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In this paper we prove several results concerning the complexity of a set relative to
compact sets. We prove that for any Polish space X and Borel set B < X, if B is not
II2, then there exists a compact zero-dimensional P < X such that P n X is not ITS.
We also show that it is consistent with ZFC that, for any 4 < w®, if for all compact
K c w? An K is Z, then 4 is Z}. This generalizes to Z} in place of Z} assuming the
consistency of some hypotheses involving determinacy. We give an alternative proof
of the following theorem of Saint-Raymond. Suppose X and Y are compact metric
spaces and f is a continuous surjection of X onto Y. Then, forany 4 < Y, 4isII¢in
Yifff-1(4) is II in X. The non-trivial part of this result is to show that taking pre-
images cannot reduce the Borel complexity of a set. The techniques we use are the
definability of forcing and Wadge games.

We begin by proving several lemmas which illustrate the techniques to be used in
this paper. The first lemma is easy using Wadge games and Borel determinacy.

Lemma 1. Suppose A is a Borel subset of w* which is not I13. Then there exists a compact
P < w® such that A n P is not IIY.

Proof. Let R < 2* be any X set which is not IT]. The Wadge game G(R, 4) is played
as follows. Players I and II alternately write down reals 2;€2¢ and z;;cw® in the
following pattern: '

z(0)  2u(0),
zy(1) (1)
ry(2) r(2)

At the end of play we say that player II wins if (2;€ Riff z;; € 4). A strategy for either
player is a function which tells that player what to do on any play given the previous
plays. It is easily seen to give a continuous map. Since the set

(BxA)u((2°— R) x (0 — 4))

is Borel this game is determined. Player I cannot have a winning strategy since this
would give a continuous map f: & — 2¢ such that f—1(2¢ — R) = 4, which would imply
A is II2. Thus player IT must have a winning strategy, which implies that there exists
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a continuous map f: 2¢ - w* with f-1(4) = R. Now let P = f"2¢. Since R is not IT?
neitheris P n 4. |

This lemma generalizes to show that, for example, assuming Z?-determinacy, for
every A < w* which is Z}, but not II} there is a perfect P < w* such that 4 n P is not
II}. This lemma was also discovered by Mathias (see Mathias, Ostaszewski, and
Talagrand[10], third to last paragraph).

For more on Wadge games see van Wesep[15]. Next we show how the definability
of forcing comes in.

Suppose that M is a model of ZFC (or some reasonably large fragment of ZFC) and
@ is Cohen generic over M (i.e. obtained by forcing with some countable partial order
in M).

LemMA 2. Suppose that, in M[Q], A is a II? subset of [0, 1]®. Then for any Cohen
condition p

fxeM:pl+‘zeAd’}
isa M0 set tn M.

Proof. This is proved by induction on « for all conditions p. If p I “ 4 is a closed set’,

then trivially {z: p IF ‘z€ A’} must be closed. Now suppose (#,: » < w) is a sequence
below « and

pit‘A=nAd,andeach 4,isZTY .

n<w
But now phized, iff dg<p, qlt‘z¢d,.
By induction, and since there are only countably many g,
{x:plt‘zed,’} is IOf .
Whence {z:pt‘zed’}=nf{z:plk‘zed,’}
S IIO. | "
Remark. This lemma is not true for ZY. Suppose G is the open subset of B determined

by Cohen-generically throwing out one rational from each interval [#,7+1] (» an
integer). Then for any condition p there will be some interval [z, n + 1] such that

{xen,n+1]:plk‘ze@’}
will be the set of irrationals in [#, 7+ 1]. _ .
The next lemma shows how to reduce from the Hilbert cube to the space w®.

LemMma 3. Suppose B < [0, 1] s Borel but not IIS. Then there exists a countable dense
D < [0, 1] such that B n ([0, 1]— D)* is not IT2.

Proof. Let M be a countable transitive model of a large portion of ZF( such that M
contains a Borel code for B and M knows that B is not II?. Let G be Cohen generic over
M. In M[G] let D be any countable dense subset of [0, 1] disjoint from M. Let
A =Bn(0,1]-D). Since A n M = Bn M we know by Lemma 2 that M[G]I+ A is
not IT¢’. (Otherwise if pI-°A is IT%’, then

{fz:ph‘zeA’}=B is II)

Now we use absoluteness to claim that 4 is not IT? in the real world. To say that a given
Borel set 4 is not II? is a IT} statement if it is written in the obvious way, and unfortu-
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nately IT} statements may not be absolute between M[Q] and the real world. However
it is, in fact, a X} statement.

Claim. If 4 is a Borel subset of v, then ‘ 4 is not I’ is T1.

Proof. By Borel determinacy and Wadge theory, there exists a continuous map
J: w® > w® such that f—1(4) = C where C is some canonical universal Z? set (canonical
relative to some collapse of &). The statement ‘f —}(4) = C’ is IT} and implies that 4 is
not I |

Since ([0, 1]— D) is homeomorphic to w* we are done. |

Remark. R. Sami pointed out that in fact the claim can be strengthened to ‘ 4 is not
II2’ is IT}. This follows from a theorem of Louveau[8] that implies that any Borel set 4
with Borel code » which is II? has a I1¢ code which is hyperarithmetic in r.

Our first theorem answers a question of J. E. Jayne (see [12], page 487, problem 44).

THEOREM 4. Suppose A is a Borel subset of a Polish space X. Then for any o < w, A 13
II in X iff, for all compact zero-dimensional P = X, Pn A is IS in P.

Proof. Suppose 4 = X < [0, 1]* where X is a II subset of [0, 1]® and 4 is a Borel set
whichisnot ITS. For @ = 1, if 4 is not closed, then there is a convergent sequence z, >
withz,cd allnand x¢ 4. Just let P = {x,: n < w}U {}. So we can assume « > 2. By
Lemma 3 there exists a countable dense D < [0, 1] such that A n ([0, 1] — D)* is not IT3.
Since X n[(0,1]—D)* is a zero-dimensional Polish space it is homeomorphic to a
closed X* ¢ w® (see Kuratowski[7], p. 441). Let A* be the image of An ([0, 1]— D)
under this homeomorphism. By Lemma 1 there exists a compact P < w such that
A*n P is not ITS. Now just pull Pn X* back to a compact subset of X in which 4 is
not IT. |

Remark. By taking complements the theorem is also true for Z?.

Under a continuous map the preimage of a IIY set is a IIS set. Under certain
conditions the preimage cannot be any simpler. The following theorem is due to
Saint-Raymond[14] using a quite different proof.

TuroreM 5. Suppose f: X — Y is a continuous onto map, where X and Y are compact
metric spaces. Then, for any & < w,, if AeII2 — AY then f~1(A)eIl] - AS.

Proof. By Theorem 4 there exists P = Y a compact zero-dimensional space such that
An P¢AY. Since we could replace X and Y by f-(P) and P, we may assume without
loss of generality that X and Y are compact zero-dimensional metric spaces and, in
fact, subspaces of 2¢. Furthermore we may assume that X = ¥ = 2v.Itis enough to see
that we may assume neither X nor Y contain isolated points. Just replace X and Y by
X x 29 and Y x 2% and define f: X x2¢ > ¥ x 2"'byf(x,y) = (f(2),y). Then f is onto,
Ax20is T — A? and f-1(4 x 2¢) = f-1(4) x 2¢ is A2,

From now on assume f:2%->2% is a continuous onto map, 4eIl?—A?, and
fH4)eh:.

Claim. For any continuous onto map f: 2¢ — 2¢, there exists g: 2% — 2¢ such that
fog is the identity and, for every clopen C, g~}(C)e Al.

Proof. The lexicographical order on 2¢is defined by « <,y iff there exists n such that
z[n=y[nand z(n) < y(r). It is easy to see that every compact subset of 2« has a
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lexicographical least element. Define g by g(y) is the lexicographical least element of
f~(y). For any se2<vlet N, = {x€2: s < z}. Then

zeg(N,) iff fInN,+ 2
and forallt <;8 fYz)nN,=g.

By compactness f-1(z)n N, + @ iff, for all » <, f"YN,,,)N N, + @; and f-1(z)n
N; = o iff there exists n < w such that f~Y(N,,,)n N, = . Since there are only
finitely many ¢ lexicographically less than s we see that g—1(JN,) is the intersection of
an open set and a closed set. It follows that, for any clopen set C, g=1(C) is a A set. |

Forany CeIll, g {(C) eI}, ,. Henceif f-1(4)e A, then 4 = g~)(f-1(A4))eAY,,. We
have therefore proved the theorem for « > w. We use Wadge theory to take care of the
finite case.

Let & = {B < 2¢: 3h: 20223 90\ h-1(B) e AL

By the claim we know that % is contained in the A{, , sets. We derive a contradiction
by showing that & is closed under countable unions and complements (complements
are trivial).

Claim. # contains all IT? sets.

Proof. Let B be any II? set. By Wadge’s theorem there exists a continuous map
k: 29— 2¢ such that k~1(4) = B. Let @ = {(z,y): f (x) = k(y)}. Define i(z,y) = y and

iz, y) = 2.
22t 9
7 i
Ag 20k 2
This is known as the pull-back of the two maps. Since fis onto, ¢ maps @ onto 2%, Also
}(B) = 71 (4))

50 1-1(B) is AY. If @ is not perfect replace ¢ by its perfect kernel, ker (@) (¢ must map
ker (@) onto 2vsince @ —ker (@) is countable). Now take any homeomorphism of 2
onto @ and compose it with i to see that Bisin &. ]

We use this claim to see that % is closed under countable intersection. Suppose
h,: 2¢ — 2° witness that B, are in #. Let

X = {ze(29): Vn,m h,(z,) = h,(x,)}
Define g: X - 29 by g(x) = f1(2,). Then for any n < »
g_l(An) = {xE'X:fn(xn)EBn}

which is A2. As before we can assume g: 2% - 2¢ is onto. Since g~(n,, ., B,) e II? there
exists &: 29 > 2¢ such that
g (Np<w Bn)) B2

and we get that n,.,B, is in #. Thus # is a o-algebra contradicting the fact that
% < MY, , and proving Theorem 5. |
Theorem 5 has been generalized to the case where X and Y are arbitrary compact
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Hausdorff spaces by Jayne and Rogers[4]. In this case we replace the Borel hierarchy
by the Baire hierarchy. The Baire hierarchy on a space X is defined similarly to the
Borel hierarchy except that we let Z9(X) be the open F,-sets and II9(X) the closed
G,-sets. Of course, in a metric space the two hierarchies coincide. The following
theorem is due to Rogers and Jayne [4].

THEOREM 6. Suppose f: X > Y is a continuous onto map, X and Y are compact
Hausdorff spaces and A is IY(Y)— A% Y). Then f~2(A4) 15 IYX) — AYUX).

Proof. We show how to reduce a counterexample to the second countable case,
contradicting Theorem 5. Begin by embedding X and Y in a product of closed and
bounded intervals as in the standard constructions of the Stone-Cech compactification
(see Willard [16 ], section 19). More explicitly, let C*(X) be the family of all continuous,
bounded, real-valued functions on X and for each g€ C*(X) let Z, be & compact interval
containing the range of g. Let I17, be the product over all ge C*(X) and let e: X — I11,
be the evaluation map, i.e. [e(x)], = g(x). Define 111, and e!: Y — I11, similarly.

Define F:11I,-> I1I, by [F(f)], = [t]on. The function F is continuous and
Foe =e'of. Thusif fis a counterexample to our theorem so is F [ ¢(X) with range
¢(Y). Now any Baire set relative to ¢(X) is the intersection of a Baire set relative to
I1Z, with ¢(X). Also for any Baire set B in 111, there exists a countable set £ = C*(X)
such that X supports B, i.e. for any x,yelll,if v [ X = y [ Z then xe Biff ye B (see
Bockstein [2]). If : I jecn xy L, > I ez I, is the projection map, then, since membership
in B is determined by 2, the Baire complexity of B is preserved by 7.

Now suppose for contradiction that 4 is II3(Y)—~AY(Y) and f-1(4) is AYX). Let
2! support a IIY(IL1,) set with intersects ¢(Y) in e(4). Let X support a Z(IL7)) and a
IT}(I11,) both of which intersect ¢(X) in e(f~(4)), and also let = contain fo % for each
heZXl, Let 7 and #! be the corresponding projection maps for X and X! and define
FY: Mpes I, > e 1, just as F is defined, i.e. [F(t)];, = [t]pn-

n;, = ILhL
g€t hex?

Tﬂ T:rl
L _*f,. N
P heCHP)

e et
X 2, Y
The map F! restricted to 7(e(X)) gives a counterexample to Theorem 5. |

The first draft of this paper was written before we discovered that Theorem 5 and
Theorem 6 were already known. They were originally motivated by the following
application to nonstandard analysis. Let = [0,1] = R and let 7" be a »-finite set such
that the standard part map, st, maps 7" onto I. Define the Borel hierarchy on 7' by
declaring Z3(7) = YT) = *P(T') = the internal power set of 7. We wanted

THEOREM 7. ForAc I, a > 1
(a) AeM(I)e st~2(A)e YT
(®) AeXqI) e st™1(A)eZ2(T).
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Of course, a and b are equivalent and — is trivial by induction. For <, let X be the
Stone space of the Boolean algebra *#(T'), and consider the commutative diagram

T—ir—X
(=
1

Suppose 4 < I and st~1(A)eZYT). Say st~} (4) = ¢(K,, K, K,, ...), where the K, are
internal and ¢ is some XY combination (think of ¢ as a I propositional sentence of
£ o) In X, let C = §(Ng,, Ng,, ...), where N is the clopen set corresponding to K.
So CeZYX).

Note that C' = f-1(A4): if not, say usf~-1(4) but u¢ C. By w;-saturation of the non-
standard model, there is a ¢ € T such that si(¢) = f(v)and te Ky > ueNg, (¢ = 0,1,...).
But then t¢ ¢(K,, K, ...) = st71(A4), so f(u) = si(t)¢ 4, a contradiction.

Now, Theorem 6 applies to give 4 € Z4(1). |

For any family I" of subsets of w” we say that a set 4 < w® is compactly I iff for
every compact K < w?, An K eI'. Lemma 1 says that any Borel 4 which is compactly
Z is Z). Rogers and Jayne asked whether analytic plus compactly Borel implies
Borel. This was shown to be independent by Mathias, Ostaszewski, and Talagrand [10].

Fremlin (see [12], p. 483, problem 18) asked whether it is consistent that compactly
analytic implies analytic. He notes that this is clearly false assuming CH but asks what
about MA + T1CH.

It is not necessary to consider arbitrary Polish spaces - this problem is really about
w®. Consider the following two facts:

(1) Every Polish space is the continuous, one-to-one, image of a closed subset of w*.

(2) Every Polish space is either o-compact or contains a closed subspace homeo-
morphic to w®.

Thus by (2) if there is a compactly analytic non-analytic subset of w* there is such
a set in every non o-compact Polish space. On the other hand if there is such a set in
some Polish space it is easy by (1) to see that there is one in w*. These remarks are due
to Fremlin and Jayne; see also [10].

One advantage to working in w* is that the compact subsets of w* are easy to under-
stand. For f and g elements of w* let f < g iff, for all n < w, f(n) < g(n) and let f < *¢
iff, for all but finitely many n, f(n) < g(n). I't is not hard to show that for any compact
subset K of w® there is an fe w“such that K < {gew“: g < f}. Also any o-compact set is
contained in a set of the form {ge w*: g < *f} (a set which is itself o-compact). Since the
family of analytic sets is closed under countable union, we see that a set 4 < w* is
compactly analytic iff, for every few*, 4 n {gew®: g < *f}is analytic.

The next theorem shows that M A+ 7JCH is not sufficient to answer Fremlin’s
question.

THEOREM 8. Suppose MA + (0] = wl) +(2¢ = w,). Then there exists A < w* which
18 not projective such that A 1s compactly analytic.

Proof. Let A = {f,: a < w,} < w® be well-ordered by <* and such that for every
g € w there exists a such that g <*f,. It is well known (see Rudin [13]) that such a set
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exists. Since any subset of 4 of cardinality v, has the same property, we may assume
4 is not projective (since there are only 2* = w, projective sets). MA + (v} = wf)
implies that every subset of w® of cardinality w, is II} (Martin and Solovay[9]).
Thus w®— 4 is compactly Zi. |

Next we are going to show that it is consistent that compactly Z} implies Z}. The
model we use is obtained by iterating the eventually dominating order with finite
support. This model is due to Hechler[3].

P is the eventually dominating order, i.e.

P={nf)n<ofcu}
and

(nf)<(m,g) if nzm, flm=gl[m, and Vk>=m, f(k)>qgk).

Let P, be the usual partial order obtained by iterating P « times, using finite
support. We will need some lemmas from Miller[11]. For the convenience of the
reader we will make this account self-contained. Our first lemma is an easy exercise.

Lemma 9. Suppose M < N are countable models of ZFC, Q) €M and QyeN are
partial orders, and Q,, is a suborder of Q. Then (A) and (B) are equivalent. (4) For any
G which is Qp-generic over N, G n Q,, is Qy-generic over M. (B) For any Ae M, if
ME‘A < Py, is a mazimal antichain’, then N E‘ A < Py, is a maximal antichain’.

Proof. (4)= (B).

Suppose not and N k ‘Yge A p and ¢ are incompatible’. Let G be Q,-generic over N
with peG and let D = {reQ,,: 3ge 4 r < ¢}. But now M F‘D is dense in Q,,’ and
GnPynD=g.

(B) = (4).

Since the notion of incompatibility must be absolute, G n P,, is a Py, -filter. Given
any D = P,, dense in M, let M F‘A < D is a maximal antichain’. But then

D! = {geQy: Iped q < p}

is dense in Q. So, if G is Py-generic over N, then Gn D! + & ; therefore Gn A + & and
thus GnPynD + &.|

Remark. Clearly we need only a fraction of ZFC to be true in M and N to prove
this lemma.

Lemma 10. Suppose M = N are models of ZFC and G is PN-generic over N, then
G PM ig PM-generic over M. (PN and PM are the relativization to N and M of the
eventually dominating partial order P.)

Proof. It is enough to see that if Mk‘A < P is a maximal antichain’, then
NE‘A c P is a maximal antichain’. But the statement ‘4 < P is a maximal anti-
chain’ is eagily seen to be II} and hence absolute. |

This lemma is also true for Cohen forcing and random real foreing, but it can fail, for
example, for Laver forcing or Sacks’ real forcing. For example, suppose that M is a
model of ¥ = L and N models that w} is countable. In this situation there is a perfect
set P in NV of reals each of which is Cohen over M. Thus there is a real which is Sacks
generic over N but Cohen generic over M!
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The next two lemmas are quite general, and they are true for many finite support
iterations satisfying Lemma, 10.

We now give a very explicit definition of P, by induction on a. P, is just P Now
suppose P, has been defined. We say that 7 is a P, term for an element of wv iff
T=(D,,fa: n < w) where, for each n < w,D, < P, is a maximal antichain and
Ja: D, > 0. (The realization of 7 given G a P,-generic filter is defined by 7¢(n) = miff for
the unique pe D, n G, f,(p) = m.) Then peP,,iff p [ € P, and either p(x) = 1 (the
trivial condition) or p(a) = {(n,7) where n < w and 7 is a P, term for an element of w®.
We define p < qiffp [a < ¢ [« and p [a I ‘p(a) < ¢(2)’. For limit ordinals A, P, is
just the usual finite support limit, i.e. p € P, iff the domain of pis A, for all « < A

placP,,

and for all but finitely many a p(«) is the trivial condition. The finite set of « on which
p i8 non trivial is called the support of p. For p and ¢ in P, if # < A contains the

support of p and ¢, then p < qiffp [ < q [ B.

Lemma 11. Suppose M = N are countable models of ZFC and fcM. Then
PY¥=PYnM and P} is a suborder of P}. Also for any G P} -generic over N,
Gn P} is P} -generic over M.

Proof. Both statements are proved simultaneously by induction on f. Suppose
B = a+1. Since P,,, is defined explicitly in terms of antichains in P,, we see that
by Lemma 9 and the induction hypothesis that PX, = PY,, n M. P¥,, is a suborder of

PY,, because for pePY,ME‘pk(n,7) < (m,0)’ iff NE‘pE(n,7) < (m,o0)’. This
follows from II{ absoluteness. Thus suppose, for contradiction, that M thinks that
pE‘(n,7) < (m,0)’ but N does not. Then for some G P¥-generic over N with pe@
we have that

N{@E‘(n,19) & (m,0%)’.

But G = Gn PY is PX-generic over M so M [?]F“(n,7%) < (m, 0%)’. This contradicts
the fact that (n,7¢) < (m, %) is clearly a II? sentence and hence absolute. A similar
argument proves the contrapositive.

Now let us verify the second statement. Suppose @ is P¥, ,-generic over N, then
QG = G, » G* where G, is PY-generic over N and Q¢ is PNGd.generic over N[G,]. By
induction and Lemma 10 we get that G, = G,n P is P¥-generic over M and G'n PMiGel
is PM@al.generic over M[G,]. Hence, by the product lemma, Gy n PY is P¥-generic
over M. Now suppose ¢ is a limit ordinal. In this case we know that, for every ¢
PZ-generic over N and 8 < a, G,n PY¥ is P} -generic over M. We use condition (B) of
Lemma 9. Suppose

ME‘A < P, is a maximal antichain’.
To see that NE‘A < P, is an antichain’

note that for any two p and g€ 4 there exists # < a such that the support of p and g is
contained in 8. Hence M k‘p [ 8 and ¢ [ are incompatible in P,’ and therefore by
Lemma 9 and induction

NE‘p[f and ¢ [P areincompatible in P,
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To verify that A remains maximal in N, let Nk‘peP,’ and let # < « contain the
support of p. Clearly

ME‘VYpePIged q[f and p are compatible’.
Hence by induction

NE‘dged gq[pandp[pf are compatible’.
But since the support of p is contained in 8

NE‘dged p and ¢ are compatible’.|

The next lemma says that if (f,: @ <) is an iteration sequence of eventually
dominating reals over M, then, forany X < yin M,{f,: € X)is aniterationof length-
order type of X of eventually dominating reals over M.

To make things more explicit we define for each pe P, the super support of p as
follows. For peP,,, if p(a) = (n,7) where 7 = (D,,, f,: n < w), then the super support
of p is the union of the super support of p [ « and all the super support of ge U, ., D,
and {a}. If p(a) is the trivial condition, then the super support of P is just the super
support of p [ «. For p € P, when A is a limit, the super support of p is the super support
of p [ f where B < A is large enough to contain the support of p.

Since antichains are countable it is easy to prove that the super support of any
condition is countable.

For any ordinal £ and set X define P to be the set of peP, such that the super
support of p is contained in X and let P have the inherited ordering.

The next lemma is proved like Lemma 11,

LemMa 12. Suppose M i3 a countable transitive model of ZFC and X and a are elements
of M. Then, for any G P,-generic over M, G n PX is PX-generic over M. Also, for any
pePX, nand m elements of v, and o and T P -terms for elements of w* with super support
contained in X,

Php, ‘(0,7) < (m,0) iff phoz‘(n,1)<(m,0).

Proof. This is proved by induction on a. The second conclusion follows from the first
via the same IT}-absoluteness argument as was used in Lemma 11. It also allows us to
see that ordering on PZ,, is defined as the usual iteration and hence the same proofs as
in Lemma 11 work. |

LemmMa 13. For any X < a, if X has order type B, then PY is isomorphic to P .

Proof. Let j: X - £ be an order isomorphism. We will do the successor step in the
induction. Suppose j has already been defined on P¥.If y¢ X, then P, = PX x 1(11is
the trivial order). If y € X first define j on P,-terms 7 for elements of w* with super-
support contained in X. Suppose 7 = (D,,,f,: n < w). Then let

J(1) = (§(Dn), fa0i™: 1 < w).

Now define j(®) = j(p [ 7)"(n, j(r)) Where p(y) = (n,7).
As a corollary to Lemma 12 we see that, for any p and ¢ePX,, p < ¢ iff
ply<gqlvy,andp[ylps‘p(y) < q(y). Thusjis an order isomorphism. |
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LrmmMa 14. Suppose M is a model of ZFC and G is P,-generic over M. Then for any
xew® n M[Q] there exists B < wM and Qe M[Q] such that G is P4-generic over M and
re M[Q).

Proof. Use the countable chain condition to obtain a countable X < a such that
ze M[G n PX] and use the fact that P is isomorphic to P, where £ is the order type
of X.|

LemMa 15. Suppose ¢(u,v) is a T} formula with parameters from a model of set theory
M, pePY where f < 0¥, and 7 is a P¥ term such that p I+ ‘T w*’. Then

{zew'nM:p I P(x,7)’}
isa Xi-set in M.

Proof. Work in M. Suppose N is a transitive model of some large fragment of ZFC,
say ZFC,, and N contains the parameters of ¢, 8, p, and 7. Then if N I ‘p I+ ¢(x,7)’,
then (in M) plI-‘¢(x,7)’. Otherwise for some G n P} -generic over M, containing
P, M[G]F‘T14(x,7)’. But since G n P} is P} -generic over N, N[Gn P{]k ‘d(z, 7)’. This
contradicts the fact that Z} sentences are upward absolute.

Thus p I+ ‘ §(x, 7)’ iff there exists a countable transitive model N of ZF(C, containing
the parameters of ¢, 8, p, and 7 and N k‘p I+ “¢@(x,7) ” °. This shows that the set in
question is Z, over (HC,€) and hence Z} in w* (see Jech[6], p. 527). |

Remark. £} cannot be improved to IT} or Z} in Lemma 15. To see this let WF < o*
be the set of reals which code well-founded subtrees of @<« Then WF is IT} but not Z}.
Now suppose fe w® eventually dominates every element of w*n M. Then for any tree
T < w=<¢ contained in M, T has a branch iff T' has a branch eventually beneath f. But
to tell if a finite branching tree has a branch is A}. Consequently there is a Borel set B
with code f such that Bn M = WF n M. This argument shows that the operation 4
in M ‘becomes’ a Borel operation in M[ f]. Thus there are many Aj-sets in M which
become Borel in M[f].

LeMwMma 16. Suppose M is a countable transitive model of ZFC, a € M, and G P ,-generic
over M. Also suppose that for some set of reals Ae M[GQ], M[G]F ‘A is a Z}-set and
AnMeM’ . Then ME‘An M is a Z}-set’.|

Proof. By Lemma 14 the Z}-code for 4 is in some M [@ﬂ] for # countable. Thus by

Z} absoluteness we may assume that « is countable. But now Lemma 15 implies that
AnMisZ}in M.|

THEOREM 17. Con (ZFC) implies Con (ZFC + every compactly Z}-set is Z}).

Proof. Let M be a countable transitive model of ZFC + CH and let G be P, -generic
over M. Then in M[@] every compactly Z}-set is Z}. To prove this let 4 < w” be a
compactly Zi-set in M[Q]. Suppose for contradiction that M[G] F ‘4 is not Z}’. Using
a Lowenheim—Skolem type argument, CH in M, and the c.c.c. of P, find @ < w, such
that 4 n M[G,]e M[G,] and M[G,]F ‘A4 n M[G,] is not a Z}-set’. Now think of M[G, ]
as the ground model and apply Lemma 16 to the Z}-set 4 n {ge w*: ¢ < *f,,,} where
Sa41 18 the a+ 1 eventually dominating real. This contradiction proves the result. |

To get this result for compactly Z} we found it necessary to have A}-determinancy in
the model M[G]. It seems unlikely that such strong hypotheses are necessary.
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THEOREM 18. Suppose every well ordering of reals in L[R] is countable and

Aj-determinancy is true. Then there is a transitive model of ZFC + every compactly
Z3-set 18 Z1.

Proof. We use the technique of the Kunen-Moschovakis theorem for showing the
consistency of ZFC + Al-determinacy +2% = w,. (See Becher[1] theorem 20, also
lemmas 18 and 19.) It is clear that by this technique we can obtain M[@,,] such
that in M[G,, ] every compactly Z}-set is Z} and Aj-determinacy holds. But obviously
every compactly Zi-set must be A} and therefore by Lemma 1 and A}-determinacy
it must be Zi. |

If one is willing to assume projective determinacy (PD) and every well-ordered set
of reals in L[R] is countable, then one can easily get a transitive model of ZFC in
which for every n < w every compactly Z}-set is ZL. One works over the model L[{7']
where T' = (T, T3, T®, ...) (see Becher[1], p. 73). All models between L{7"] and V are
1 _correct, so we have absoluteness.

Problem. Suppose every 4 < w® of cardinality w, is eventually dominated. Does
Al + compactly Z} imply Z}?

Problem. Does (compactly Al = A}) imply (compactly Z} = Z})?
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