Assignment #7, Due Wednesday November 26

Read chapter 8, sections 6, 10, 12, 13, 15, 19, 20, and 21 in the text. Do the following problems:

Problem I

Let \(\bar{x} = (x_1, \ldots, x_n) \) and \(\bar{y} = (y_1, \ldots, x_n) \) be points in \(\mathbb{R}^n \).

(a) Show that if \(||\bar{x} - \bar{y}|| < \delta \), then \(|x_j - y_j| < \delta \) for \(1 \leq j \leq n \).

(b) If \(|x_j - y_j| < \delta \) for \(1 \leq j \leq n \), what can you say about \(||\bar{x} - \bar{y}|| \)?

Problem II

Using the definition of limits, prove the following:

(a) Let \(f : \mathbb{R} \to \mathbb{R} \) and suppose that \(f \) is differentiable at \(a \in \mathbb{R} \). Prove that \(f \) is continuous at \(a \).

(b) Let \(F : \mathbb{R}^n \to \mathbb{R}^n \) and suppose that \(F \) is differentiable at \(\bar{a} \in \mathbb{R}^n \). Prove that \(F \) is continuous at \(\bar{a} \).

Problem III

Let \(u(x, y) = x^2 - y^2 \) and \(v(x, y) = 2xy \).

(a) Sketch the level sets \(\{ (x, y) \in \mathbb{R}^2 \mid u(x, y) = C \} \) and \(\{ (x, y) \in \mathbb{R}^2 \mid v(x, y) = C \} \) for \(C = 0, \pm 1, \pm 2 \).

(b) Let \((a, b) \neq (0,0) \) be a point in \(\mathbb{R}^2 \). The curves

\[
\begin{align*}
 u(x, y) &= x^2 - y^2 = a^2 - b^2, \\
 v(x, y) &= 2xy = 2ab,
\end{align*}
\]

clearly intersect at the point \((a, b) \). Show that they intersect at right angles.

(c) If \(z = x + iy \), then \(z^3 = (x + iy)^3 = f(x, y) + ig(x, y) \) where \(f \) and \(g \) are polynomials of degree 3. Examine what happens where a level set of \(f \) and a level set of \(g \) intersect.

(d) Can you generalize the results from part (c)?

In addition, do the following problems from the text:

Section 8.14, \# 1, 2, 3, 4, 7, 10.
Section 8.17, \# 1, 2, 4, 5, 9, 11.
Section 8.22, \# 1, 2, 3, 4b, 5, 8, 9a, 12.