There are no Q-Points in Laver's Model for the Borel Conjecture

Author(s): Arnold W. Miller

Published by: American Mathematical Society

Stable URL: http://www.jstor.org/stable/2043048

Accessed: 16/10/2009 11:30
THERE ARE NO Q-POINTS IN LAVER'S MODEL
FOR THE BOREL CONJECTURE

ARNOLD W. MILLER

ABSTRACT. It is shown that it is consistent with ZFC that no nonprincipal ultrafilter on \(\omega \) is a Q-point (also called a rare ultrafilter).

All ultrafilters are assumed to be nonprincipal and on \(\omega \).

DEFINITIONS. (1) \(U \) is a \(Q \)-point (also called rare \([C]\)) iff \(\forall f \in \omega^\omega \) if \(f \) is finite-to-one then \(\exists X \subseteq U, f \upharpoonright X \) is one-to-one.

(2) \(U \) is a \(P \)-point iff \(\forall f \in \omega^\omega, \exists X \subseteq U, f \upharpoonright X \) is constant or finite-to-one.

(3) \(U \) is a semi-\(Q \)-point (also called rapid \([C]\)), iff \(\forall f \in \omega^\omega, \exists g \in \omega^\omega, \forall n f(n) < g(n) \) and \(g^\omega \in U \).

(4) \(U \) is semiselective iff it is a \(P \)-point and a semi-\(Q \)-point.

(5) For \(f, g \in \omega^\omega, [f < g \text{ iff } \exists n (f(m) < g(m))]. \)

(6) For \(\mathbb{F} \subseteq \omega^\omega, [\mathbb{F} \text{ is dominant iff } \forall f \in \omega^\omega \exists g \in \mathbb{F}(f < g)] \).

THEOREM 1 (KETONEN [Ke]). If every dominant family has cardinality \(2^\omega \), then there exists a \(P \)-point.

THEOREM 2 (MATHIAS, TAYLOR [M3]). If there exists a dominant family of cardinality \(\aleph_1 \), then there exists a \(Q \)-point.

Kunen [Ku1] showed that adding \(\aleph_2 \) random reals to a model of ZFC + GCH gives a model with no semiselective ultrafilters. More recently he showed [Ku2] that if one first adds \(\aleph_1 \) Cohen reals (then the random reals) then the resulting model has a \(P \)-point. In either case one has a dominant family of size \(\aleph_1 \) so there is a \(Q \)-point.

THEOREM 3. The following are equivalent:

(1) \(U \) is a semi-\(Q \)-point.

(2) Given \(P_n \subseteq \omega \text{ finite for } n < \omega \) there exists \(X \subseteq U \) such that \(\forall n, |X \cap P_n| < n \).

(3) \(\exists h \in \omega^\omega \text{ such that given } P_n \subseteq \omega \text{ finite for } n < \omega \) there exists \(X \subseteq U \) such that \(\forall n, |X \cap P_n| < h(n) \).

PROOF. (1) \(\Rightarrow \) (2). Let \(f(n) = \text{sup}(\bigcup_{m < n} P_m) + 1 \). Suppose that for all \(n, g(n) > f(n) \); then \(P_n \cap g^\omega \subseteq \{ g(0), \ldots, g(n - 1) \} \).

(3) \(\Rightarrow \) (1). Assume \(f \) increasing. Choose \(n_0 < n_1 < n_2 < \cdots \), so that \(h(k + 1) < n_k \). Let \(P_k = f(n_k) \) and let \(Y \subseteq U \) so that \(|Y \cap P_k| < h(k) \). Then, for each \(m > n_0, |Y \cap f(m)| < m \), since if \(n_k < m < n_{k+1} \) then

0002-9939/80/0000-0023/$02.00

Received by the editors April 3, 1978.

AMS (MOS) subject classifications (1970). Primary 02K05.
\[|Y \cap f(n_{k+1})| < h(k + 1) < n_k < m. \]

Hence if \(g \in \omega^\omega \) enumerates \(Y - f(n_0 + 1) \) in increasing order then \(\forall n, f(n) < g(n). \) \(\square \)

Define \(U \times V = \{ A \subseteq \omega \times \omega: \{ n: \{ m: (n, m) \in A \} \in V \} \in U \}. \) Whilst \(U \times V \) is never a \(P \)-point or a \(Q \)-point, nevertheless:

Theorem 4. \(U \times V \) is a semi-\(Q \)-point iff \(V \) is a semi-\(Q \)-point.

Proof. \((\Rightarrow)\) Given \(P_k \subseteq \omega \) finite let \(P_k^* = \{ \langle n, m \rangle: m \in P_k \text{ and } n < m \}. \) Choose \(Z \subseteq U \times V \) so that \(\forall k, |Z \cap P_k^*| < k. \) Let \(n \in \omega \) so that \(Y = \{ m > n: (n, m) \in Z \} \in V \) then \(\forall k, |Y \cap P_k| \leq k. \) (More generally if \(f \cdot U = V \) and \(U \) is a semi-\(Q \)-point and \(f \) is finite-to-one then \(V \) is a semi-\(Q \)-point.)

\((\Leftarrow)\) Given \(P_k \subseteq \omega^2 \) finite, choose \(n_k \) increasing so that \(P_k \subseteq n_k^2. \) Let \(Y \in V \) so that \(\forall k, |n_k \cap Y| < k. \) Let \(Z = \bigcup_{k < \omega} \langle k \rangle \times \{ m: m \in Y \text{ and } m > n_k \} \)

\[Z \cap P_k \subseteq Z \cap n_k^2 \subseteq k \times (n_k \cap Y) \]

which has cardinality \(\leq (k + 1)^2. \) \(\square \)

Theorem 5. In Laver's model \(N \) for the Borel conjecture \([L] \) there are no semi-\(Q \)-points.

Proof. Some definitions from [L]:

1. \(T \in \mathfrak{S} \) iff \(T \) is a subtree of \(\omega^{<\omega} \) with the property that there exist \(s \in T \) (called stem \(T \)) so that \(\forall t \in T, t \subseteq s \) or \(s \subseteq t, \) and if \(t \supseteq s \) and \(t \in T \) then there are infinitely many \(n \in \omega \) such that \(t^{<\langle n \rangle} \in T. \)

2. \(\hat{T} > T \) iff \(\hat{T} \subseteq T. \)

3. \(T_s = \{ t \in T: s \subseteq t \text{ or } t \subseteq s \}. \)

4. \(T^0 > \hat{T} \) iff \(T > \hat{T} \) and they have the same stem.

5. For \(x < y < \omega \) let \(\langle x, y \rangle = \{ n < \omega: x < n < y \}. \)

Lemma 1. Suppose we are given \(T \in \mathfrak{S} \) and finite sets \(F_s \) for each \(s \in T - \{ \emptyset \} \) such that for each \(s \in T - \{ \emptyset \}: \)

- (a) if \(s = (k_0, \ldots, k_n, k_{n+1}) \), then \(F_s \subseteq [k_n, k_{n+1}] \);
- (b) if \(s = \langle n \rangle \), then \(F_s \subseteq \{0, n\} \);
- (c) \(\exists N < \omega \text{ such that } \forall t \text{ immediately below } s \text{ in } T[F_s] < N. \) For any \(\hat{T} > T \) let \(H_{\hat{T}} = \bigcup \{ F_s: s \in \hat{T} \}. \) Then \(\exists T^1, T^0 \supseteq T \) such that \(H_{T^0} \cap H_{T^1} \) is finite.

Proof. We may as well assume that the stem of \(T \) is \(\emptyset. \) Given \(Q \) any infinite family of sets of cardinality \(< N < \omega \) there exists \(G, |G| < N, \exists \hat{Q} \subseteq Q \) infinite so that \(\forall F, \hat{F} \in \hat{Q}, F \cap \hat{F} \subseteq G \) (i.e., a \(\Delta \)-system). Now trim \(T \) to obtain \(\hat{T} > T \) so that \(\forall s \in T, \exists G_s \subseteq [k_n, \omega] \) finite \((s = (k_0, \ldots, k_n)) \) and for all \(t, \hat{t} \) immediately below \(s \) in \(\hat{T}, (F_t \cap F_{\hat{t}}) \subseteq G_s. \) Build two sequences of finite subtrees of \(\hat{T}: \)

\[T^0_n \subseteq T^0_{n+1} \cdots, \quad T^1_n \subseteq T^1_{n+1} \cdots \]
so that
\[
\left[\bigcup_{s \in T_0^i} (F_s \cup G_s) \right] \cap \left[\bigcup_{s \in T_1^j} (F_s \cup G_s) \right] \subseteq G_{\emptyset}
\]
and \(\bigcup_{n<\omega} T_n^i = T_i \triangleright \hat{T} \) for \(i = 0, 1 \).

This is done as follows: Suppose we have \(T_n^0, T_n^1 \) and we are presented with \(s \in T_n^0 \) and asked to add an immediate extension of \(s \) to \(T_n^0 \). Then since \(\{ F_i - G_i : t \text{ immediately below } s \text{ in } \hat{T} \} \) is a family of disjoint sets and \(G_i \subseteq [k_n, \omega) \) where \(t = (k_0, \ldots, k_n) \) we can find infinitely many \(t \) immediately below \(s \) in \(\hat{T} \) so that
\[
\left[(F_i - G_i) \cup G_i \right] \cap \left[\bigcup_{s \in T_i^j} (F_s \cup G_s) \right] = \emptyset. \quad \square
\]

The above is a double fusion argument.

Some more definitions from [L]:
(1) Fix a natural \(\omega \)-ordering of \(\omega^{<\omega} \) and for any \(T \in \mathcal{F} \) transfer it to \(\{ t \in T : \text{stem } T \subseteq t \} \) in a canonical fashion. \(T\langle n \rangle \) denotes the \(n \)th element of \(\{ t \in T : \text{stem } T \subseteq t \} \).
(2) \(\hat{T}^n \triangleright T \) iff \(\hat{T} \triangleright T \) and \(\forall i \geq n, \hat{T}\langle i \rangle = T\langle i \rangle \).
(3) The p.o. \(P_w \) is the \(\omega_2 \) iteration of \(\mathcal{F} \) with countable support \((p \upharpoonright_a \vdash \text{"}p(a) \in \mathcal{P}^m(G_a)\text{ for all } a \text{ and } \text{supp}(p) = \{ a : p(a) \neq \omega^{<\omega} \} \) is countable).\)
(4) For \(K \) finite and \(n < \omega, p^K_n \triangleright q \) iff \(p \triangleright q \) and \(\forall \alpha \in K, p \upharpoonright_a \vdash \text{"}p(a) \triangleright q(a)\text{"} \).

Lemma 2. Let \(f \) be a term denoting the first Laver real and \(\tau \) any term. If \(p \in P_{\omega_2} \) and \(p \vdash \text{"}\tau \in \omega^{<\omega}, \forall n (f(n) < \tau(n)) \text{ and } \tau \text{ increasing} \" \) then \(\exists Z_0, Z_1 \) such that \(Z_0 \cap Z_1 \) is finite and \(\exists p_0, p_1 \) such that \(p_i \vdash \text{"}\tau \omega \subseteq Z_i \text{"} \) for \(i = 0, 1 \).

Proof. Construct a sequence \(p \triangleleft_0 p_0 \triangleleft_0 p_1 \ldots \) so that \(\bigcup_{n<\omega} K_n = \bigcup_{s<\omega} \text{supp}(p_n) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)\langle n \rangle \). Fix \(t = (k_0, \ldots, k_m, k_{m+1}) \) in \(p_n(0) \). Then for each \(i < m + 1 \),
\[
p_t = \langle p_n(0), t \rangle \cup p_n \upharpoonright [1, \omega_2] \vdash \text{"}\tau(i) > k_{m+1} \text{ or } \forall \omega, \xi \leq k_{m+1}, \tau(i) = 1\text{"}.
\]
Hence by applying Lemma 6 of [L] \(m + 2 \) many times we can find \(q_s \triangleleft p_t \) and \(F_s \subseteq [k_m, k_{m+1}] \) such that \(|F_s| < (m + 2)(n + 1)|K_n| \) and \(q_s \vdash \text{"}\tau \omega \cap \{k_m, k_{m+1}\} \subseteq F_t\text{"} \). (Note \(p_t \vdash \text{"}\forall i \geq m + 1, \tau(i) > k_{m+1}\text{"} \). Let \(p_{n+1}(0) = (p_n(0) - p_n(0), t \text{ is immediately below } s \text{ in } p_n(0)) \). Let \(p_{n+1}(1, \omega_2) \) be a term denoting \(q_t \upharpoonright [1, \omega_2] \) if \(q_t(0) \) or \(q_t(1, \omega_2) \) if \(p_n(0) - \{ t : s \subseteq t \} \). Hence \(p_{n+1} \triangleleft_0 p_n \). Now let \(\tilde{p} \) be the fusion of the sequence of \(p_n \) (see [L, Lemma 5]). Then for each \(t \in \tilde{p}(0) \) if \(t = (k_0, \ldots, k_m, k_{m+1}) \) and \(t \supseteq \text{stem } \tilde{p}(0), \) then \(\langle \tilde{p}(0) \cup \tilde{p} \upharpoonright [1, \omega_2] \rangle \vdash \text{"}\tau \omega \cap \{k_n, k_{n+1}\} \subseteq F_t\text{"} \). For \(t \in \tilde{p}(0) \) and \(t \nsubseteq \text{stem } \tilde{p}(0) \) let \(F_t = k_{m+1} \). Applying Lemma 1 obtain \(T_0, T_1 \triangleright \tilde{p}(0), Z_0 \) and \(Z_1 \) such that \(Z_0 \cap Z_1 \) is finite, and \(\langle T_t \cup p \upharpoonright [1, \omega_2] \rangle \vdash \text{"}\tau \omega \subseteq Z_i\text{"} \) for \(i = 0, 1 \). \(\square \)
Proof of Theorem 5. Suppose $M[G_{\omega_2}] \models "U is a semi-Q-point". Applying an argument of Kunen's we get $\alpha < \omega_2$ such that $U \cap M[G_\alpha] \in M[G_\alpha]$. $(M[G_\beta] \models "\text{CH}"$ for all $\beta < \omega_2$ so construct using ω_2-c.c., $\alpha_\lambda < \omega_2$ for $\lambda < \omega_1$ so that $\forall x \in M[G_{\alpha_\lambda}] \cap 2^\omega, \text{P}_{\alpha_\lambda+1}$ decides "$x \in U"$. Let $\alpha = \text{sup} \alpha_\lambda$. Note $M[G_\alpha] \cap 2^\omega = \bigcup_{\beta < \alpha} M[G_\beta] \cap 2^\omega$ since \aleph_1 is not collapsed.) By [L, Lemma 11] we may assume $U \cap M \in M$. But Lemma 2 clearly implies that for any $V \text{ult. in } M, M[G_{\omega_2}] \models "\text{no extension of } V \text{ is a semi-} Q\text{-point."} \tag*{□}

Remarks. (1) A similar argument shows that in the model gotten by ω_2 iteration of Mathias forcing with countable support there are no semi-Q-points. In fact, as Mathias later pointed out to me, the appropriate argument needed is an easy generalization of Theorem 6.9 of [M2].

(2) In [M1] Mathias shows $[\omega \rightarrow (\omega)_{\omega_1}] \Rightarrow [\text{There are no rare filters or nonprincipal ultrafilters].}$

(3) In neither the Laver or Mathias models are there small dominant families so by Ketenen [Ke] there is a P-point. Also it is easily shown no ultrafilter is generated by fewer then \aleph_2 sets.

(4) Not long after the results of this paper were obtained, Shelah showed that it is consistent that no P-points exist [W]. In his model there is a dominant family of size \aleph_1, so there are Q-points. It remains open whether or not it is consistent that there are no P-points or Q-points.

Conjecture. Borel conjecture \Leftrightarrow there does not exist a semi-Q-point.

References

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706