Definability, automorphisms and enumeration degrees

Mariya I. Soskova

In honor of Ivan Soskov’s 60’th birthday

1Supported by a Marie Curie International Outgoing Fellowship STRIDE (298471) and Sofia University Science Fund project 97/2014
Enumeration reducibility

<table>
<thead>
<tr>
<th>Reducibility</th>
<th>Oracle set B</th>
<th>Reduced set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \leq_T B$</td>
<td>Complete information</td>
<td>Complete information</td>
</tr>
<tr>
<td>A c.e. in B</td>
<td>Complete information</td>
<td>Positive information</td>
</tr>
<tr>
<td>$A \leq_e B$</td>
<td>Positive information</td>
<td>Positive information</td>
</tr>
</tbody>
</table>

Definition (Friedberg, Rogers (59))

$A \leq_e B$ if there is a c.e. set W, such that

$$A = W(B) = \{ x \mid \exists D (\langle x, D \rangle \in W \& D \subseteq B) \}.$$

The structures of the Turing degrees \mathcal{D}_T and the enumeration degrees \mathcal{D}_e are upper semi-lattices with least element and jump operation.
The automorphism problem

Question

Is there a non-trivial automorphism of D_T or D_e?
The automorphism problem

Question

Is there a non-trivial automorphism of D_T or D_e?

Theorem (Slaman, Woodin)

The rigidity of D_T is equivalent to its biinterpretability with second order arithmetic.
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of D_T and D_e are each computably isomorphic to the theory of Second order arithmetic.
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of \mathcal{D}_T and \mathcal{D}_e are each computably isomorphic to the theory of Second order arithmetic.

\mathcal{D}_T is biinterpretable with second order arithmetic if the relation $\varphi(\vec{p}, x)$ defined by “\vec{p} codes a standard model of arithmetic with a unary predicate for the set Y and Y is of the same degree as x” is definable in \mathcal{D}_T.

Mariya I. Soskova

Definability, automorphisms and e-degrees
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of \mathcal{D}_T and \mathcal{D}_e are each computably isomorphic to the theory of Second order arithmetic.

\mathcal{D}_T is biinterpretable with second order arithmetic if the relation $\varphi(\vec{p}, x)$ defined by “\vec{p} codes a standard model of arithmetic with a unary predicate for the set Y and Y is of the same degree as x” is definable in \mathcal{D}_T.

Theorem (Slaman, Woodin)

There is an element $g \leq 0^{(5)}$ such that φ is definable with parameter g.
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of \mathcal{D}_T and \mathcal{D}_e are each computably isomorphic to the theory of Second order arithmetic.

\mathcal{D}_T is biinterpretable with second order arithmetic if the relation $\varphi(\vec{p}, x)$ defined by “\vec{p} codes a standard model of arithmetic with a unary predicate for the set Y and Y is of the same degree as x” is definable in \mathcal{D}_T.

Theorem (Slaman, Woodin)

There is an element $g \leq 0^{(5)}$ such that φ is definable with parameter g. The singleton $\{g\}$ is an automorphism base for the structure of the Turing degrees \mathcal{D}_T.
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of D_T and D_e are each computably isomorphic to the theory of Second order arithmetic.

D_T is biinterpretable with second order arithmetic if the relation $\varphi(\vec{p}, x)$ defined by “\vec{p} codes a standard model of arithmetic with a unary predicate for the set Y and Y is of the same degree as x” is definable in D_T.

Theorem (Slaman, Woodin)

There is an element $g \leq 0^{(5)}$ such that φ is definable with parameter g. The singleton $\{g\}$ is an automorphism base for the structure of the Turing degrees D_T. $\text{Aut}(D_T)$ is countable and every member has an arithmetically definable presentation.
Biinterpretability

Theorem (Simpson, Slaman and Woodin)

The first order theories of D_T and D_e are each computably isomorphic to the theory of Second order arithmetic.

D_T is biinterpretable with second order arithmetic if the relation $\varphi(\vec{p}, x)$ defined by “\vec{p} codes a standard model of arithmetic with a unary predicate for the set Y and Y is of the same degree as x” is definable in D_T.

Theorem (Slaman, Woodin)

There is an element $g \leq 0^{(5)}$ such that φ is definable with parameter g. The singleton $\{g\}$ is an automorphism base for the structure of the Turing degrees D_T.

$\text{Aut}(D_T)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \rightarrow \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$\mathcal{TOT} = \iota(\mathcal{D}_T)$ is the set of total enumeration degrees.
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \rightarrow \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$\mathcal{T}OT = \iota(\mathcal{D}_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \lor', 0_T) \cong (\mathcal{T}OT, \leq_e, \lor', 0_e) \subseteq (\mathcal{D}_e, \leq_e, \lor', 0_e)$$
What connects \mathcal{D}_T and \mathcal{D}_e

Proposition

$A \leq_T B \iff A \oplus \overline{A}$ is c.e. in $B \iff A \oplus \overline{A} \leq_e B \oplus \overline{B}$.

The embedding $\iota : \mathcal{D}_T \to \mathcal{D}_e$, defined by $\iota(d_T(A)) = d_e(A \oplus \overline{A})$, preserves the order, the least upper bound and the jump operation.

$\mathcal{TOT} = \iota(\mathcal{D}_T)$ is the set of total enumeration degrees.

$$(\mathcal{D}_T, \leq_T, \lor', 0_T) \cong (\mathcal{TOT}, \leq_e, \lor', 0_e) \subseteq (\mathcal{D}_e, \leq_e, \lor', 0_e)$$

Question (Rogers (67))

Is the set of total enumeration degrees first order definable in \mathcal{D}_e?
Theorem (Selman)

A is enumeration reducible to B if and only if
\[\{ x \in \text{TOT} \mid d_e(A) \leq x \} \supseteq \{ x \in \text{TOT} \mid d_e(B) \leq x \} . \]
The total degrees as an automorphism base

Theorem (Selman)

A is enumeration reducible to B if and only if
\[\{ x \in TOT \mid d_e(A) \leq x \} \supseteq \{ x \in TOT \mid d_e(B) \leq x \}. \]

- The total enumeration degrees are an automorphism base for \(D_e \).
The total degrees as an automorphism base

Theorem (Selman)

A is enumeration reducible to B if and only if
\[
\{ x \in TOT \mid d_e(A) \leq x \} \supseteq \{ x \in TOT \mid d_e(B) \leq x \}.
\]

- The total enumeration degrees are an automorphism base for \(D_e \).
- If \(TOT \) is definable then a nontrivial automorphism of \(D_e \) implies a nontrivial automorphism of \(D_T \).
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A, such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example: A left cut in a computable linear ordering is a semi-computable set.

In particular for any set A, consider $L_A = \{\sigma \in 2^{<\omega} | \sigma \leq A\}$.

Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

$$(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(A)) = d_e(X).$$

If X is not computable then there is a semi-computable set A with $d_e(X \oplus X) = d_e(A) \lor d_e(A)$.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A, such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A, such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:

- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set A consider $L_A = \{\sigma \in 2^{<\omega} \mid \sigma \leq A\}$.
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A, such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:
- A *left cut* in a computable linear ordering is a semi-computable set.
- In particular for any set A consider $L_A = \{\sigma \in 2^{<\omega} | \sigma \leq A\}$.
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function s_A, such that $s_A(x, y) \in \{x, y\}$ and if $\{x, y\} \cap A \neq \emptyset$ then $s_A(x, y) \in A$.

Example:
- A left cut in a computable linear ordering is a semi-computable set.
- In particular for any set A consider $L_A = \{\sigma \in 2^{<\omega} | \sigma \leq A\}$.
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If A is a semi-computable set then for every X:

$$(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).$$
Semi-computable sets

Definition (Jockusch)

A is semi-computable if there is a total computable function \(s_A \), such that
\[s_A(x, y) \in \{x, y\} \text{ and if } \{x, y\} \cap A \neq \emptyset \text{ then } s_A(x, y) \in A. \]

Example:
- A left cut in a computable linear ordering is a semi-computable set.
- In particular for any set \(A \) consider \(L_A = \{ \sigma \in 2^{<\omega} | \sigma \leq A \} \).
- Every nonzero Turing degree contains a semi-computable set that is not c.e. or co-c.e.

Theorem (Arslanov, Cooper, Kalimullin)

If \(A \) is a semi-computable set then for every \(X \):
\[
(d_e(X) \lor d_e(A)) \land (d_e(X) \lor d_e(\overline{A})) = d_e(X).
\]

- If \(X \) is not computable then there is a semi-computable set \(A \) with \(d_e(X \oplus \overline{X}) = d_e(A) \lor d_e(\overline{A}) \).
Kalimullin pairs

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that

$A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Mariya I. Soskova

Definability, automorphisms and e-degrees
Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\bar{A} \times \bar{B} \subseteq \bar{W}$.

Example:

1. A trivial example is $\{A, U\}$, where U is c.e: $W = \mathbb{N} \times U$.
Kalimullin pairs

Definition (Kalimullin)

A pair of sets A, B are called a \mathcal{K}-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

1. A trivial example is $\{A, U\}$, where U is c.e: $W = \mathbb{N} \times U$.
2. If A is a semi-computable set, then $\{A, \overline{A}\}$ is a \mathcal{K}-pair: $W = \{(m, n) \mid s_A(m, n) = m\}$.

Theorem (Kalimullin)

A pair of sets A, B is a \mathcal{K}-pair if and only if their enumeration degrees a and b satisfy:

$$K(a, b) \equiv (\forall x \in \mathcal{D})(a \lor x) \land (b \lor x) = x.$$
Kalimullin pairs

Definition (Kalimullin)

A pair of sets A, B are called a K-pair if there is a c.e. set W, such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

Example:

1. A trivial example is $\{A, U\}$, where U is c.e: $W = \mathbb{N} \times U$.
2. If A is a semi-computable set, then $\{A, \overline{A}\}$ is a K-pair: $W = \{(m, n) \mid s_A(m, n) = m\}$.

Theorem (Kalimullin)

A pair of sets A, B is a K-pair if and only if their enumeration degrees a and b satisfy:

$$K(a, b) \iff (\forall x \in D_e)((a \lor x) \land (b \lor x) = x).$$
Definability of the enumeration jump

Theorem (Kalimullin)

$0_e'$ is the largest degree which can be represented as the least upper bound of a triple a, b, c, such that $K(a, b), K(b, c)$ and $K(c, a)$.
Definability of the enumeration jump

Theorem (Kalimullin)

$0_e'$ is the largest degree which can be represented as the least upper bound of a triple a, b, c, such that $\mathcal{K}(a, b), \mathcal{K}(b, c)$ and $\mathcal{K}(c, a)$.

Corollary (Kalimullin)

1. The enumeration jump is first order definable in \mathcal{D}_e.
Definability of the enumeration jump

Theorem (Kalimullin)

0_e' is the largest degree which can be represented as the least upper bound of a triple a, b, c, such that \(\mathcal{K}(a, b), \mathcal{K}(b, c) \) and \(\mathcal{K}(c, a) \).

Corollary (Kalimullin)

1. The enumeration jump is first order definable in \(D_e \).
2. The set of total enumeration degrees above 0_e' is first order definable in \(D_e \).
Theorem (Ganchev, S)

The class of \mathcal{K}-pairs below $0'_e$ is first order definable in $D_e(\leq 0'_e)$.
Definability in the local structure of the enumeration degrees

Theorem (Ganchev, S)

The class of \mathcal{K}-pairs below $0'_e$ is first order definable in $\mathcal{D}_e(\leq 0'_e)$.

Theorem (Ganchev, S)

1. The theory of $\mathcal{D}_e(\leq 0'_e)$ is computably isomorphic to the theory of first order arithmetic.
2. The low enumeration degrees are first order definable in $\mathcal{D}_e(\leq 0'_e)$.
Maximal \mathcal{K}-pairs

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.
Maximal \mathcal{K}-pairs

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.

Example: A semi-computable pair is a maximal \mathcal{K}-pair. Total enumeration degrees are joins of maximal \mathcal{K}-pairs.
Maximal \mathcal{K}-pairs

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.

Example: A semi-computable pair is a maximal \mathcal{K}-pair.
Total enumeration degrees are joins of maximal \mathcal{K}-pairs.

Theorem (Ganchev, S)

If $\{A, B\}$ is a nontrivial \mathcal{K}-pair in $\mathcal{D}_e(\leq 0'_e)$ then there is a semi-computable set $C \leq_e 0'_e$, such that $A \leq_e C$ and $B \leq_e \overline{C}$.
Maximal \mathcal{K}-pairs

Definition

A \mathcal{K}-pair $\{a, b\}$ is maximal if for every \mathcal{K}-pair $\{c, d\}$ with $a \leq c$ and $b \leq d$, we have that $a = c$ and $b = d$.

Example: A semi-computable pair is a maximal \mathcal{K}-pair. Total enumeration degrees are joins of maximal \mathcal{K}-pairs.

Theorem (Ganchev, S)

If $\{A, B\}$ is a nontrivial \mathcal{K}-pair in $\mathcal{D}_{e}(\leq 0'_{e})$ then there is a semi-computable set $C \leq_{e} 0'_{e}$, such that $A \leq_{e} C$ and $B \leq_{e} \overline{C}$.

Corollary

In $\mathcal{D}_{e}(\leq 0'_{e})$ a nonzero degree is total if and only if it is the least upper bound of a maximal \mathcal{K}-pair.
Theorem (S)

There is an element $g \leq 0 (8)$ such that D_e is biinterpretable with second order arithmetic using parameter g.

The singleton $\{g\}$ is an automorphism base for D_e.

$\text{Aut}(D_e)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters. In particular the total enumeration degrees are definable with parameters in D_e.
Theorem (S)

There is an element $g \leq 0^{(8)}$ *such that* D_e *is biinterpretable with second order arithmetic using parameter* g.

Aut (D_e) *is countable and every member has an arithmetically definable presentation. Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters. In particular the total enumeration degrees are definable with parameters in* D_e.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Theorem (S)

There is an element $g \leq 0^{(8)}$ such that D_e is biinterpretable with second order arithmetic using parameter g.

The singleton $\{g\}$ is an automorphism base for D_e.
Automorphism analysis in the enumeration degrees

Theorem (S)

There is an element \(g \leq 0^{(8)} \) such that \(D_e \) is biinterpretable with second order arithmetic using parameter \(g \).

The singleton \(\{g\} \) is an automorphism base for \(D_e \).

\(\text{Aut}(D_e) \) is countable and every member has an arithmetically definable presentation.
Theorem (S)

There is an element $g \leq 0^{(8)}$ such that D_e is biinterpretable with second order arithmetic using parameter g.

The singleton $\{g\}$ is an automorphism base for D_e.

$\text{Aut}(D_e)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.
Theorem (S)

There is an element $g \leq 0^{(8)}$ such that D_e is biinterpretable with second order arithmetic using parameter g.

The singleton $\{g\}$ is an automorphism base for D_e.

$\text{Aut}(D_e)$ is countable and every member has an arithmetically definable presentation.

Every relation induced by a degree invariant definable relation in Second order arithmetic is definable with parameters.

In particular the total enumeration degrees are definable with parameters in D_e.
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial K-pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor:

Let W be a c.e. set such that $A \times B \subseteq W$ and $A \times B \subseteq W$.

1. The countable component: we use W to construct an effective labeling of the computable linear ordering Q.

2. The uncountable component: C will be a left cut in this ordering. We label elements of Q with the elements of $\mathbb{N} \cup \mathbb{N}$.

The goal:

$A = \{m | \exists q \in C (q \text{ is labeled by } m)\}$ and $B = \{k | \exists q \in C (q \text{ is labeled by } k)\}$.

While $(m, k) \notin W$:

Q: $k \in A, m \in B$.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K}-pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial K-pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q}.

Mariya I. Soskova

Definability, automorphisms and e-degrees
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ *is a nontrivial К-pair in* \mathcal{D}_e *then there is a semi-computable set* C, *such that* $A \leq_e C$ *and* $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q}.
2. The uncountable component: C will be a left cut in this ordering.

Mariya I. Soskova

Definability, automorphisms and e-degrees
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial \mathcal{K}-pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. The countable component: we use W to construct an effective labeling of the computable linear ordering \mathbb{Q}.
2. The uncountable component: C will be a left cut in this ordering.

We label elements of \mathbb{Q} with the elements of $\mathbb{N} \cup \overline{\mathbb{N}}$.
Defining total enumeration degrees in D_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

If $\{A, B\}$ is a nontrivial K-pair in D_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. **The countable component:** we use W to construct an effective labeling of the computable linear ordering \mathbb{Q}.
2. **The uncountable component:** C will be a left cut in this ordering.

We label elements of \mathbb{Q} with the elements of $\mathbb{N} \cup \mathbb{N}$.

The goal: $A = \{m \mid \exists q \in C (q \text{ is labeled by } m)\}$ and $B = \{k \mid \exists q \in \overline{C} (q \text{ is labeled by } k)\}$.
Defining total enumeration degrees in D_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

*If \(\{A, B\} \) is a nontrivial K-pair in D_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.***

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. **The countable component:** we use W to construct an effective labeling of the computable linear ordering \mathbb{Q}.
2. **The uncountable component:** C will be a left cut in this ordering.

We label elements of \mathbb{Q} with the elements of $\mathbb{N} \cup \mathbb{N}$.

The goal: $A = \{m \mid \exists q \in C (q \text{ is labeled by } m)\}$ and $B = \{k \mid \exists q \in \overline{C} (q \text{ is labeled by } k)\}$.

While $(m, k) \notin W$:

```
Q : --------- k ----------- m
```

Mariya I. Soskova
Definability, automorphisms and e-degrees
Defining total enumeration degrees in \mathcal{D}_e

Theorem (Cai, Ganchev, Lempp, Miller, S)

*If $\{A, B\}$ is a nontrivial K-pair in \mathcal{D}_e then there is a semi-computable set C, such that $A \leq_e C$ and $B \leq_e \overline{C}$.***

Proof flavor: Let W be a c.e. set such that $A \times B \subseteq W$ and $\overline{A} \times \overline{B} \subseteq \overline{W}$.

1. **The countable component:** we use W to construct a labeling of the computable linear ordering Q.
2. **The uncountable component:** C will be a left cut in this ordering.

We label elements of Q with the elements of $\mathbb{N} \cup \mathbb{N}$.

The goal: $A = \{ m \mid \exists q \in C (q \text{ is labeled by } m) \}$ and $B = \{ k \mid \exists q \in \overline{C} (q \text{ is labeled by } k) \}$.

If $(m, k) \in W$:

If $(m, k) \in W$:
Theorem (Cai, Ganchev, Lempp, Miller, S)

The total enumeration degrees are first order definable in D_e.

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

If D_T is rigid then D_e is rigid.

The automorphism analysis for the enumeration degrees follows.

The total degrees below 0 are an automorphism base of D_e.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Success!

Theorem (Cai, Ganchev, Lempp, Miller, S)

The total enumeration degrees are first order definable in D_e.

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.
Theorem (Cai, Ganchev, Lempp, Miller, S)

The total enumeration degrees are first order definable in D_e.

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If D_T is rigid then D_e is rigid.
Theorem (Cai, Ganchev, Lempp, Miller, S)

The total enumeration degrees are first order definable in D_e.

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If D_T is rigid then D_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
Theorem (Cai, Ganchev, Lempp, Miller, S)

The total enumeration degrees are first order definable in D_e.

Corollary

The total enumeration degrees form a definable automorphism base of the enumeration degrees.

- If D_T is rigid then D_e is rigid.
- The automorphism analysis for the enumeration degrees follows.
- The total degrees below $0_e^{(5)}$ are an automorphism base of D_e.
The relation *c.e. in*

Definition

A Turing degree \(a \) is *c.e. in* a Turing degree \(x \) if some \(A \in a \) is c.e. in some \(X \in x \).
The relation \textit{c.e. in}

\begin{definition}
A Turing degree a is \textit{c.e. in} a Turing degree x if some $A \in a$ is c.e. in some $X \in x$.
\end{definition}

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e.
The relation \textit{c.e. in}

\textbf{Definition}

A Turing degree a is \textit{c.e. in} a Turing degree x if some $A \in a$ is c.e. in some $X \in x$.

Recall that ι is the standard embedding of \mathcal{D}_T into \mathcal{D}_e.

\textbf{Theorem (Cai, Ganchev, Lempp, Miller, S)}

The set $\{\langle \iota(a), \iota(x) \rangle \mid a \text{ is c.e. in } x \}$ is first order definable in \mathcal{D}_e.

1 Ganchev, S had observed that if $\mathcal{T\mathcal{O}\mathcal{T}}$ is definable by maximal \mathcal{K}-pairs then the image of the relation ‘c.e. in’ is definable for non-c.e. degrees.

2 A result by Cai and Shore allowed us to complete this definition.
Local structures of Turing degrees

Definition

\mathcal{R} is the substructure of the computably enumerable degrees.
Local structures of Turing degrees

Definition

\(\mathcal{R} \) is the substructure of the computably enumerable degrees.

\(\mathcal{D}_T(\leq 0') \) is the substructure of all degrees that are bounded by \(0' \), the \(\Delta^0_2 \) Turing degrees.
The local coding theorem

Definition
A set of degrees Z contained in $D_T(\leq 0')$ is uniformly low if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$ representing the degrees in Z, and a computable function f such that $\{f(i)\}_{\emptyset'}$ is the Turing jump of $\bigoplus_{j<i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $A = \{d_T(A_i) | i<\omega\}$ is uniformly low.

Theorem (Slaman and Woodin)
If Z is a uniformly low subset of $D_T(\leq 0')$ then Z is definable from finitely many parameters in $D_T(\leq 0')$.
The local coding theorem

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq 0')$ is uniformly low if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z}, and a computable function f such that $\{f(i)\}^{\emptyset'}$ is the Turing jump of $\bigoplus_{j<i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $A = \{d_{\mathcal{D}_T}(A_i) | i<\omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If \mathcal{Z} is a uniformly low subset of $\mathcal{D}_T(\leq 0')$ then \mathcal{Z} is definable from finitely many parameters in $\mathcal{D}_T(\leq 0')$.

Mariya I. Soskova

Definability, automorphisms and e-degrees
The local coding theorem

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq 0')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z}, and a computable function f such that $\{f(i)\}_0'$ is the Turing jump of $\bigoplus_{j<i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $A = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.
The local coding theorem

Definition

A set of degrees \mathcal{Z} contained in $\mathcal{D}_T(\leq 0')$ is *uniformly low* if it is bounded by a low degree and there is a sequence $\{Z_i\}_{i<\omega}$, representing the degrees in \mathcal{Z}, and a computable function f such that $\{f(i)\}^{0'}$ is the Turing jump of $\bigoplus_{j<i} Z_j$.

Example: If $\bigoplus_{i<\omega} A_i$ is low then $\mathcal{A} = \{d_T(A_i) \mid i < \omega\}$ is uniformly low.

Theorem (Slaman and Woodin)

If \mathcal{Z} is a uniformly low subset of $\mathcal{D}_T(\leq 0')$ then \mathcal{Z} is definable from finitely many parameters in $\mathcal{D}_T(\leq 0')$.
Applications of the coding theorem

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^\mathcal{M}, 0^\mathcal{M}, s^\mathcal{M}, +^\mathcal{M}, \times^\mathcal{M}, \leq^\mathcal{M})$.

The set $\mathbb{N}^\mathcal{M}$ is definable with parameters \vec{p}.

The graphs of $s^\mathcal{M}$, $+^\mathcal{M}$, and the relation $\leq^\mathcal{M}$ are definable with parameters \vec{p}.

$\mathbb{N}^\mathcal{M} \mid = \varphi$ iff $D_T(\leq^0' \mid = \varphi_T(\vec{p})$.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Applications of the coding theorem

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^\mathcal{M}, 0^\mathcal{M}, s^\mathcal{M}, +^\mathcal{M}, \times^\mathcal{M}, \leq^\mathcal{M})$.

- The set $\mathbb{N}^\mathcal{M}$ is definable with parameters \vec{p}.
Applications of the coding theorem

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^\mathcal{M}, 0^\mathcal{M}, s^\mathcal{M}, +^\mathcal{M}, \times^\mathcal{M}, \leq^\mathcal{M})$.

1. The set $\mathbb{N}^\mathcal{M}$ is definable with parameters \vec{p}.
2. The graphs of s, $+$, \times and the relation \leq are definable with parameters \vec{p}.
Applications of the coding theorem

Using parameters we can code a model of arithmetic $\mathcal{M} = (\mathbb{N}^\mathcal{M}, 0^\mathcal{M}, s^\mathcal{M}, +^\mathcal{M}, \times^\mathcal{M}, \leq^\mathcal{M})$.

1. The set $\mathbb{N}^\mathcal{M}$ is definable with parameters \vec{p}.

2. The graphs of s, $+$, \times and the relation \leq are definable with parameters \vec{p}.

3. $\mathbb{N} \models \varphi$ iff $\mathcal{D}_T(\leq 0') \models \varphi_T(\vec{p})$
Applications of the coding theorem

If $Z \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^\mathcal{M} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^\mathcal{M}) = d_T(Z_i)$.
Applications of the coding theorem

If $Z \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^{\mathcal{M}} \to \mathcal{D}_T(\leq 0')$ such that $\varphi(i^{\mathcal{M}}) = d_T(Z_i)$.

We call such a function an indexing of Z.

Applications of the coding theorem

If $Z \subseteq \mathcal{D}_T(\leq 0')$ is uniformly low and represented by the sequence $\{Z_i\}_{i<\omega}$ then there are parameters that code a model of arithmetic \mathcal{M} and a function $\varphi : \mathbb{N}^\mathcal{M} \rightarrow \mathcal{D}_T(\leq 0')$ such that $\varphi(i^\mathcal{M}) = d_T(Z_i)$.

We call such a function an indexing of Z.

Theorem (Slaman and Woodin)

*There are finitely many Δ^0_2 parameters which code a model of arithmetic \mathcal{M} and an indexing of the c.e. degrees: a function $\psi : \mathbb{N}^\mathcal{M} \rightarrow \mathcal{D}_T(\leq 0')$ such that $\psi(e^\mathcal{M}) = d_T(W_e)$.***
An indexing of the c.e. degrees
The Goal

Extend this result to an indexing φ of the Δ^0_2 Turing degrees.

We will call e an index for a Δ^0_2 set X if $\{e\}^{\emptyset'}$ is the characteristic function of X.
The Goal

Extend this result to an indexing φ of the Δ^0_2 Turing degrees.

We will call e an index for a Δ^0_2 set X if $\{e\}^{\emptyset'}$ is the characteristic function of X.
The Goal

Extend this result to an indexing φ of the Δ^0_2 Turing degrees.

We will call e an index for a Δ^0_2 set X if $\{e\}^{\emptyset'}$ is the characteristic function of X.
Extend this result to an indexing φ of the Δ^0_2 Turing degrees.

We will call e an index for a Δ^0_2 set X if $\{e\}'$ is the characteristic function of X.

Idea: We can use a further uniformly low set $\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\}$.
The Goal

Extend this result to an indexing \(\varphi \) of the \(\Delta^0_2 \) Turing degrees.

We will call \(e \) an index for a \(\Delta^0_2 \) set \(X \) if \(\{e\}^{\emptyset'} \) is the characteristic function of \(X \).

Idea: We can use a further uniformly low set \(\mathcal{Z} = \{d_T(Z_i) \mid i < \omega\} \).
Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic M and an indexing of the Δ^0_2 degrees.
Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ^0_2 degrees.

Proof flavor:

1. A Δ^0_2 degree can be defined from four low degrees using meet and join.

Mariya I. Soskova
Definability, automorphisms and e-degrees
Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic M and an indexing of the Δ^0_2 degrees.

Proof flavor:

1. A Δ^0_2 degree can be defined from four low degrees using meet and join.
2. There exists a uniformly low set of Turing degrees \mathcal{Z}, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z}.
Biinterpretability with parameters

Theorem (Slaman, S)

There are finitely many Δ^0_2 parameters that code a model of arithmetic \mathcal{M} and an indexing of the Δ^0_2 degrees.

Proof flavor:

1. A Δ^0_2 degree can be defined from four low degrees using meet and join.
2. There exists a uniformly low set of Turing degrees \mathcal{Z}, such that every low Turing degree x is uniquely positioned with respect to the c.e. degrees and the elements of \mathcal{Z}.

If $x, y \leq 0'$, $x' = 0'$ and $y \not\leq x$ then there are $g_i \leq 0'$, c.e. degrees a_i and Δ^0_2 degrees $c_i, b_i \in \mathcal{Z}$ for $i = 1, 2$ such that:

1. g_i is the least element below a_i which joins b_i above c_i.
2. $x \leq g_1 \lor g_2$.
3. $y \not\leq g_1 \lor g_2$.
Applications

Theorem (Slaman, S)

$D_T(\leq 0')$ has a finite automorphism base.
Applications

Theorem (Slaman, S)

1. $\mathcal{D}_T(\leq 0')$ has a finite automorphism base.
2. The automorphism group of $\mathcal{D}_T(\leq 0')$ is countable.
Applications

Theorem (Slaman, S)

1. $\mathcal{D}_T(\leq 0')$ has a finite automorphism base.
2. The automorphism group of $\mathcal{D}_T(\leq 0')$ is countable.
3. Every automorphism of $\mathcal{D}_T(\leq 0')$ has an arithmetic presentation.
Applications

Theorem (Slaman, S)

1. $\mathcal{D}_T(\leq 0')$ has a finite automorphism base.
2. The automorphism group of $\mathcal{D}_T(\leq 0')$ is countable.
3. Every automorphism of $\mathcal{D}_T(\leq 0')$ has an arithmetic presentation.
4. Every relation $R \subseteq \mathcal{D}_T(\leq 0')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ^0_2 parameters.
Applications

Theorem (Slaman, S)

1. $\mathcal{D}_T(\leq 0')$ has a finite automorphism base.
2. The automorphism group of $\mathcal{D}_T(\leq 0')$ is countable.
3. Every automorphism of $\mathcal{D}_T(\leq 0')$ has an arithmetic presentation.
4. Every relation $R \subseteq \mathcal{D}_T(\leq 0')$ induced by an arithmetically definable degree invariant relation is definable with finitely many Δ^0_2 parameters.
5. $\mathcal{D}_T(\leq 0')$ is rigid if and only if $\mathcal{D}_T(\leq 0')$ is biinterpretable with first order arithmetic.
Towards a better automorphism base of D_e

Theorem (Slaman, Woodin)

There are total Δ^0_2 parameters that code a model of arithmetic \mathcal{M} and an indexing of the image of the c.e. Turing degrees.
Towards a better automorphism base of D_e

Theorem (Slaman, Woodin)

There are total Δ^0_2 parameters that code a model of arithmetic M and an indexing of the image of the c.e. Turing degrees.

Idea: In the wider context of D_e we can reach more elements: non-total elements.
Towards a better automorphism base of D_e

Theorem (Slaman, S)

If \vec{p} defines a model of arithmetic M and an indexing of the image of the c.e. Turing degrees then \vec{p} defines an indexing of the total Δ^0_2 enumeration degrees.

Proof flavour:

The image of the c.e. degrees
→ The low 3-c.e. e-degrees
→ The low Δ^0_2 e-degrees
→ The total Δ^0_2 e-degrees
Moving outside the local structure

1. Extend to an indexing of all total degrees that are “c.e. in” and above some total Δ^0_2 enumeration degree.
 - The jump is definable.
 - The image of the relation “c.e. in” is definable.

2. Relativizing the previous theorem extend to an indexing of $\bigcup_{x \leq_T 0'} \iota([x, x'])$.
Moving outside the local structure

Extend to an indexing of all total degrees below $0_{e''}$.

3.
And now we iterate
And now we iterate
And now we iterate
And now we iterate
Theorem (Slaman, S)

Let n be a natural number and \vec{p} be parameters that index the image of the c.e. Turing degrees. There is a definable from \vec{p} indexing of the total Δ^0_{n+1} degrees.
Consequences

Theorem (Slaman, S)

There is a finite automorphism base for the enumeration degrees consisting of total Δ^0_2 enumeration degrees.
Consequences

Theorem (Slaman, S)

1. There is a finite automorphism base for the enumeration degrees consisting of total Δ^0_2 enumeration degrees.
2. The image of the c.e. Turing degrees is an automorphism base for D_e.
Consequences

Theorem (Slaman, S)

1. There is a finite automorphism base for the enumeration degrees consisting of total Δ^0_2 enumeration degrees.
2. The image of the c.e. Turing degrees is an automorphism base for D_e.
3. If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.
Consequences

Theorem (Slaman, S)

1. There is a finite automorphism base for the enumeration degrees consisting of total Δ^0_2 enumeration degrees.
2. The image of the c.e. Turing degrees is an automorphism base for \mathcal{D}_e.
3. If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question

Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?
Consequences

Theorem (Slaman, S)
1. There is a finite automorphism base for the enumeration degrees consisting of total Δ^0_2 enumeration degrees.
2. The image of the c.e. Turing degrees is an automorphism base for D_e.
3. If the structure of the c.e. Turing degrees is rigid then so is the structure of the enumeration degrees.

Question
Can every automorphism of the Turing degrees be extended to an automorphism of the enumeration degrees?
The best puzzles are the ones that will never be completely solved.

-Ivan Soskov