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DESCRIPTIVE SET THEORY OVER HYPERFINITE SETS
H. JEROME KEISLER, KENNETH KUNEN, ARNOLD MILLER, AND STEVEN LETH

Abstract. The separation, uniformization, and other properties of the Borel and projective
hierarchies over hyperfinite sets are investigated and compared to the corresponding prop-
erties in classical descriptive set theory. The techniques used in this investigation also provide
some results about countably determined sets and functions, as well as an improvement of
an earlier theorem of Kunen and Miller.

§0. Introduction. In this paper the separation, uniformization, and other prop-
erties of the Borel and projective hierarchies over hyperfinite sets are investigated
and compared to the corresponding properties in classical descriptive set theory.
The techniques used in this investigation also provide some results about countably
determined sets and functions, as well as an improvement of an earlier theorem
of Kunen and Miller [KM].

Let S be an infinite hyperfinite set in an w,-saturated nonstandard universe. The
Borel and projective hierarchies over S are defined as in the classical case, except that
countable intersections of internal subsets of S play the role of the closed sets, and
projections are from S x T,for any hyperfinite set T, onto S. Of particular interest is
the case in which S = 2¥ for some hyperfinite natural number H, for then we may
define the standard part map st: S — 2" by

st(s) = {s(n):ne N).

A fundamental result which ties together the classical and the hyperfinite settings
was given by Kunen and Miller [KM], who showed that all levels in both hier-
archies are preserved under the inverse standard part map.

In §1, after reviewing a few basic facts about the Borel and projective hierarchies
over a hyperfinite set, we prove a theorem which strengthens the result of Kunen and
Miller and gives a way of reducing questions about prewellordering, reduction, and
separation to the classical case.

In §2 we consider countably determined sets and functions. This notion, due to
Henson [H2], is without a classical analogue. The countably determined sets
contain all the sets in the projective (and thus also the Borel) hierarchy, as well as
considerably more. Among the results in this section are a finite Ramsey theorem for
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countably determined partitions and a proof that, in the definition of the projective
hierarchy, one can use a fixed hyperfinite set U and take only projections from
S x U onto S. Also in this section we show that, for hyperfinite sets S and T,
#(S)/#(T) is finite if and only if there is a countably determined bijection between
them. This complements a recent result of Henson and Ross [HR], who show that
#(S)/#(T) is in the monad of 1 if and only if there is a Borel bijection from S to T.

In §3 it is shown that, except for the first Borel level, the questions about
prewellordering, reduction and separation for the Borel and projective classes all
have the same answers as in classical descriptive set theory.

In §4 the uniformization properties of the hierarchy levels are considered and it is
shown that, in marked contrast to the results of §3, the answers for the hyperfinite
case are quite different than for the classical case. Perhaps the most striking exam-
ple is that there is a IT relation which does not have a countably determined
uniformization (and thus does not have a uniformization at any projective level). On
the other hand, we have the positive result that every X9 relation has a X9
uniformization. Other positive results for the hyperfinite case which differ from the
classical case are that the preimage of any X2, Borel, X!, or I1} function is of the
same class, and that any total function is in the dual class.

Finally, in §5 we present a few open problems.

We refer to the book of Stroyan and Bayod [SB] for background in nonstandard
analysis, and to the article of Martin [M] for background in classical descriptive set
theory.

§1. The Borel and projective hierarchies. Assume throughout this paper that S is
an infinite hyperfinite set in an w,-saturated nonstandard universe. We begin with a
review of some basic notions and known results in hyperfinite descriptive set theory.

DEFINITION. The Borel hierarchy over S is defined as follows. Z3(S) = IT3(S)
= *P(S), the set of all internal subsets of S. For each ordinal 0 < a < w,;, Z2(S) is
the set of countable unions of sets in ( J{IT3(S): B < a}, and IT2(S) is the set of
complements of sets in X2(S). Moreover, Borel(S) = ( J{Z2(S): « < w, }, and 42(S)
= 22(S) n I2(S).

The projective hierarchy over S is defined as follows. The set X 1(S) of analytic sets
over S is defined as the set of projections of sets which are Borel sets over S x T for
some hyperfinite T. 2}, ,(S) is the set of sets B such that for some hyperfinite T, B
is the projection on S of a set 4 € IT}(S x T). IT}(S) is the set of complements of
sets in Z1(S), and 41(S) = Z1(S) n ITL(S).

We shall see in §2 that a fixed hyperfinite set can be taken for T.

The following proposition lists two simple consequences of w,-saturation.

PROPOSITION 1.1. (a) If each A, is internal, A, is decreasing, and F is an internal
function, then F((, A,) = (), F(4,).

(b) 43(S) = Z§(S).

DerINITION. Let N® be the set of all finite sequences of natural numbers. The
Suslin operation on a family of sets A, s € N®, is defined by:

Suslin(4;:se N*) = () () A

feNN neN
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PROPOSITION 1.2. The following are equivalent:

(a) A is analytic over S.

(b) A is obtained from internal subsets of S using the Suslin operation.

(c) For some hyperfinite T, A is the image of an analytic set over T by an internal
function from S into T.

(d) For any hyperfinite T, A is the projection of a I13 set over S x T.

Proposition 1.2 is essentially in the papers [H1] and [H2] of Henson. The proof is
similar to the proof of the corresponding results in classical descriptive set theory.

The next proposition lists some consequences of known classical results which
concern hyperfinite sets.

PROPOSITION 1.3. (a) Foreacha, 2°(S) and ITS(S) are closed under finite unions and
intersections and preimages by internal functions.

(b) For each n, £}(S) and ITX(S) are closed under finite unions and intersections and
preimages by internal functions.

(c) Analytic sets over S are Loeb measurable with respect to any internal weight
function.

PROPOSITION 1.4. (a) IT2(S) is the class of all sets definable with number quantifiers
of type I1? over some S x T".

(b) Forn > 1,IT}(S) is the class of all sets definable with quantifiers of type I1} over
some S x T", absorbing number quantifiers.

(c) ITX(S) is closed under countable unions and intersections.

The above proposition also holds for X.

PRrOPOSITION 1.5. Borel(S) = 41(S).

(See Henson [H1], who observed that this is a special case of a more general
classical result concerning pavings.)

If T is of the form 2¥ for some hyperfinite H, then the standard part map st:
T — 2V is defined in the natural way.

PROPOSITION 1.6 (HENSON [H1]). Let T = 2H.

(a) If each A, = T is internal, then st((), 4,) = (). st(4,).

(b) If A e ITY(T) then st(A) is closed (and hence compact) in 2".

(c) If Ae ZY(T)thenst(A)is X9 over 2V,

(d) If A < T is analytic, then st(A) is analytic over 2V,

(e) If B is analytic over 2V, then there is a set A € I13(T) such that B = st(A).

PROPOSITION 1.7. Let F be an internal function from S onto T. Then for each set
B < T, F~Y(B) is at the same level as B in both the Borel and projective hierarchies.
That is,

(a) For each countable a, B € £2(T) if and only if F~*(B) e Z2(S), and similarly
for II.

(b) For each n, Be ZXT) iff F~*(B) € ZX(S), and similarly for IT and A.

PrOOF. By transfer there is an internal function G: T — S such that for all t € T,
F(G(t)) = t. It is easy to check in turn that the sets B, G(B) = F~!(B) n G(B), and
F~(B) are at the same level in either hierarchy. [

The analogue of Proposition 1.7 for the standard part function was proved
in Kunen and Miller [KM]. We give a simpler proof of a stronger result here.
The arguments are patterned after arguments used for different purposes in

!
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Saint-Raymond [S] and Jayne and Rogers [JR]. For the remainder of this section
suppose that T = 2 for some infinite hyperinteger H.

LEMMA 1.8. Suppose Q and A are I19 over T and k € N. Then there is a sequence Q,,,
ne N, of T19 sets over T that satisfy the following conditions:

(@) The Q,, are disjoint subsets of Q.

(b) The sets st(Q,), n € N, form a disjoint partition of st(Q).

(c) For each n, Q,, is either included in A or disjoint from A.

(d) For eachne N andu,ve Q,, u|k =v|k.

PRrOOF. Let R = Q n A. By 1.6, st(Q) and st(R) are compact in 2V, Let U and V be
the sets of all finite sequences of elements of 2 which can be extended to elements of
st(Q) and st(R) respectively. Then f € st(Q) iff every initial segment of f belongs to
U, and similarly for st(R) and V. Let {t,} be a finite or countable enumeration of all
elements u of U\ V which are minimal in the sense that each proper initial segment
of u belongs to V. For each nlet R, = {x € Q: t, < x}. The sequence R, R, satisfies
conditions (a), (b), and (c). For each s € 2* let B; be the internal set B, = {x € T:
s & x}. Let {Q,:ne N} be the collection of all intersections of the sets R or R,
with the sets B. The family {Q,} has the required properties (a)—(d). []

LEMMA 1.9. Suppose (A,:ne N is a family of I19 sets over T. Then there exists a
family {Q,: s € N*) of I1? sets over T that satisfy the following conditions:

@) Qg =T.

(b) For each s, the sets Q. .y, n € N, are disjoint subsets of Q.

(c) For each s, the sets st(Qs (ny), n € N, form a disjoint partition of st(Q).

(d) For each s e N"*1, Q. is either included in or disjoint from A,,.

(e) For eachse N** " and all u,v € Q,, u|n = v|n.

Proor. Iterate Lemma 1.8. [

LEMMA 1.10. Given a sequence {A,: ne N of I19 sets over T, there is a function
f: 2V — T such that for each x € 2V, st( f(x)) = x and for eachn, f ~'(A,) is 9 over 2~.

PRrOOF. Arbitrarily choose f(x) € (){Q,: x € st(Q,)}. This is possible because for
each n there is a unique s € N" such that x € st(Q,), and the sets Q, form a decreas-
ing chain, so by saturation their intersection is nonempty.

We claim that st(f(x)) = x. To see this, observe that if x € st(Q,) where s has
length n, then for all u € Q,, u|n = x|n,so f(x)|n = x|n.

We now claim that [ *(4,) € Z9(2%). To prove this claim let B= {se N"* !
Q, < A,}. If se N"*'\B then Q, is disjoint from A,. The range of f is included in
the set { J{Q,: s € N"*'}, and the sets

(J{Q,:s € B}, (J{Qs:s€ N""1\B}

are disjoint. Moreover,

A, nrange(f) = (J Qs

seB

and

714, =f_‘<U QS> = U f71Qy).

seB seB
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But f~1(Q,) = st(Q,), because

xe f7HQy) iff f(x)eQ
iff - f(x) e ({Qs: x €5t(Q)}
iff xest(Q,). O

REMARK. By taking complements we see that Lemma 1.10 also holds for 9 and
19 in place of IT9 and 29.

THEOREM 1.11. (a) For each o > 1 and each set A € Z°(T) there is a set B e X°(2V)
such that B < st(A) and 2N\ B < st(T\ A). Similarly for IT2 and A?.

(b) For each n > 0 and each set A e X}(T) there is a set B e X}(2¥) such that
B < st(A) and 28\ B < st(T\ A). Similarly for I1} and A}.

PROOF. (a) Let 8 be the ordinal such that & = 1 + . Suppose first that o is even.
Then A is a £ combination of sets A, which are IT 9 over T. Let f be as in Lemma
1.10and let B = f~'(A4). Bisa X combination of the X9 sets f ~'(4,) over 2. Since
a > 1 and countable unions of countable unions are countable unions, B is 2 over
2N, Finally, since st(f(x)) = x, we have B = st(4) and 2¥\ B < st(T\ A) as required.

(b) This follows from (a) and the observation that if U = 2X, then the standard
part maps from T x U to 2V x 2¥ and from T to 2 commute with the projection
maps from T x U to T and from 2V x 2¥ to 2¥. [0

CoROLLARY 1.12 (KUNEN AND MILLER [KM]). (a) For each countable a, and
B < 2", Be X%2Y) if and only if st™'(B) € (T, and similarly for IT and A4.

(b) For each n >0 and B< 2¥, Be Z1(2V) if and only if st™'(B)e ZXT), and
similarly for II and A.

ProOF. Apply Theorem 1.11 with 4 = st™'(B). [

We shall give another application of Theorem 1.11 in the next section.

COROLLARY 1.13. The classes 22(S) and I12(S) are strictly increasing in o for all
countable «. The classes ZX(S) and I1L(S) are strictly increasing for all finite n.

§2. Countably determined sets.
DEFINITION. A set B < S is countably determined if there is a countable sequence
A,, n€ N, of internal sets such that for some I < 2V,

B=1J () 4.

iel neN

Here A' = A and A° = S\ A. We shall write B = &(4,, A;,...), and say that B is
determined on Ay, A4, ....

Countably determined sets were introduced by Henson [H2].

LEMMA 2.1. (a) The set of countably determined subsets of S is a a-algebra.

(b) For each countable sequence of internal sets Ay, Ay,..., the set of all sets
determined on Ay, A,,... is closed under complements and arbitrary unions and
intersections.

(c) Projections of countably determined subsets of S x T are countably determined
subsets of S.

(d) All projective sets over S, that is, sets in Z1(S) for some finite n, are countably
determined. |
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(e) The class of countably determined subsets of S is closed under the Suslin
operatign.

ProoF. (b) The existential quantifier commutes with arbitrary unions and with
countable intersections of internal sets. [

LEMMA 2.2. For each countable sequence of internal subsets B,, ne N, of S and
each hyperfinite T = 2H there is an internal function F: S — T with the following
properties:

(a) For each I < 2%,

®,(By, B,,...) = F~ (st \(I)).

(b) For each set I = st(F(S)), F~(st™'(I)) is at the same level in the Borel and
projective hierarchies as 1.

PRrOOF. (a) For each ne N, let C, be the clopen set {x € 2": x(n) = 1}. Let B,,
n e N, be a sequence of internal subsets of S. For each k there is an internal func-
tion F,: S — T such that for each n < k, B, = F; *(st”*(C,)). By saturation there is
an internal function F: S — T such that for each n € N, B, = F~!(st™!(C,)).

(b) This follows from 1.7 and 1.8. [J

THEOREM 2.3. Let S and U be hyperfinite. Each projective set B € X}, (S) is the
projection on S of a set A € ITH(S x U).

ProOF. By the proof of Lemma 2.2 there is a set I € X!, ,(2¥), a sequence of
internal sets B,, a hyperfinite T = 2¥, and an internal F: S — T such that

B = &(B,, B,,...) = F (st "\(I)).

1 is the projection of a set J € IT}(2¥ x N¥). Let K be an infinite hyperinteger such
that KX < U, and let G: S x U > T x U be the product of F and the identity
function on U. Then B is the projection on S of the set

G st '(J)elySxU). O

ExaMPLE. There is a countably determined free ultrafilter in the Boolean algebra
*P(S) of internal subsets of S.

To see this, assume without loss of generality that N < S, and let U be any free
ultrafilter over N, U < P(N). Then the set

V={Ae*P(S):An NeU}

is an ultrafilter in *P(S), and V is countably determined because

V=1 [ﬂ {Ae*P(S):ne A}:'
ieU|net

If we identify *P(S) with 25 and P(N) with 2V in the natural way, then V = st™}(U),

so that V is at the same level of the projective hierarchy as U.

This example complements the result of Panetta [ P] in 1978 that no free ultra-
filter in *P(S) is Loeb measurable with respect to the counting measure, and hence
no such ultrafilter is analytic. See §5 for a related open question.

Panetta showed that the existence of a Loeb measurable free ultrafilter in *P(S) is
equivalent to the following finite combinatorial statement:
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(*) Foreveryreal ¢ > Oand n € N there exists m € N and a collection of subsets U
of {0,...,m — 1} such that #(U)/2™ > 1/2 — ¢ but the intersection of any n + 1
elements of U has size >n.

However, Frankl [F] in 1976 showed that (x) fails when n = 2 and ¢ = 1/4. See
also Mills [M].

ReMARK. Consider an internal set H. We make some observations on the possible
kinds of free ultrafilters U in the Boolean algebra *P(H) of internal subsets of H. Call
U countably complete iff whenever {4,: n € N} is a sequence of elements of U, there
isa B € U such that B < A, for each n. Assuming the continuum hypothesis, there is
a nonstandard universe in which every hyperfinite set H has ¥, internal subsets, and
insuch a universe it is easy to construct a countably complete free ultrafilter in *P(H)
by transfinite recursion. Also, for any infinite internal set H, there exist internal free
ultrafilters in *P(H ), and any internal free ultrafilter in *P(H) is countably complete.
On the other hand, it is easy to see that the countably determined free ultrafilter
constructed in the preceding example is not countably complete. The following
result shows more.

PROPOSITION 2.4. Let H be a hyperfinite set and let U be a countably determined
free ultrafilter in *P(H). Then U is not countably complete.

PrOOF. Let X be the set of all finite {0, 1}-valued sequences. It is immediate from
the definition that we may write U as

U= () Asm

feS neN

where S is some subset of {0, 1}" and A, is an internal subset of *P(H)foreachs € X.
Let B, = ﬂ,gsA, and let C; be the set of all internal X < H such that Y = X for
some Y € B;. We see that we can replace the A, by B, (trivially), and then by C;
(by w,-saturation), so that we have

U=U (Gin

feS neN

Each C; = *P(H) is internal and upward closed in the sense that if X < Y < H,
where X, Y are internal and X € C, then Y € C;. Whenever s < t we have C, = C,.

Now define a subtree T < X and choose X; for s € T as follows; once we have T,
we can let W denote the antichain of minimal sequences not in T. Let J be the
empty sequence, put J in T, and let X, € C,\ U. Such an X, exists because U is a
subset of Cy, and is a proper subset since U is external and Cy is internal. Now
suppose we have s € T and X;. For each i € {0, 1}, choose Xj; € C;\ U if possible, so
that X, < X;, and place si in T. If this is not possible, then si will be in W.

Assuming U is countably complete, we may fix an internal set Y such that Y ¢ U
but X; < Yforallse T LetR=Un{Z: Y< Z}andletD;=C,n{Z: Y = Z}.If
t € W, then D, < R (otherwise ¢t would have been put in T, not W). We claim that
R = | J;ew D, If not, we may fix a Z e R which is not in any such D,, and then fix
f € S such that Z € C;, for all n; then f must be a path through T, which would
imply that Y € U since the C, are upward closed. Thus R, and hence U, would be
29 over the internal sets, which is shown to be impossible by Panetta [P]. , (]
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PROPOSITION 2.5. Every uncountable countably determined set has an infinite
internal subset.

Proor. This result is a special case of Theorem 1 of Henson [H2], obtained by
taking u to be the internal counting measure. Here is a direct proof. Suppose B is
countably determined on A4,,n € N,and Bisuncountable. By a type over A, we mean
an intersection of the form (), Ai". If each type over A, contained in Bis finite, then
by saturation each type contained in B is a finite Boolean combination of A4,’s, and
thus Bis countable. Therefore there is an infinite type contained in B. By saturation,
this infinite type contains an infinite internal set. [

COROLLARY 2.6. Let S =2". Every countably determined subset of S which
intersects each monad st™'{x} in a countable set is countable.

PROOF. Suppose A4 is an uncountable countably determined subset of S. By
Proposition 2.5, A has an infinite internal subset B. There is an x € 2" such that for
allne N, A n {seS: x|n = s} isinfinite. By saturation, 4 N st™'{x} has an infinite
internal subset, and therefore A N st™!{x} is uncountable. [

ExampLES. Corollary 2.6 can be used to give some examples of sets which are not
countably determined. Let H be a positive infinite hyperinteger and let S = {n
€ *N:n < H}. Then the set A = {x € S: there is a real between x/H and (x + 1)/H}
is not countably determined by 2.6. Moreover, the set B = {x € S: st(x) < x} is not
countably determined because B N {x + 1/H: x € S\B} = A.

COROLLARY 2.7. Every countably determined wellordering is countable.

PROOF. Let A be a countably determined subset of S x S which is a wellordering
of asubset B of S. Then B is uncountable, and since B is the projection of 4on S, Bis
countably determined. By 2.5, B has an infinite internal subset C. For some infinite
hyperinteger H, there is an internal function F mapping B onto 2. Let D be the set of
all t € 2¥ such that

(3ce C)[F(c) =t A (Ybe C)[F(b) = F(c) > (b,c) € A]].

D is a countably determined subset of 27 and contains exactly one point of each
monad, contradicting 2.6. [

The above corollary improves the result of Panetta [P] that no infinite hyperfinite
set has an analytic wellordering.

We now prove a version of Ramsey’s theorem for countably determined parti-
tions of hyperfinite sets. For finite n, U™ is the set of all subsets of U of size n. Let
T be a hyperfinite set containing N, so that a relation on § x N is also a relation on
the hyperfinite set S x T.

THEOREM 2.8. Let ne N. Any function F:S"™ — N whose graph is countably
determined has an infinite internal homogeneous set, that is, there is an infinite internal
set A < S such that F is constant on A™.

PROOF. Let F = | )i/ [ ken Ai¥. Call a relation B = S™ small if there is no
infinite internal set C < S such that C™™ < B, and large otherwise. We wish to show
that for some / € N, F~!{l} is large.

By the finite Ramsey theorem and transfer, the union of finitely many small
internal sets is small, and the complement of a small internal set is large. By
saturation, the intersection of a countable chain of large internal sets is large.
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Claim. There exist | € N and i € I such that for all k € N, the internal set

{x eSM:(x,)e () A;;""} =D,
m<k
is large.

It follows from this claim that the intersection (), D, is large, and hence F~*{l} is
large.

To prove the claim, suppose to the contrary that for all € N and i € I there exists
k(l,i) e N such that D, ;, is small. There are only countably many different sets
D1 - Since F has domain S™, S™ is covered by a countable family of small internal
sets. By saturation, S™ is a finite union of small internal sets, so S™ is small, a
contradiction. [

Let S} denote the set of all finite subsets of S. Thus Si" is a X9 subset of the
internal set *P(S).

COROLLARY 2.9. Any function F: SNl - N with a countably determined graph
has an infinite internal homogeneous set A, that is, there is an infinite internal set
A < S such that for each n e N, F is constant on A™,

ProoF. By Theorem 2.8, there is a decreasing sequence A4,, n € N, of infinite
internal subsets of S such that for each n, F is constant on A", By saturation there is
an infinite internal set A < ﬂ,, A,. A is homogeneous for F, as required. [J

DEFINITION. [ is said to be a hyperfinite point class if for each hyperfinite set S,
I'(S) is a set of subsets of S such that:

(a) each 4 € I'(S) is countably determined;

(b) I'(S) is closed under finite unions and intersections; and

(c)if AeI'(T)and F: S — T is internal, then F~1(4) € I'(S).

ExampLES. By Proposition 1.3, each level of the Borel and projective hierarchies
is a hyperfinite point class. The class of all countably determined sets is a hyperfinite
point class.

LEmMMA 2.10. Let I be a hyperfinite point class.

(a) For any partial function F whose graphisin I'(S x T) and any internal function
G = S x T, the set A of all x € S such that G(x) = F(x) belongs to I'(S).

(b) Any function F € I'(S x T) is a union of countably many restrictions of inter-
nal functions to sets in I'(S).

PROOF. (a) Let H be the internal function H(x) = (x, G(x)). Then 4 = H™}(F)
e I'(S).

(b) Let F(x) = y be a function determined on the internal relations 4,, ne€ N.
Then for each i € I, the intersection of the A4X" is a function. By saturation, some
finite initial part of this intersection is an internal function. F is the union of the
restrictions of these internal functions to the sets where they agree with F. [

THEOREM 2.11. Let S and T be hyperfinite sets.

(@) The following are equivalent:

(1) #(T)/#(S) is finite.
(ii) There is a countably determined function F mapping S onto T.
(iii) There is a countably determined injection G mapping T into S.

(b) There is a countably determined bijection F mapping S onto T if and only if

#(T)/#(S) is finite but not infinitesimal. !
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PROOF. (a) First suppose that (i) fails, so that #(T')/#(S) is infinite. We show that
(i1) fails. Let Fbea countably determined function mapping S into T. By 2.10, F is the
union of restrictions of internal functions F,, n € N. For each k € N, the union of the
ranges of F,,n < k, hasinternal size at most k - #(S) and is therefore a proper subset
of T. By saturation, the union of the ranges of F,,n € N, is a proper subset of T, and
therefore the range of F is a proper subset of T. Thus (ii) fails. We have shown that (ii)
implies (i).

We next show that (iii) implies (ii). Let G be a countably determined injection
mapping T into S. Let t € T, and define F = G~ U (S x {t}). Then F is a countably
determined function mapping S onto 7, so (ii) holds.

When #(T)/#(S) < 1, it follows by transfer that there is an internal function
mapping S onto T. When #(T)/#(S) is finite but greater than one, part (b) will show
that there is a countably determined bijection of S onto T, and it will then follow that
(i) implies (iii).

(b) Theimplication from left to right follows from the fact that (iii) implies (i) in (a).
Assume that #(T)/#(S) is finite but not infinitesimal. Let t = st(#(T)/#(S)). Then
there are an infinite hyperinteger H with 4t = 1/H! and sets S and T of the form

S'={KAt:Ke*Nand 0 < K At < 1},

T'={KAt:Ke*Nand 0 < K4t <t}
such that
#(S")/#(S) = #(T")/#(T) = 1.

By the results of Henson and Ross [HR], there are Borel bijections from S onto
S" and from T onto T'. This uses the easy direction of their result. The idea is that
if H and K are hyperintegers and K/H is infinitesimal, then the function f from
{1,...,H} to {1,...,H + K} defined by f(M) = M if M/K is finite, and f(M) =
M + K if M/K is infinite, is a Borel bijection. We shall prove that there is a count-
ably determined bijection from S’ onto T'. It will then follow by composition of
functions that there is a countably determined bijection from S onto T.

We first claim that there is a bijection & from [0, 1] onto [0, t] such that for all x,
h(x) — x is rational. Suppose first that ¢ is rational. To find such an 4, let x = y mean
that x — yisrational. Then [0, 1] and [0, t] have ¢ classes under =, and each class is
countable. Choose a bijection from the set of classes of [0, 1] onto the set of classes
of [0,¢], and form h by choosing a bijection of each class of [0,1] onto the
corresponding class of [0,¢]. To make the endpoints behave, we choose h so that
h(0) = 0 and h(1) = t. For each triple of rational numbers g, r, s, let G,,, be the
internal partial function which translates the set S n (g, r) by the distance s. Define F
to be the countably determined function

F= | ‘ ﬂ Gy
ie[0,1] i€(g,r),h(i)=i+s
(F is countably determined by Lemma 2.1(b).) Then F is a bijection from S’ onto T".
In the case that t is irrational the argument is the same except that we add ¢t — 1 to
the set of rationals so that we can still make h(1) =¢t. O
PROPOSITION 2.12. #(T)/#(25) ~ 0if and only if there is no countably determined
relation over T x S which is universal for Z3(S).
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PROOF. Suppose that #(T)/#(25)~ 0and 4 = T x S is countably determined.
Let F be the partial function from T into 25 such that F(t) = Biff Bis internal and
is the section of A4 at t. Then F is countably determined. By 2.10(b), F is the union
of countably many restrictions of internal functions. Since 25 is infinitely large
compared to T, the union of the ranges of finitely many internal functions is a proper
subset of 25. By saturation, the range of F is a proper subset of 25. Thus 4 is not
universal for internal(S). The converse follows from Theorem 2.11(c). O

REMARK. It follows from 2.1(c) that the domain and range of any countably
determined function are countably determined sets. Moreover, the image and
preimage of any countably determined set by a countably determined function are
countably determined sets. The following example shows that there are functions F
which are not countably determined but have the property that all images and
preimages of countably determined sets under F are countably determined.

ExampLE. Henson [H3] defined a nonstandard universe to have the -
isomorphism property if any two internal models for a finite language which are
elementarily equivalent are isomorphic. He showed that there exist nonstandard
universes with the w-isomorphism property, and that in a nonstandard universe
with the w-isomorphism property, the Boolean algebras *P(S) and *P(T) are
isomorphic whenever S and T are (infinite) hyperfinite sets. However, if #(T)/#(S)
is infinite or infinitesimal, then the isomorphism cannot be countably determined in
view of Theorem 2.11.

§3. Prewellordering, reduction, and separation. In this section we use saturation
to settle the prewellordering, reduction, and separation problems for hyperfinite
sets at the first Borel level. We then prove transfer results which show that beyond
the first Borel level these problems are equivalent to the corresponding problems
over 2V,

PROPOSITION 3.1. For any hyperfinite point class I':

(a) Prewellordering(I') implies reduction(I’).

(b) Uniformization(I') implies reduction(T').

(c) Reduction(I') implies separation(dual(I)).

The proof is the same as the corresponding proof in classical descriptive set
theory.

The following positive result corresponds to a negative result in the classical case.

PROPOSITION 3.2. (a) The internal subsets of S have the prewellordering, reduction,
and separation properties.

(b) Reduction(I1)(S) and separation(Z9)(S).

PROOF. By saturation, Z9(S) has the separation property. Reduction for IT(S)
now follows from the reduction and separation properties for Z9(S). O

THEOREM 3.3. For any projective or Borel class T, if prewellordering, reduction, or
separation holds for I' over 2%, then it holds for I' over a hyperfinite set S.

Proor. This follows from Lemma 2.2. As an illustration we give the proof for
separation. Suppose separation holds for a projective or Borel class I" over 2¥. Let A
and B be disjoint sets in I'(S). By 2.2(a), there is an internal function F from S into T
and sets I and J in I'(2") such that

A=F'st™i(I), B=Fl(st"'(J)).
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Then I and J are disjoint, and by separation for I'(2¥) there is a set K such that both
K and 2V\ K belong to I'(2¥), and K separates I and J; thatis, I < K and J is disjoint
from K. Then the set C = F~!(st”}(K)) is such that both C and S\ C belong to I'(S)
and C separates A and B. []

COROLLARY 3.4. (a) For each countable «, prewellordering(X°)(S), reduction
(Z)(S), and separation(IT12)(S).

(b) Prewellordering(I1})(S), reduction(I1})(S), and separation(Z1)(S).

(c) Prewellordering(Z3)(S), reduction(Z1)(S), and separation(IT3)(S).

THEOREM 3.5. Let I' be a Borel or projective class beyond the first Borel level. If
separation, reduction, or prewellordering fails for I' over 2" then it fails for I over S.

ProOOF. We may assume without loss of generality that S is of the form T = 2.
Again we illustrate the method with the case of separation. Suppose 4 and B are
disjoint sets of class I" over 2¥. Then A’ = st"}(4) and B’ = st~ (B) are of class I'
over T. Suppose there is a set D which separates 4" and B’ such that both Band T\ B
belong to I'(T). By Theorem 1.11, there is a set C < 2" such that C < st(D) and
2¥\C < st(T\D), and both C and 2"\ C are of class I" over 2". Then C separates A
from B, because if a € A4, then st™!(a) is contained in 4’ and disjoint from T\ D, so
a ¢ st(T\D)and a € C. On the other hand, if b € B, then st~ (b) is contained in B’ and
disjoint from D, so b ¢ st(D), and thus be 2M\C. O

COROLLARY 3.6. (a) For each ordinal 1 < o < w,, reduction(II°)(S) fails and
separation(Z°)(S) fails.

(b) Reduction(21)(S) and separation(I1})(S) fail.

(¢) Reduction(IT13)(S) and separation(Z1)(S) fail.

Proor. Use the corresponding results for 2V, [

§4. Functions and uniformization. In the preceding section we saw that except for
the first Borel level, sets in the hyperfinite hierarchies behave much like sets in the
classical hierarchies. In this section we shall see that, in contrast, functions with
graphs in the hyperfinite hierarchies behave very differently from functions with
graphs in the classical hierarchies.

REMARK. Every X! total function is A4} over S x T, and every Z1(S x T) partial
function has a }(S) domain, as in the classical case.

DErFINITION. Given a hyperfinite point class I', let UI" be the hyperfinite point
class such that UT'(S) is the set of all countable unions of sets in I'(S).

PROPOSITION 4.1. If F is a partial function whose graph belongs to I1(S x T), then
the domain of F belongs to IT9(S).

ProOF. By Lemma 1.1(a). [J

THEOREM 4.2. If I' is a hyperfinite point class and F is a partial function whose
graphbelongsto UI'(S x T), thenthe domain of F belongsto UI'(S). In particular, the
preimage of any internal, £°, Borel, I1}, or £} function is of the same class.

Proor. By Lemma 2.10. []

PROPOSITION 4.3. Every total function whose graph belongs to IT(S x T) is
internal.

PRrROOF. By w,-saturation. []

THEOREM 4.4. If I is a hyperfinite point class and F is a total function whose graph
belongs to UI'(S x T), then the complement of the graph of F belongs to UT'(S x T).

Proor. By Lemma 2.10, F is the union of restrictions of countably many internal
functions G, to sets C; in I'(S). For each k, the complement of G, restrictedto C, x T
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is in I'(S x T). Since F is total, the union of these complements is equal to the
complement of F and belongs to UI'(S x T). U

COROLLARY 4.5. (a) For each o, every £(S x T) total functionis A2(S x T).

(b) Every ITX(S x T) total function F is Borel(S x T).

(c) ITXS x T) total functionis AL(S x T).

THEOREM 4.6. (a) For each countable o > 1 there is a I12(S x T) partial function
whose preimage is not IT3(S x T).

(b) For each countable o > 1 there is a total II2(S x T) function which is not
29 x T).

ProOOF. We may assume without loss of generality that N = T. Let A be a
10 subset of S which is not Z2. Then S\ 4 is the union of a disjoint sequence B,,
0<neN, of A2 sets. Put B, = A. Let F be the function such that for each n,
F(B,) = n. Then F is not X2 because F~'{0} = A. Moreover, the preimage of the
restriction of F to the complement of 4 is not IT2(S).

We show that F is IT2, so (b) holds. Moreover, the restriction of F to the
complement of A4 isequaltothe F n [S x (T\{0})], which is again IT2. Thus (a) also
follows. For each n, the set

D, =[S x (T\{n})] v [B, x {n}]

is IT2. Since a > 1, the 9 set S x N is also ITJ. However,

F=[S x N] m[ﬂp,,],

soFisIT%. O

PROPOSITION 4.7. Uniformization holds for £9(S x T), ZY(S x T), and I1(S x T).

Proor. For each Z9(S x T) or ITY(S x T) relation A, use saturation to get an
internal function F such that F n A is a choice function for A. The functions for
countably many increasing IT{ relations may be pieced together to get a choice set
for a 29 relation. [

THEOREM 4.8. There is a IT3 relation which does not have a countably determined
uniformization.

PrOOF. Take a IT9 relation A(x,y,z) whose projection on z is the set B(x,y)
such that y n Q is a subset of x N Q of order type w*. B is Borel. Suppose B has
a countably determined uniformization F. By Lemma 2.10, F is the union of re-
strictions of internal functions G,, n € N, to countably determined sets. For each n,
the set of x such that (x, G,(x)) € Bis Borel, and so is the union C of these sets over n.
Cisequal to the set of x such that 3yB(x, y), which is the set of all x such that x N Qis
not wellordered. However, this set is st~ (D), where D is the set of all nonwellordered
subsets of Q. D and hence C is not IT1, contradicting that C is Borel. [J

REMARK. One can readily carry out an alternative development of this paper in
which the hyperfinite set S is replaced by the set P =*(2") of all internal functions
from *N into 2. Define 43(P) to be the internal algebra of sets generated by all
sets of the form {f: f(n) = 0} where n € *N, which is the same thing as the internal
algebra of *-clopen subsets of P. The Borel and projective hierarchies over P and
the countably determined subsets of P are then defined in the natural way. The
standard part mapping st: P — N is defined by st(f) = f|N. Almost all of the
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proofs and results in this paper can be modified to apply to the case where the
hyperfinite set S is replaced by P, and a hyperfinite product S x T is replaced by
P x P. Two results which do not carry over to this case are 2.11 and 2.12, which
depend on the internal cardinality of S.

§5. Problems.

5.1. How far must one go to uniformize ITY(S x T), or IT{(S x T)?

5.2. How far must one go to wellorder S?

5.3. Inthe Boolean algebra *P(S), can the filter of internal subsets A < S such that
|4|/|S| =~ 1 be extended to a countably determined free ultrafilter? (Recall from [P]
and [F] that no free ultrafilter can be analytic.)

5.4. Does every set 4 € X1, ,(S) belong to the least class containing IT}(S) and
closed under finite intersections, countable unions, and images under internal
functions on S?

5.5. Which reals ¢ and functions f: [0, 1] — [0, ¢] have the property that there is
a countably determined function F: S — T with

S={KA4r:Ke*Nand 0 < K 4t < 1},
T={KAt: Ke*Nand 0 < K At < t},
and for all s € S, °F(s) = f(°s)?
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