if \(T\) is trivial, i.e., \(T = B = \{s\}\) just apply Lemma 5 to make \(T\) infinite.

QED

Proof of Theorem 3:

Suppose for every Hechler tree \(H\) with trivial root that \(A \cap [H] \neq \emptyset\). Apply Lemma 6 to obtain a non-trivial well-founded tree \(T_0\) with terminal nodes \(B_0\) and witnesses of length one.

Suppose we are given a well-founded tree \(T_n\) with trivial root and terminal nodes \(B_n\) such that for all \(s \in T_n \setminus B_n\) there are infinitely many immediate extensions of \(s\) in \(T_n\) and for each \(s \in B_n\) there is a \(t_s\) of length \(n + 1\) such that for every Hechler tree \(H\) with root \(s\), \(A_{s,t_s} \cap [H] \neq \emptyset\). Apply Lemma 6 to each node \((s, t_s)\) with \(s \in B_n\). Union all these trees together to get \(T_{n+1}\) which end extends \(T_n\). It follows that \(L\) is a Laver where

\[
L = \bigcup_{n<\omega} T_n
\]
Note that although the length of the witnesses grow much slower than the s-part, nevertheless, they union up to show that $L \subseteq A$.

\[\text{QED} \]

Definition 7 For \mathcal{F} a filter extending the cofinite filter on ω define $\mathbb{H}_\mathcal{F}$ to be the Hechler trees mod \mathcal{F}, i.e., instead of demanding that for each $s \in H$ that $sn \in H$ for cofinitely many n, we demand that

\[\{ n : sn \in H \} \in \mathcal{F}. \]

Analogously define $\mathbb{L}_\mathcal{F}$ the Laver trees mod \mathcal{F} by for each $s \in L$

\[\{ n : sn \in L \} \in \mathcal{F}^+ \]

where \mathcal{F}^+ are the positive \mathcal{F} sets, i.e., sets whose complement is not in \mathcal{F}.

Theorem 8 For any filter \mathcal{F} and any Σ^1_1 set $A \subseteq \omega^\omega$ either there exists a Hechler tree $H \in \mathbb{H}_\mathcal{F}$ with $[H] \cap A = \emptyset$ or there exists a Laver tree $L \in \mathbb{L}_\mathcal{F}$ with $[L] \subseteq A$.

\[\text{Proof} \]

The proof of this goes over mutatis mutandis, the proof of Theorem 3.

\[\text{QED} \]

Any Hechler tree H may be pruned so that every node in it is strictly increasing, i.e., if $(x_0, x_1, \ldots, x_n) \in H$ then $x_0 < x_1 < \ldots x_n$. By the range of H we mean all infinite subsets of ω which are the image of some branch $f \in H$, i.e.,

\[\text{range}(H) = \{ \{ f(n) : n < \omega \} : f \in [H] \} \]

Proposition 9 Suppose $H \in \mathbb{H}_\mathcal{F}$. Then there exists $X \in [\omega]^\omega$ such that $[X]^\omega \subseteq \text{range}(H)$.

\[\text{Proof} \]

We may suppose that the nodes of H are strictly increasing. Construct a strictly sequence x_0, x_1, \ldots, x_n such that for every k and subsequence

\[0 \leq i_1 < i_2 < \cdots < i_k \leq n \]

we have that $(x_{i_1}, \ldots, x_{i_k}) \in H$. To obtain x_{n+1} we need only intersect finitely many elements of the filter \mathcal{F}.

\[\text{QED} \]
Corollary 10 (Silver [5]) Analytic sets have the Ramsey Property. This means that for any \(\Sigma^1_1 \) set \(A \subseteq [\omega]^\omega \) there exists an \(X \in [\omega]^\omega \) with either \([X]^\omega \subseteq A \) or \([X]^\omega \cap A = \emptyset \).

Proof
Let \(F \) be a nonprincipal ultrafilter. Note that \(\mathbb{H}_F = \mathbb{L}_F \) for ultrafilters. Define \(B \subseteq \omega^\omega \) by \(f \in B \) iff \(f \) is strictly increasing with range in \(A \). Then \(B \) is \(\Sigma^1_1 \) and so by Theorem 8 there is a Hechler tree \(H \in \mathbb{H}_F \) with \([H]^\omega \subseteq B \) or \([H]^\omega \cap B = \emptyset \). By Proposition 9 there is an infinite \(X \) as required.

QED
This gives a proof of Silver’s Theorem which avoids the accept-reject arguments of Galvin-Prikry [2] and Ellentuck [1].

Theorem 11 \((V=L)\) There exists a \(\Pi^1_1 \) set \(A \subseteq \omega^\omega \) such that \([H] \cap A \neq \emptyset \) for every Hechler tree \(H \) but \(A \) contains no Laver \([L]\).

Proof
Using the definable well-ordering of the reals in \(L \) construct \(B \subseteq \omega^\omega \) a \(\Sigma^1_2 \) set with the following two properties:

1. \(B \) is an \(<^* \) scale, i.e., \(B = \{ g_\alpha \in \omega^\omega : \alpha < \omega_1 \} \) where \(\alpha < \beta \) implies \(g_\alpha <^* g_\beta \) and for every \(f \in \omega^\omega \) there exist \(\alpha \) such that \(f <^* g_\alpha \).
2. \(B \) has the property that for any \(\sigma : \omega^{<\omega} \to \omega \) there exists \(g \in B \) such that for all \(x \in 2^\omega \) if \(f = 2g + x \) then \(\forall n \ f(n) > \sigma(f \upharpoonright n) \).

Let \(C \subseteq \omega^\omega \times 2^\omega \) be \(\Pi^1_1 \) so that \(g \in B \) iff \(\exists x \ (g, x) \in C \).

Given \(f \in \omega^\omega \) define \(Q(f) = (g, x) \) where \(g \in \omega^\omega \) and \(x \in 2^\omega \) are determined by \(f = 2g + x \). Define the \(\Pi^1_1 \) set \(A \) by

\[
A = \{ f \in \omega^\omega : Q(f) \in C \}.
\]

Note that for any Hechler \(H \) we can find \(\sigma : \omega^{<\omega} \to \omega \) such that

\[
H_\sigma = \{ f \in \omega : \forall n \ f(n) > \sigma(f \upharpoonright n) \} \subseteq H
\]

It follows from (2) that \(A \) meets every \([H]\). On the other hand \(A \) cannot contain the branches \([L]\) of a Laver tree. This is because of the scale (1). Take a 3 splitting subtree of \(T \subseteq L \), i.e., for every \(s \in T \) there are exactly 3 immediate extensions of \(s \) in \(T \). For each \(g \in \omega^\omega \) define

\[
C_g = \{ f \in \omega^\omega : \exists x \in 2^\omega \ f = 2g + x \}
\]
and note that $A \subseteq \bigcup_{g \in B} C_g$. If $[T] \subseteq A$ then by the scale property of B there would have to be a countable set $Q \subseteq B$ with such that

$$[T] \subseteq \bigcup_{g \in Q} C_g$$

But the C_g are the branches of a binary splitting tree and since T is 3-splitting, it is easy to construct $f \in [T]$ such that $f \notin C_g$ for every $g \in Q$. QED

Theorem 12 Assume MA $\Rightarrow CH$. If $A \subseteq \omega^\omega$ is Σ^1_2, then either there is a Hechler tree H with $[H] \cap A = \emptyset$ or there is a Laver tree L with $[L] \subseteq A$. In fact, this is true for any set A which is the union of ω_1 many Borel sets.

Proof

Suppose $A = \bigcup_{\alpha < \omega_1} B_\alpha$ where each B_α is Borel and the union is increasing. Since no B_α contains the branches of a Laver tree we have H_α a Hechler tree with $[H_\alpha] \cap B_\alpha = \emptyset$. Without loss we may assume that

$$[H_\alpha] = \{ f \in \omega^\omega : \forall n \ f(n) > \sigma_\alpha(f \upharpoonright n) \}$$

where $\sigma_\alpha : \omega^{<\omega} \to \omega$. By Martin’s axiom we may find $\sigma : \omega^{<\omega} \to \omega$ which eventually dominates each σ_α. By a counting argument we can find a single $\sigma : \omega^{<\omega} \to \omega$ which everywhere dominates ω_1 of the σ_α. But this means that H_σ is a Hechler tree disjoint from A since the B_α’s are an increasing union. QED

Finally we make some remarks about games.

Game 1. Given $A \subseteq \omega^\omega$. Player I and II alternatingly play

$$n_0, m_0 > n_0, \ n_1, \ m_1 > n_1, \ldots$$

with Player I playing $n_k \in \omega$ and Player II responding with $m_k > n_k$. The play of the game is won by Player II iff $(m_i : i < \omega) \in A$.

Proposition 13 (a) Player II has a winning strategy in Game 1 iff there exists a Laver tree L with $[L] \subseteq A$. (b) Player I has a winning strategy in Game 1 iff there exists a Hechler tree H with $[H] \cap A = \emptyset$.

Hechler and Laver Trees

Proof
Given the trees it easy to get the strategies. For the other direction:
(a) Use player II’s winning strategy to construct a Laver tree as required.
(b) If $\sigma : \omega^\omega \to \omega$ is Player I’s winning strategy, then for any sequence $(m_i : i < \omega)$ such that $m_{i+1} > \sigma(m_0, \ldots, m_i)$ for every i we have that $(m_i : i < \omega) \notin A$. But this gives a Hechler tree H with $[H]$ disjoint from A. QED

Game 2. Given $A \subseteq \omega^\omega$. Player I and II alternatingly play

$$X_0, \ m_0 \in X_1, \ X_1, \ m_1 \in X_1, \ldots$$

with Player I playing $X_k \in [\omega]^\omega$ and Player II responding with $m_k \in X_k$. Player II wins the play of the game iff $(m_i : i < \omega) \in A$.

Proposition 14 (a) Player II has a winning strategy in Game 2 iff there exists a Hechler tree H with $[H] \subseteq A$. (b) Player I has a winning strategy in Game 2 iff there exists a Laver tree L with $[L] \cap A = \emptyset$.

Proof
From right-to-left in both cases is easy. For the other direction:
(a) Let σ be a winning strategy for Player II. Consider

$$\{m_0 : \exists X_0 \ \sigma(X) = m_0\}$$

This set must be cofinite, since otherwise consider σ’s response to its complement. Similarly given any sequence $X_0, X_1, \ldots, X_{n-1}$ the set

$$\{m_n : \exists X_n \ \sigma(X_0, \ldots, X_n) = m_n\}$$

must be cofinite. Construct X_s for $s \in \omega^\omega$ and get a Hechler tree H all of whose branches are plays of the winning strategy and hence are in A.

(b) The sequence of X_s played by winning strategy of Player I determine a Laver tree L.

QED

Some of the results in this note follow from Zapletal [6].
References

Arnold W. Miller
miller@math.wisc.edu
http://www.math.wisc.edu/~miller
University of Wisconsin-Madison
Department of Mathematics, Van Vleck Hall
480 Lincoln Drive
Madison, Wisconsin 53706-1388