A MINIMAL DEGREE WHICH COLLAPSES ω_1

TIM CARLSON, KENNETH KUNEN AND ARNOLD W. MILLER

Abstract. We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming $\text{MA} + \neg \text{CH}$, every new real constructs the collapsing map.

Let $\omega^{<\omega}_1$ be the tree of finite sequences from ω_1. Define the partial order P to be the set of all nonempty subtrees T of $\omega^{<\omega}_1$ which satisfy: for all $s \in T$ there exists $t \geq s$ such that $\{x : t^x x \in T\}$ is uncountable. The ordering on P is inclusion. This partial order was first considered by Prikry, who also showed that it gives a minimal collapsing function (see Abraham (1987)).

Theorem. Suppose $M \models \text{"ZFC + MA + \neg CH"}$. Then for any G P-generic over M,

1. $M[G] \models \text{"$\omega_1$ is countable"};
2. for every real $x \in M[G]$, $x \in M$ or $G \in M[x]$.

Note that (1) and (2) are impossible if $M \models \text{"CH"}$. This is because collapsing the continuum to ω always introduces Cohen reals, random reals, etc.

Let us give some definitions. For $p \in P$ we say that $s \in p$ is a splitting node of p iff $\{\alpha : s^\alpha x \in p\}$ is uncountable. We say that $s \in p$ is a level n node iff $\{t : t \subseteq s$ and t is a splitting node of $p\}$ has size n. We say that $p \leq n q$ iff $p \leq q$ and all level n nodes of q are still in p. The standard fusion argument shows that if $P_n \leq n P_n$ for each $n < \omega$, then the fusion $(\bigcap_{n<\omega} P_n)$ is an element of P. For any $p \in P$ and $s \in p$ define $p_s = \{t \in p | t \subseteq s$ or $s \subseteq t\}$.

Now suppose $q \in P$ and τ is a term such that $q \models \neg \text{"$\tau \in 2^{<\omega}$"}$.

Lemma 1. There exist $p \leq q$ and $F : p \rightarrow 2^{<\omega}$ such that

(a) for all $n < \omega$, $F^P(p \cap \omega_1^n) \subseteq 2^n$, and
(b) for all $s \in p$, $p_s \models \text{"$F(s) \subseteq \tau$"}$.

Proof. This is an easy fusion argument. Given $q \in P$ and $s \in q \cap \omega_1^n$ which we want to retain as a splitting node, simply extend each $q_{s^{-1}}$ to decide $\tau \upharpoonright n$, then ω_1 of $q_{s^{-2}}$ decide $\tau \upharpoonright n$ the same way. So build a sequence $q_{n+1} \leq n q_n \leq q$ such that for every level n node s of q_{n+1}, $(q_{n+1})_s$ decides $\tau \upharpoonright \text{length}(s)$. The fusion of the q_n's is p. \hfill \Box

From now on assume that $p \models \neg \text{"$\tau \notin M$"}$ and p and $F : p \rightarrow 2^{<\omega}$ are from Lemma 1.

Lemma 2. Suppose $p_\alpha \leq p$ for $\alpha < \omega_1$. Then there exist $q_\alpha \leq p_\alpha$ and $C_\alpha \subseteq 2^\omega$ closed

Received July 1, 1982.
for each \(\alpha < \omega_1 \) such that the \(\{ C_\alpha : \alpha < \omega_1 \} \) are disjoint and for each \(\alpha < \omega_1 \):

\[
q_\alpha \models \"\tau \in C_\alpha \".
\]

Proof. Define the partial order \(Q_\alpha \) by \((T_1, T_2, n) \in Q_\alpha \) iff

1. \(T_1 \) is a finite subtree of \(p_\alpha \cap \omega_1^{\leq n} \) with every branch of length \(n \);
2. \(T_2 \) is a finite subtree of \(2^{\leq n} \) with every branch of length \(n \); and
3. for all \(s \in T_1, F(s) \in T_2 \).

We define \((\hat{T}_1, \hat{T}_2, \hat{n}) \leq (T_1, T_2, n) \) iff

1. \(\hat{n} \geq n \);
2. \(\hat{T}_1 \supseteq T_1 \); and
3. \(\hat{T}_2 \) is an end extension of \(T_2 \) (i.e. \(\hat{T}_2 \cap 2^{\leq n} = T_2 \)).

It is easy to see that \(Q_\alpha \) has the countable chain condition, since if \(T_1^p = T_1^q \), then \(p \) and \(q \) are compatible. Now let \(Q \) be the direct sum of \(\{ Q_\alpha : \alpha < \omega_1 \} \).

Since each \(Q_\alpha \) has property \(K \) (in fact is \(\sigma \)-centered), \(Q \) has the c.c.c. A partial order has property \(K \) if every subset of cardinality \(\omega_1 \) contains a subset of \(\omega_1 \) pairwise compatible elements.

It is not hard to see that the product of two partial orders with property \(K \) has property \(K \), and the direct sum of such orders has the property. Also MA + \(\neg \)CH implies that every c.c.c. order has property \(K \).

Claim 1. Given \(q \in Q_\alpha \) and \(r \in Q_\beta \) there exist \(\hat{q} \leq q \) and \(\hat{r} \leq r \) with the same \(n \) and \(T_1^q \cap T_2^r \cap 2^n = \emptyset \).

Proof. This is where \(\neg \)CH is used. For each \(s \in T_1^q \) let \(x_s : \omega \to \omega_1 \) be a branch of \(p \) extending \(s \) and let \(y_s : \omega \to 2 \) be \(\{ F(x_s \upharpoonright n) : n < \omega \} \). (I.e. so \(p_{x_s \upharpoonright n} \models \neg \tau \upharpoonright n = y_s \upharpoonright n \)). Since \(p \models \neg \tau \in M \), there exists for each \(s \in T_1^q \) some \(\hat{s} \supseteq s \) such that \(F(\hat{s}) \) is incompatible with all of the \(y_s \)'s. Now it is easy to prove Claim 1. \(\square \)

For any \(G \) a \(Q_\alpha \) filter let \(q_\alpha = \bigcup \{ T_1^p : p \in G \} \) and let \(\dot{C}_\alpha = \bigcup \{ T_2^p : p \in G \} \).

Claim 2. There are \(\omega_1 \) dense subsets of \(Q_\alpha \) such that if \(G \) is any \(Q_\alpha \) filter meeting them all, then \(q_\alpha \in P \).

Proof. For any \(s \in p \) and \(\beta < \omega_1 \) let \(D_\beta^s = \{ q \in Q_\alpha : s \in T_1^q \) and there exists \(t \in T_1^q, t \supseteq s, \) and range\((t) \) contains some \(\gamma > \beta \} \). It is easy to see that \(D_\beta^s \) is dense beneath the set of \(q \) such that \(s \in T_1^q \). Consequently if we let

\[
E_\beta^s = D_\beta^s \cup \{ q : q \models \neg \tau \in T_1^q \}) \},
\]

then \(E_\beta^s \) is dense in \(Q_\alpha \). If \(G \) meets each \(E_\beta^s \) for \(s \in p \) and \(\beta < \omega_1 \), then \(q_\alpha \in P \). \(\square \)

Note that \(q_\alpha \models \forall n \tau \upharpoonright n \in \dot{C}_\alpha \). The lemma follows easily from the claims and MA + \(\neg \)CH. \(\square \)

Using Lemma 2 and a fusion argument, find \(q \leq p \) such that for all \(s \in q \) there exists \(\langle C_\alpha^s : s \upharpoonright \alpha < q \rangle \), a family of disjoint closed sets, such that \(q_\alpha \upharpoonright \tau \models \tau \in C_\alpha \)”. Thus \(q \models \neg \tau \in M[\tau^G] \) and the theorem is proved. \(\square \)

Remarks. Assume that \(M \models \text{"MA + \(\neg \)CH"} \) and \(G \) is Prikry collapsing generic over \(M \). Then for \(f \in M[G] \cap \omega_\omega \) there exists \(g \in M \cap \omega_\omega \) such that for every \(n < \omega, f(n) < g(n) \). Also for every \(X \in M[G] \cap [\omega]^\omega \) there exists \(Y \in M \cap [\omega]^\omega \) such that \(Y \subseteq X \) or \(X \cap Y = \emptyset \). And every meager set (measure zero set) coded in \(M[G] \) is covered by one coded in \(M \). All of these properties are true when \(G \) is Sacks generic over \(M \). The proofs are similar here with the addition of a suitable forcing notion to apply Martin’s axiom.
The fact that \(\omega_1 \) is collapsed but every element of \(\omega^\omega \) is dominated by a ground model element of \(\omega^\omega \) implies that in the ground model the Boolean algebra associated with the Prikry collapse is \((\omega, \omega)\)-weakly distributive but not \((\omega, \omega_1)\)-weakly distributive. This is also true of Namba forcing (see Namba (1972)).

Of course, in our theorem we only needed that \(M \models "\text{MA}(K)" \), since we only did property \(K \) forcing. If, in addition, \(M \models "\text{there are no Souslin trees}" \), then for every set of ordinals \(X \in M[G], X \in M \) or \(G \in M[X] \). Since a branch through a Souslin tree cannot be minimal, this assumption is necessary. The proof is left as an exercise for the reader.

REFERENCES

U. Abraham, Minimal model of “\(\mathbf{N}^{\omega_1}_1 \) is countable” and definable reals, (198?) (to appear).

K. Namba, Independence proof of \((\omega, \omega_1)\)-WDL from \((\omega, \omega)\)-WDL, Commentarii Mathematici Universitatis Sancti Pauli, vol. 21 (1972), fasc. 2, pp. 47–53.

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN 53706

UNIVERSITY OF TEXAS
AUSTIN, TEXAS 78712