Публикации
  1. Density of the cototal enumeration degrees
    Joseph S. Miller, and Mariya I. Soskova
    Предадена за печат.

  2. Characterizing the continuous degrees
    Uri Andrews, Gregory Igusa, Joseph S. Miller, and Mariya I. Soskova
    Предадена за печат.

  3. The Rado path decomposition theorem
    Peter Cholak, Gregory Igusa, Ludovic Patey, Mariya I. Soskova, and Dan Turetsky
    Предадена за печат.

  4. On cototality and the skip operator in the enumeration degrees
    Uri Andrews, Hristo Ganchev, Ruitger Kuyper, Steffen Lempp, Joseph S. Miller, A. Soskova, and M. Soskova
    Предадена за печат.

  5. The jump hierarchy in the enumeration degrees
    Hristo Ganchev and Mariya I. Soskova
    Предадена за печат.

  6. Enumeration 1-genericity in the local enumeration degrees
    Liliana Badillo, Charles Harris, and Mariya I. Soskova
    Предадена за печат.

  7. The $\Delta^0_2$ Turing degrees: Automorphisms and definability
    Theodore A. Slaman and Mariya I. Soskova
    Предадена за печат.

  8. The enumeration degrees: Local and global structural interactions
    Theodore A. Slaman and Mariya I. Soskova
    “Foundations of Mathematics. Essays in honor of W. Hugh Woodin’s 60th Birthday”, A. Caicedo, J. Cummings, P. Koellner and P. Larson, eds. Contemporary Mathematics 690, AMS(2017), 31-69.

  9. Generics for Mathias forcing over general Turing ideals
    Damir Dzhafarov, Peter Cholak, and Mariya I. Soskova
    Israel Journal of Mathematics, 216(2): 583-604 (2016).

  10. Nondensity of double bubbles in the d.c.e. degrees
    Uri Andrews, Ruitger Kuyper, Steffen Lempp, Mars Yamaleev, and Mariya I. Soskova
    “Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday”. Day, Fellows, Greenberg, Khoussainov, Mel- nikov, and Rosamond, eds. Springer (2016), 547-562.

  11. Enumeration reducibility and computable structure theory
    Alexandra A. Soskova and Mariya I. Soskova
    “Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday”. Day, Fellows, Greenberg, Khoussainov, Mel- nikov, and Rosamond, eds. Springer (2016), 271-301.

  12. Defining totality in the enumeration degrees
    Mingzhong Cai, Hristo A. Ganchev, Steffen Lempp, Joseph S. Miller, and Mariya I. Soskova
    Journal of the American Mathematical Society, 29:1051-1067 (2016).

  13. The automorphism group of the enumeration degrees
    Mariya I. Soskova
    Annals of Pure and Applied Logic, 167(10):982-999 (2016).

  14. On Kalimullin pairs
    Mingzhong Cai, Steffen Lempp, Joseph S. Miller, and Mariya I. Soskova
    Computability, 5(2):111-126 (2016).

  15. Definability via Kalimullin Pairs in the structure of the enumeration degrees
    Hristo A. Ganchev and Mariya I. Soskova
    Trans. American Math. Soc., 367: 4873-4893 (2015).

  16. The Turing universe in the context enumeration reducibility
    Mariya I. Soskova
    CiE 2013 Proceedings, LNCS, volume 7921, 371-383.

  17. Interpreting true arithmetic in the local structure of the enumeration degrees
    Hristo A. Ganchev and Mariya I. Soskova
    J. Symb. Log. 77(4): 1184-1194 (2012).

  18. Cupping and definability in the local structure of the enumeration degrees
    Hristo A. Ganchev and Mariya I. Soskova
    J. Symb. Log. 77(1): 133-158 (2012).

  19. The high/low hierarchy in the local structure of the $\omega$-enumeration degrees
    Hristo A. Ganchev and Mariya I. Soskova
    Ann. Pure Appl. Logic 163(5): 547-566 (2012).

  20. Embedding distributive lattices in the $\Sigma^0_2$ enumeration degrees
    Hristo A. Ganchev and Mariya I. Soskova
    J. Logic Computation, 22(4): 779-792 (2012).

  21. Embedding countable partial orderings in the enumeration degrees and the $\omega$-enumeration degrees
    Mariya I. Soskova and Ivan N. Soskov
    J. Logic Computation, 22(4): 927-952 (2012).

  22. Kalimullin pairs of $\Sigma^0_2$ $\omega$-enumeration degrees
    Ivan N. Soskov and Mariya I. Soskova
    Int. J. Software and Informatics 5(4): 637-658 (2011).

  23. Splitting and nonsplitting in the $\Sigma^0_2$ enumeration degrees
    Marat M. Arslanov, S. Barry Cooper, Iskander Sh. Kalimullin, and Mariya I. Soskova
    Theor. Comput. Sci. 412(18): 1669-1685 (2011)
    Conference version: "Total degrees and nonsplitting properties of $\Sigma^0_2$ enumeration degrees" in TAMC 2008 Proceedings, LNCS 4978, 568-578.

  24. The local structure of the enumeration degrees
    Mariya I. Soskova
    PhD Thesis, University of Leeds, May 2008.

  25. The limitations of cupping in the local structure of the enumeration degrees
    Mariya I. Soskova
    Archive for Mathematical Logic 49(2): 169-193 (2010).
    Conference version: "Cupping classes of $\Sigma^0_2$ enumeration degrees$ enumeration degrees" in CiE 2008 Proceedings, LNCS, volume 5028, 554-566.

  26. A non-splitting theorem in the enumeration degrees
    Mariya I. Soskova
    Ann. Pure Appl. Logic, 160, (2009) 400-418.

  27. Cupping $\Delta^0_2$ enumeration degrees to $0'$
    Mariya I. Soskova and Guohua Wu
    Mathematical Structures in Computer Science, vol. 19 (2009), 169-191.
    Conference version: In CiE 2007 Proceedings, LNCS 4497.

  28. How enumeration reducibility yields extended Harrington non-splitting
    Mariya I. Soskova and S. Barry Cooper
    Journal of Symbolic Logic, vol. 73 (2008), 634-655.
    Conference version: "The strongest nonsplitting theorem" in TAMC 2007 Proceedings, LNCS 4484.

  29. Randomness, lowness and degrees
    George Barmpalias, Andrew E. M. Lewis-Pye, and Mariya I. Soskova
    Journal of Symbolic Logic. vol.73, 559-577 (2008).
    Conference version: "Working with the LR degrees", in TAMC 2007 Proceedings, LNCS 4484.

  30. Genericity and nonbounding
    Mariya I. Soskova
    Journal of Logic and Computation, December 2007; 17: 1235 - 1255.
    Conference version: "A deneric set that does not bound a minimal pair in the enumeration degrees", in TAMC 2006 Proceedings, LNCS 3959.

Мария