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On some properties of
Hurewicz, Menger, and Rothberger

by

Arnold W. Miller * (Madison, Wis.) and David H. Fremlin (Essex)

Abstract. Our main result is that property C’ and C* of Rothberger are not the same. We
also discuss property M of Menger and a generalization of it dus to Hurewicz.

We assume throughout this paper that our topological spaces are metrizable
*and separable.

DEFINITION. A metric space X has property Ciff for every sequence {s,: n <)
of positive real numbers X can be covered with a sequence of sets {I,: n < w) such
that each [, has diameter less than s,.

Property C is also known as strong measure zero. It was introduced by Borel
(1919}, who conjectured that every set of reals with property C must be countable.
Sierpifiski (1928) showed that under CH there is an uncountable set of reals with
property C (see also Miller (1984) § 2 and § 3). Laver (1976) showed that it is con-
sistent with ZFC that every set of reals with property Cis countable. In his model
it is easy to see that every metric space with property C is countable. In fact, an-
swering a question of Galvin, Carlson (unpublished) has shown that if there is an
uncountable metric space with property C then there is an uncountable set of reals
with property C. (It seems to be unknown whether or not there must be a set of reals
of cardinality the continuam with property C if there is a metric space of cardinality
the continuum with property C.) '

Clearly a space with property C must be separable and Szpilrajn-Marczewski
(1937) (sce also Kuratowski (1966) p. 528) showed that it must be zero-dimensional,
and hence homeomorphic to a set of reals. However, this does not give Carlson’s
result since property C depends on the metric.

It is easy to see that a uniformly continuous image of a set with property C has
property C. Sierpifiski (1935, 1938) asked if every continuous real image of a set
with property C has property C. This was answered in the negatjve by Rothberger
(1941) who showed that assuming CH there is a set of reals with property C that can
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be continuously mapped onto the whole real line. He also defined property C’ in
Rothberger (1938) as below. Rothberger showed that this is equivalent to the property
that every real continuous image has property C.

DEFINITION. A space X has property C' iff for every sequence {(%,: n<w)
such that each %, is a finite open cover of X there exist a sequence (U, : ne o) with
U,e%, such that {U,: new} covers X.

Rothberger also introduced property C” by dropping the requirement of
“finite”.

DerINITION. A space X has property C'' (called “Rothberger’s property” in
Fremlin (1984)) iff for every sequence (%,: ne w) of open covers of X there exists
an open cover of X, {U,: n<w}, with each U,€¥,.

Note that C"" — C’ and C’ — C for metrics which are totally bounded, i.e. for
every ¢>0 the space can be covered by finitely many e balls.

He asked if C' = C”. We will show that assuming CH the answer is no. First
we give a Rothberger-like characterization of C”.

DerNiTION. The usual rietric on the Baire space w®, the set of infinite se--

quences of natural numbers, is defined by

1
o(x,») iy where x }n =y } nand x(n) = y(n).

THEOREM 1. The following are equivalent for any metric space X:

(@) X has property C"; »

(b) X has property C with respect to every metric which gives the same topology;
and

(©) X is zero-dimensional and every continuous image of X in o has property C
in the usual metric.

Proof. (a) = (b). Suppose J is any metric on X and {¢,: n e w) is any sequence
of positive real numbers. For each n< o let

9, ={U<sX| Uis an open set of §-diameter less than e,} .

By C” there exist U, € %, such that {U,: ne w} covers X. Hence X has property C
with respect to 6.

(2) = (c). It is enough to note that the continuous image of a space with prop-
erty C'" has property C”.

(b) = (a). Let (#,: ne w) be a sequence of open covers of X. Since X is a sep-
arable zero dimensional metric space, we can find (#*: ne w) such that:

(1) 95 is a clopen disjoint cover refining &,;
(2) Ue &} implies that the diameter of U is less than 1/n; and
(3) %ty refines @,
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Let ¢ be an arbitrary metric on X. First replace %, by
. 1
Ul U clopen, g-diam(U)< -, and 3Ve ¥, U<V}.
n

Since X is separable, we can replace this by a countable subcover {U,: m<w}.

Since they are clopen, we can make the cover disjoint. Finally obtain (3) by further
intersections. .

Now define a metric § on X by B(x,)) = ;jil:l. where »n is the least such that
there exist Ue %y with xe U and y ¢ U. Since X has property C with respect to f3,
there exist I, such that the f-diameter of 7, is less than # and X is covered by
{I,: ne w}. Hence for each n there exists Ufe %* and U,e ¥, such that

LeUtcU,.

So X is covered by {U,: ne o}.

(c) = (a). This is the same as the above proof. So let (¥*: ne w) be as above,
and let ¥* = | {%: new}. Let »™“ be the set of finite sequences of natural
numbess. Since the &) satisfy (1), (2), and (3), it is easy to find ¢: ¥* > »*® such
that for each n

o'
and for all U, Ve %*
UgVv iff o(V)zo(U)
where & on w™“ means strict initial segment. Use ¢ to define a map
fi X— o

by ,
S =U{o@): xeUe¥*}. .

Then fis continuous and so by assumption Y = f"" X has property C in the usual
' 1
metric on w®. Suppose {I,: ne w} cover ¥ and diameter (1,)< el Then there is
i n

a unique U,e%; such that (U, 1)+ @. So X is covered by {U,: new}
since if f(x)e I, then xe U,. B

Property M was introduced by Menger (1924) who called it property E.

DerFiNiTION. A space X hasproperty M -iff for every sequence (%,: neow)
of open covers of X' there exists (%,: ne w) where &,¢[%,]°” and

X=yU=#,.
n<w

Observe that M, like C' and C" is a topological property, and also C"" — M.

Our next result shows that our definition is equivalent to the one used by Menger.
2.
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THEOREM 2. Let (X, @) be any metric space. Then X has property M iff for every
open basis % for X there exists {U,: ne o} =9 such that

lim ¢-diameter(U,) = 0

n—+oo

and X is covered by {U,: ne w}.
Proof. (=) This implication is due to Hurewicz (1927). Suppose X has prop-

1
erty M and let %, {UE 4| o- d1ameter(U)< ?} Then let #,&[%,]°° be
such that X = U U#,. If U U &, = {U,: new}, then clearly
n<o

n<w

lim g-diameter (U,) = 0.
n-oo
(<=) Let (%,: new) be a sequence of open covers of X. Assume without
loss of generality that:

UopencVe%,=>Uec¥%,.
Let .

1
={Uu Vi 3n U, Ve, and g-diameter(U U V) > -}.
n

‘We claim that % is a basis for the non-isolated points of X. For suppose x € ",
-

Suppose y € W and ¢(x, y) > —. Then there exists U, Ve &, such that xe U, ye V,
" .

and UuVeW
By assumption there exists W, e% u {{x}: x is isolated} such that
lim g-diameter (W,) = 0

n— o0

1
and X is covered by {W,: new}. If W, = U, u V, and ¢-diameter (W,) <— then
m

U,, V. €%, for some k>m. Hence &, is used by only finitely many W,. So if
we also take care to cover the nth isolated point using &%, we cau find &, e [%,]%
such that .

X¥=yUyuU#, |

n<w

DEFMITION. ", is the class of all countable unions of compact spaces.

DEFINITION. A space X is concentrated on Y iff for every open U= ¥ X\U is
countable. X is concentrated iff X is concentrated on some countable Y < X.

Since it is easy to show that every ¢, has property M, Menger asked if prop-
erty M implies °,. Hurewicz (1925) showed that any analytic set (i.e. 21 set)
which has property M is o', Sierpifiski( 1926) noted that a Luzin set has property M
but is not #,. Note that Luzin set implies concentrated implies C*', If ¥ = £, there
is an uncountable IT; set concentrated on the rationals (Erdés, Kunen, Mauldin
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(1981)). Hence it is possible to have a 17 1 set with property M but not 2. On the
other hand if we have that every H 1 game is determined, then there can be no such
II set. This is so because using Wadge games it is possible to show that every IT; 1
set which is not F, contains a closed homeomorphic copy of w® and property M
is inherited by closed subspaces (see Kunen, Miller (1983)). The fact that every
non F, Z 1 set contains a closed copy of ©” is due to Hurewicz (1928). In Menger
(1924), Huremcz (1925, 1927) and Sierpinski (1926), property M is referred to as
property E. Our definition corresponds to property E* of Hurewicz (1925, 1927).
Sierpifiski (1934) refers to it as property M (in honor of Menger) as does Roth-
berger (1938).
THEOREM 3. For any cardinal x the following are equivalent:

(a) Every separable metric space X of cardinality less than % has property M.

. (b) For every X < o of cardinality less than x there exists g &€ w® such that for

every fe X there is an n < w such that f(n) < g(n). (In the language of van Douwen,
®< D)

Proof. (a) = (b). Let X < w” be of cardinality less than ». Let

%, = {[s]: seo™*!}

where [s] = {fe@®| s=f}. Since (%,: ne ) is a sequence of open covers of X
and X has property M, there exists &, € [%,]°° such that X is covered by U #,
Define g € 0° by n<e

g(m) = 1+max{s()| se F,}.

Then fel) &, implies f(n) < g(n).

(b) = (a). Let X be a separable metric space of cardinality less than-x. Let
{¥%,: ne w) be a sequence of open covers. We can assume without loss of generality
that each %, is countable, say %, = {U}": m < w}. For each x€ X let f,e w® be
defined as follows:

Slm) =

Suppose g € ” and for every x e X there exists # such that fi(n) < g (). Then X is
covered by

least m such that xe Uy .

U ovr. m

n<w m<g(n)

THEOREM 4. There exists a set X < R of cardinality w, with property M.

Proof. If Theorem 3(b) is true for ¥ = w,, then every set X < w® of size w,
has property M. Otherwise there must exist an w; scale, i.e. {f,: ¢ <o} S0
such that for all g € @ there exists « such that for all but finitely many rn g (n) <f,(n)
and for all « < f for all but finitely many » f,(r1) < f;(n). But an , scale is concen-
trated on the rationals when we identify w® with the irrationals (this is due to Roth-
berger, see also Miller (1984) p. 216). So the union of this set with the rationals has
property C’ hence property M. H
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It follows that without any set theoretic hypotheses there is always a set with
property M which is not 2,. The set constructed in Theorem 4 is not hereditarily
of property M since an w,-scale cannot have property M (see the proof of Theorem 3).
For the same reason Rothberger’s example of set which has property C but'not C’
also fails to have property M (see Rothberger (1941) or Miller (1982) Thm 9.4).

QUESTION. Without extra set theoretic assumption can one show there is a set
X S R of cardinality wy such that all subsets of X have property M?

DermNITION. 37 means “there exists infinitely many »”; and

V. means “for all but finitely many n”.

THEOREM 5. The following are equivalent for a cardinal x.

(a) Every separable metric space of cardinality less than x has property C'.
(b) Every X < ® of cardinality less than » has property C in the usual metric.
© VFelo®T™ dgen® VieF 37 f(n) = g().

@ VFel’I™ Ve llo]"]"" dge®

VieFVXed I7eXfn)=g@.

(e) R is not the union of less than x many meager sets.

Proof. The equivalence of (a) and (b) follows immediately from Theorem 1. The
equivalence of (a) and (c) is due to Rothberger [1941] who also proved () implies (a).
The equivalence of (d) and (e) is due to Miller (1982). The equivalence of (c) and (d)
is due to Bartoszynski (1984). We give a shorter proof of (c) = (d).

Lemma 5.1. Suppose Mk ZFC* (a large finite fragment of ZFC) and
Afew” Vgeo® o M 37 f(m) =g .

Then
few” Ygew' n M YAew® AM A7 ned f(m)=gm).
Proof. Let
Q={(u:neowd Vnu: F,—> oA Felw]'}.
Clearly

JueQ Voe QnMIY u,=v,.

Choose x, € dom(u,)\{Xo, X1, ..., X,—4}. Define few® so that f(x,) = u,(x,).
Now suppose g, 4 are from M. Let v, be g restricted to the first n-+ 1 elements of 4.
Then u, = v, implies f(x,) = g(x,) and x, e 4. W

Lemma 5.1 shows that (¢) =
of Theorem 3.

Clearly [R]<" < Cis equivalent to [R]** < C’, however these are not necessarily
‘equivalent to [RI“* < C”. In the infinitely often equal reals' model (see Miller (1981)
'§ 7)itis easy to see [R]”* S C, however in that model R is the union of & 1 meager sets,
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Clearly C"" = C', C” — C, and C”" = M. Also C’ — C with respect to any
totally bounded metric (i.e. for every &> 0 there is a covering by finitely many g
balls.) Our remaining results show that under CH no other implications hold.

THEOREM 6. Assume CH, then there exists X < R of each of the following kinds:

(a) property C' but not property M;

(b) property C' and property M but not property C''; and

(c) property C and property M but not property C'.

Proof. Our first example will need the Galvin~Prikry theorem (1973).

Regard [w]” as a subspace of 2%, the Cantor space. Then 'the Galvin-Prikry
theorem implies that for any finite Borel partition of [w]®,

[w]® = B, UB,LU..UB,,

there exists X € [w]” and k such that
[X)°< By.

DerNITION. For X € [w]® define [XT® to be the set of infinite Y=o which
are almost contained in X (.e. [XT® = {Ye[o]?] "X finite}). -

LeMMA 6a. Suppose (%,: ne w) is a sequence of finite open covers of [X].
Then there exist Ye[X1° and (U,: ne w) with U,e¥%, such that

[¥f*s U G,.
n<e

Proof. Construct /;, n;, Y;, U; so that at stage k<o we have:

(1) U;e ¥, for i<l <w;

@ {n:i<kiu Ve X;

3 YeelYs)"s

@) ny <ny < ..m_y <min(Y;); and

GYVFem_+1 3i [y <i<l],

VYe[Y,]° Fu YeU,.

To do stage k+1 let m, = min(Y)) and let

{Fp l<i<ly,}=Pm+1)
(50 Ly = L+2™Fh, ‘
Set Z,, = Y\{n} and use the Galvin-Prikry Theorem to find

Zy 2214122422 oo Ry, = Vi

as follows. Given Z;, find U,e ¥, and Z,,, €[Z;]® so that for all We[Z;, (]
F,uWeU, This ends the construction. Let Y ={n;:i<w}. Suppose
Qc(m+1)u Y, say F= 0 n (m+1). Then N+ 1) E Yepy, 50 Ji L <i<lyy
QcU, W
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Using the Lemma and CH it is easy to construct {X;: o < ®,} < [w]” such that

M oa<f= X, &*X,;

Q) if f,: ® - © enumerates X, in increasing order then for all ge w” there
is an &<, such that for all n<w g(n) <f(n); and

(3) for {%,: ne w) a sequence of finite families of open sets there exists o < o,
such that either there exists n such that X,.; ¢ U %, or there exists {(U,: ne o)
with U, e %, and [X,..]°<c U U,.

n<wo

Now let I' = {X,: «<w,}. Then I" has property C' by (3), since for any
@< w; IN[X,.,]™ is countable (so reserve half of the covers to take care of these
countably many points). On the other hand I’ cannot have property M by (2). Let

Ur = {Xe[w]”| mis the nth element of X} .
Suppose for contradiction that '

r<y U o

n<@ m<g(n)

But if g(n) <fu(n) then X, ¢ U~ U™ This concludes the proof of Theorem 6a.

m<g(n)
Next we want to give an example of a space which has property C’ and M but
not C”. We will make use of eventually different forcing (see Miller [1981) § 5).
Let , .
P = {(s, F)| se »*® and Fe[0"]""}
where

(s, F)<(¢, H) iff s2t,F2H, and
Vie dom(s)\dom (z) ‘v’g‘e H s(i) # g().
If G is a P-generic filter, then
F=U{s| 3F (s, F)eG}
is the eventually different real and v
G={(s, F)eP| s=f and Vie a\dom(s) Yge F f(i) # g} .

LeMMA 6b. 1. Suppose g € @® thenl- “V;° g (1) = £ (). (V) is for all but finitely
many n).
Proof. Suppose p = (s, F) is arbitrary then ¢ = (s, FuU {g})<p and
g+ “VYr>dom(s) f(n) # g(n)” . M

LeMMA 6b. 2. Suppose j< o, ¢ a term such that IF “c <j”, and s€ w=®, then
there exists n < j such that for all p in P of the form (s, F) there exists g < p such that
gl “o =n"

Proof.-Suppose not. Then for every n <j there exists p, = (s, F,) such that

- pylko % n”. But then (s, U F)IF“71(c <j)”. H
n<j
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LEMMA 6b 3. Suppose t is a term and k € ©° such that  “Vn t(s) < k(n)". Then
there exists € of such that IF 37 ©(n) = I(n)”.

Proof. Let {s,: n < o} list @ with infinite repetitions. Using Lemma 6b. 2.0b-
tain /e »® so that for all n and for all p = (s,, F) there exists g<p such that
gk “v(m) = I(n)”. Then it is true that I “3° 7(n) = I(m)”. For if not thereisape P
and N<o so that ‘

p Ik “Yn>N z(n) # I(n)” .

But p=(s,F) for some k>N and so there exists- g<p such that
gl-“c(k) = I(k)”. W

LEMMA 6b. 4. Suppose s € w<®, n<w, and ¢ is a term such that - “o € w”. Then
there exists me o such that for all p = (s, F) € P with Fe [0"]" there exists g<p
gl “o<m”.

Proof. This is Lemma 5.1 of Miller (1981), but here we give an alternative
proof. Suppose no such .m exists, then there exists p, = (s, F,) with F, e[0T
such that p,IF “e=m”. Let % be a nonprincipal ultrafilter on . Suppose
Fp={f0. 07, «..fi"} and let g, = Imf", i.e. for any icw if there exists Xe %

®

and je o such that for all me X fi"(i) = j, then gu(i) = J; otherwise let g,(f) = 0
(or anything else). Suppose g = (¢, G) < (s, {915 wes g.}) and gl “o = j”. To get
a contradiction it suffices to show g is compatible with some p,, with m> j. There
exists Xe such that for all ie dom(r)\dom(s) and k with I<k<n, ecither
f7(@) = g{i) for all m € X or (since {ff®: m< o} is not constant mod %) £'(i) # (?)
for all meX. Since (f, G)<(s,{g1s > gs)) we know g,(i) # () for all
iedom(z)\dom(s) and I< k< n, so foranyme X i) # (). Thus for any me X,
P, and (¢, G) are compatible. B

Lerima 6b. 5. Suppose © is a term such that - “t € ©®”. Then there exists he w®
such that I “A7t(n) < h(n)”.

Proof. Let {(s, m): k< o} list w<? % o with infinitely many repetitions. Apply
Lemma 6b. 4 to obtain A € »® so that for all k and for all p = (5, F) with Fe [w®]™
there exists g<p such that glF“c(k) <k(k)”. We claim that

ka2 c(n) <h(m)” .
For suppose for contradiction there is a pe P such that
plF“Yn>N () <t(n)” .
Then p = (5, F) for some Fe [w”™ and k > N. But then there exists g < p such that
gl “z(k)<hk)y . ®

LEMMA 6b. 6. Suppose M <= N are transitive models of ZEC* (a sufficiently large
Sfinite fragment of ZEC). Then if G is PV-generic over N, then G n PY is PM_generic
over M.
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Proof. It suffices to note that if Mk “A <SP is a maximal antichain”, then

NE“A<P is a maximal antichain” .
But it is easy to see that
“4 <P is a maximal antichain”

is a 17} statement, hence absolute. B

Now we give our example of a space X with property C’ and M but not C”
(i.e. Theorem 6b). So let {M,: a« <w;) be an w, sequence of countable transitive
models of ZFC* such that o < f§ implies M, < MyandR = | RY-, This is possible

a<wy
since we assume CH. Let (G,: a<a;> be a sequence such that for each o< w;,
G, is PM=.generic over M, and for each p e P there are unboundedly many o< @,
with p € G,. If f,, € 0 is the eventually different real associated with G, then we claim
3 = {f: «<w,;} works.
CrLamM. 2 has property ‘M.

Proof. Suppase {%,: new) is a sequence of open covers of X. Without loss
we may assume each %, is countable. Since the entire thing can be coded by a real
there is an o < w; such that {%,: ne w) is coded in M,. Now work i M,, and let
%, = {U;: m<w} and f be the name for the eventually different generic real. Since
all f; for > o are eventually different generic reals over M, (by Lemma 6b. 6) and
every pe P is in unboundly many G;, it must be that

M, ElF“Yn Am fe UM .
So define a term 7 in M, such that

M, FIF“Yn fe U™
By Lemma 6b.5 there exists e w® n M, such that

MEIF“A? 2(m) <h(n)”.
Hence if #, = {U: m<h(n)} then

M, ElF“fe y U#,.

Since all but boundedly many f; are eventually different generic over M,, it follows
that L"} U &, covers all but countably much of ¥ and this suffices,

CramM. 2 has property C'.

Proof. This is similar to above. So suppose {%,: n e w) are finite open. covers
of 2 with , = {Ul': m<k(®)} and (¥,: newd coded in M,. So again

M BV Am< k(@) feU™.
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By Lemma 6b.3 we can find /e @ n M such that

M, e3P fe UMM,
1t follows that
fre U U

n<w

for all f>a and this suffices.
CLAM. X does not have property C'.
Proof. Let U} = {hew”| h{n) =m} and &, = {U: m<w}. Then there
does not exist g e w® such that ‘
re -y U,

new

This is because

U U™ ={fl3nfm=gm}.

new

But for unboundedly many « (&, {g}) € G, and hence for such « Vn f,(m) # g(»).
This concludes the proof of Theorem 6b.

Next we wish to find a space @ which has property C and M but not C’. Basi-
cally we plan to apply the Rothberger trick to a Luzin set. So fromnow on let P = »™*
(Cohen forcing) and x a name for the Cohen real. _

DerNITION. For xe w? and ye2” let 2x+y e w® be defined by 2x+y)(n)
= 2x(m)+y(n).

LemMa 6c¢. Let {%,: ne o) be sequence of families of open subsets of w®. Then
cither there exists pe P and ne w such that

plk*3ye2/2x+y)¢ U %~
or there exists {F,: new) with F,¢ [#,1°° such that

F*2x+2°c U U ZF,".

n<o

Proof: Suppose there is no such p e P. Let P = {p,: new}. Since for each

n<w
Ik “0x+4+2° < U A

and 2x+2° is compact we can find ¢<p, and F, e [#,]°° so that

q"_ ::2x+2wE U ‘g‘n” .
We claim
IF“2x+2"< U U 9;11” .

n<o

But if not there exists p € P such that

pl“dye2® Vn 2x+y¢ U F,”.
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If p = p, then 3g<p,
gl “2x+2°c U &#,”.
This is a contradiction. W
As in the proof of Theorem 6b let (M,: o < @, be models of ZFC*. We will

construct an w; sequence {x,: o < w,) such that x, is P-generic over M, and an o,
sequence {p,: o <®,> with y,€2° n M,[x,] such that

& = {2ty a<wy}

has property C and M but not C’. Let (¥,: a<w,; & even) list all countable se-
quences of countable families of open subsets of w®, and let {z,: « < ®,; « odd)
list 2%, and assume %,,z,€ M,.
" Construction of x,, y,:
o odd. Let x, be P-generic over M, and y, = z,.
o even. Work in M, and let 4, = {%,: ne 0) and apply Lemma 6c. If there
exists pe P and n < o such that
pIye2®Qx+n ¢V 9",
then choose x, Cohen generic over M, and y, e M,[x,] N 2° so that
M [x ] “@x+y) U 47 .

Otherwise let x, be any real P-generic over M, and y, any element of M,[x,].
CLAIM. @ does not have property C'.
Proof. Define n: 0® — 2° by

n(z)(n) = z(n) mod2 .

Then the odd stages of the construction guarantees that = is onto.

CrLAmM. @ has property C with respect to some metric.

Proof. Since the x, are more and more P-generic and x,(n) < 2x,(n)+y,(n),
@ has the property that for all g e 0® {f'e ®| Vn f(n) <g(n)} is countable. If we
view »” as homeomorphic to [w]”<S P(w) = 2%, then & is concentrated on [w]<®.
That is to say, for any open set U containing [w] . & is contained in U except for
countably many points. This is because the compliment of U in 2° is closed hence
a compact subset of “w®”, so bounded by some g € @®. (This is the Rothberger
trick, see Miller (1984) p. 225.) Hence @ has property C with respect to any metric
which can be extended to a metric on 2°.

CrAamM. & has property M.

Proof. Suppose % = (%,: new) is a sequence of countable open covers
of @. Then by construction either there exists » such that M,[x,] k 2x,+y, ¢ U 4,”
or there exists (&F,: ne w) .M, with &,¢ [%,]°° and

M,ElF“2x+2°c YU #,”.
n
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The first cannot happen because
254y, U9, is I

hence absolute and then ¥, does not cover @. If the second happens, then we claim
for all f=za
2xl1+yﬁ€ U U ‘gn‘
. n

This is true because x, is P-generic over M,, so
M[x) E“2xp+2°c UU &£,
n

and so by absoluteness.
2xp+2°c YU &,

Thus {J &, covers all but countably many elements of ¢ and thus & has prop-
erty M.

This concludes the proof of Theorem 6c. W

Theorem 6 is also true if only MA is assumed, in fact we need only MA for
o-centered partially ordered sets. Theorem 6b and 6c can be proved without using
the terminology of forcing, in fact, the original proof of 6b did not use it.

The following property was introduced in Hurewicz (1927) where it is called
property E**,

DEFINITION. A space X has property H iff for all sequences {%,: ne o) of
open covers of X there exists (&,: new) with #,e[%,]"° and

XU Nus .
Con<wm>n

Hurewicz proved the analogue of Theorem 3 for property H. Namely every

space of cardinality less than x has property H iff

VF e [w®™* Agew® VieF Y, fiy<g®m.

(In the language of van Douwen (1984), » <b.)

A set of reals X is called a Sierpiriski set iff it is uncountable and meets every
measure zero set in a countable set. Such a set can be constructed analogously to
a Luzin set using CH (see Miller (1984) or Fremlin (1984)).

THEOREM 7. If X is a Sierpinski set, then X has property H.

Proof. Assume without loss of generality that X = [0, 1] and X has outer mea-
sure one. Choose for each n<w &, ¢ [%,]° such that the measure of |J &, is
at least 1—27". Then

Un us

n<om>n
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has measure one and so contains all but countably many points of X, say {x,: n € »}.

Now expand &, to F» e [%,]°° so that n<m implies x, e |J #% Then

YU N & u
n<w m>n
Since property H implies property M a Sierpiniski set has property M. A set
with property H is the union of a J#, with a set of first category (Hurewicz (1927)),
so for example a Luzin set which has property C* hence M, cannot have property H.

QUESTION. Is it consistent to suppose that a set has property H iff it is A ;7

The next theorem partially answers a question of Hurewicz [1927] the other
half being the question above.

THEOREM 8. A set X with propertiecs H and C has property C".

Proof. Assume that X has H and C. Let ¢ be the metric of X and for x € X,
e>0 set Ux,e) = {y: o(y,x)<s}. Let (%,: n<w) be a sequence of open
covers of X and for each n< o set

H,={Ulx,6): xeX, e>0,3Ge¥,, Ulx,30) <G},

Then 2, is an open cover of X. Because X has property H, there is a sequence
{F,: n<w)y such that &F, e [#,]"® for each n<w and

¥=U NUF,.

B<w m>n

We can suppose that no &, is empty. Express &, as {U(x,;, &,): i€ L},
where I, is finite, for each m < w. Set

&, = min{g,;: iel,} >0

for m<w. Let {J(k): k<) be a partition of w into infinite sets. Because X has
property C, there is for each k<w a sequence (y,: meJ(k)) in X such that

X = U U(ym: 6:7:)'
meJ(k)

For each m < @ choose G, € %, such that U(y,, ¢&,) S G,, if this is possible;
otherwise take any G, € %,,. Now let x be any member of X. Let n <o be such
that x e {J #,, for every m>n. Let k< be such that m> n for every me J(k).
Let meJ(k) be such that x € U(y,, &,). Because m > n, there is an ie I(m) such
that x € UXpis &) NOW @ (Pyrs Xoni) < 8yt 6005 S 284 80 U( By, €4)  Ulrs 36,0
But by the definition of #,, there is a Ge ¥, such that U(x,, 3¢,,) S G -and
U(Yns en) S G S0 U(Yus 8,) =G, and x€ G,

As x is arbitrary, X< U G,. As {¥%,: n<w) is arbitrary, X has property C''.

n<o

DErFINITION. A space X is a o-set iff every G; is an F,.

icm
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THEOREM 9. Every set X < o®, all of whose subsets have property H, is a o-set.

Proof. Suppose X € w” and G is a G, subset of w”. Then G is homeomorphic
to a closed Ccw® say by f: C— G (see Kuratowski Cor. 2a, p. 441). Let
Y = f~!(X). Then since Y is homeomorphic to a subspace of X, it has property H.
Letting (%,: ne w) be defined by

%, = {[s]] sew'"}

we see that there exists 1 e w® such that for all g € ¥ for all but finitely many # < »
g(m) <h(n). But

0=1{gen’ V7 gm)<him)}nC

is A . Since [ is a homeomorphism fQ is A, but f'ON X =G n X, 50 G is
a relative F,. B :

Let us remark that hereditarily property M does not imply o-set, since a Luzin
set is hereditarily M but not a o-set. Also o-set does not imply property M since the
example of Theorem 6a can be made into a o-set (see Miller (1984) Theorem 5.7,
p. 216). In Miller (1979) Theorem 22 it is shown that is relatively consistent with ZFC
that every o-set is countable.

Rothberger (1938) also introduced property M ‘. A metric space X with metric §
has property M* iff for any open basis # of X and any sequence of positive real
numbers {g,: n€ o) there exists a sequence {U,: ne w) from ¥ which covers X
such that §-diameter (U,) < ¢, for all n< . He shows that C" implies M’. How-
ever M’ is equivalent to C"'. It is enough to see that X has property C with respect
to an arbitrary metric g. So let {(¢,: ne w) and ¢ be given (with &,’s decreasing)
and define

% ={Uu V| U, V open and max(g-diam(U), g-diam (V) < d-diam(U v V)} .
It is easy to check that # is a basis and if (U, U ¥,: ne w) are from ¥ with
5'diam(l]n U Vn) <Ean+1

then letting W, = U, and W,,,, = V, gives a sequence with g-diam(W,) <s,.

DEFINITION. X is a y-get iff for any ¢ an w-cover of X there exists
{U,: new) with U,e® such that X< |J [} U,. (¥ is an w~-cover of Xiff ¥ is

n<w m>n
a family of open subsets of X such that every finite subset of X is contained in some
element of %.) ’

This property was introduced by Gerlits and Nagy (1982) and studied in Galvin
and Miller (1984) and Gerlits (1983). It is easy to show that y — H and it is shown in
Gerlits and Nagy (1982) that y — C”.
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TaeOREM 10..(CH or MA) There is a set X which has properties C" and H but
is not a y-set.

Proof. It is an unpublished result of Todor&evié that MA implies there are
y-sets X and ¥ such that X U Y is not a y-set. (His proof from >, is given in
Galvin and Miller [1984]). However it is easy to see that H and C" are closed under
countable unions. W

[o] Rothberger{1941]

c " Thm 6a

M Thm 6b

" Luzin set
C Sierpifiski[1928]

H Thm10

y-set
Galvin-Miller

[1984] Thm
6c

Sierpifiski set
Thm 7

M
L [0,1]+Luzin set
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