Problem 1: Let V and W be vector spaces, and let $T : V \to W$ be a linear transformation. Recall that T has a left inverse if there is an operator $S : W \to V$ such that $S \circ T(v) = v$ for all $v \in V$, and that T has a right inverse if there is an operator $R : W \to V$ such that $T \circ R(w) = w$ for all $w \in W$. Prove that if T has a left inverse S and a right inverse R, then $R = S$. (In this case we say that T is invertible.)

Problem 2: Let V and W be vector spaces, and let $T : V \to W$ be a linear transformation.

(a) Suppose that there is linear transformation $S : W \to V$ such that $S \circ T$ is the identity operator on V. (That is, suppose that T has a left inverse S.) Show that $\ker(T) = (0)$ and hence that T is ‘one-to-one’.

(b) Suppose that there is a linear transformation $R : W \to V$ so that $T \circ R$ is the identity operator on W. (That is, suppose that T has a right inverse R.) Show that the $\im(T) = W$ and hence that T is ‘onto’.

(c) Suppose that the dimension of $V = W$ and that the dimension of V is finite. Show that if T has a left inverse, then T is invertible.

(d) Suppose that the dimension of $V = W$ and that the dimension of V is finite. Show that if T has a right inverse, then T is invertible.

Problem 3: Let \mathbb{R}^∞ denote the space of all infinite sequences $x = (x_1, x_2, \ldots, x_n, \ldots)$ of real numbers. Then \mathbb{R}^∞ is a vector space if addition and scalar multiplication are defined by

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \ldots, \alpha x_n + \beta y_n, \ldots).$$

(a) Define $T : \mathbb{R}^\infty \to \mathbb{R}^\infty$ by the formula

$$T(x_1, x_2, \ldots, x_n, \ldots) = (0, x_1, x_2, \ldots, x_n, \ldots).$$

(T is called the “right shift.”) Show that T is a linear transformation, and that T is ‘one-to-one’ but not ‘onto’.

(b) Define $S : \mathbb{R}^\infty \to \mathbb{R}^\infty$ by the formula

$$S(x_1, x_2, \ldots, x_n, \ldots) = (x_2, x_3, \ldots, x_n, \ldots).$$

(S is called the “left shift.”) Show that S is a linear transformation, and that S is ‘onto’ but not ‘one-to-one’.

(c) Show that $S \circ T$ is the identity operator on \mathbb{R}^∞. What is $T \circ S$?

Problem 4: Let $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. Recall that if n is positive integer, A^n is the 2×2 matrix obtained by multiplying A by itself n times.

(a) Prove that $A^2 = 2A - I$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the identity matrix.

(b) Compute A^{100}.
Problem 5: Find all 2×2 matrices $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that $M^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Problem 6: Use Gauss-Jordan elimination to find the most general solution of the following system of equations:

\begin{align*}
2x + 3y - z - 5u &= 9 \\
4x - y + z - u &= 5 \\
5x - 3y + 2z + u &= 3.
\end{align*}

Problem 7: Use Gauss-Jordan elimination to find the inverse of the matrix

$$\begin{bmatrix} 2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix}.$$

Problem 8: Let $f_1(x), f_2(x), g_1(x), g_2(x)$ be differentiable functions on an interval (a, b).

(a) If $F(x) = \begin{bmatrix} f_1(x) \\ g_1(x) \end{bmatrix}$, show that $F'(x) = \begin{bmatrix} f_1'(x) \\ g_1'(x) \end{bmatrix}$.

(b) Find a generalization of the result in part (a) for the derivative of the determinant

$$F(x) = \det \begin{bmatrix} f_1(x) & f_2(x) \\ g_1(x) & g_2(x) \end{bmatrix}.$$

For the last six problems, we will use the following notation. Let $A = \{a_{i,j}\}$ be an $m \times n$ matrix, and let $A : \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation with this matrix relative to the standard basis in each space. That is

$$A = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \cdots + a_{m,n}x_n \end{bmatrix}.$$

Let $A^t = \{a_{k,j}\}$ denote the transpose matrix; that is, A^t is the $n \times m$ matrix obtained from A by interchanging rows and columns. Then A^t defines a linear mapping $A^t : \mathbb{R}^m \to \mathbb{R}^n$; i.e.

$$A^t = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{2,1} & \cdots & \cdots & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & \cdots & a_{m,2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{1,1}y_1 + a_{2,1}y_2 + \cdots + a_{m,1}y_m \\ a_{1,2}y_1 + a_{2,2}y_2 + \cdots + a_{m,2}y_m \\ \vdots \\ a_{1,n}y_1 + a_{2,n}y_2 + \cdots + a_{m,n}y_m \end{bmatrix}.$$

Also, let $\langle \cdot, \cdot \rangle_n$ denote the usual inner product in \mathbb{R}^n and $\langle \cdot, \cdot \rangle_m$ denote the usual inner product in \mathbb{R}^m. If $V \subset \mathbb{R}^n$ is a subspace of V, the orthogonal complement is the set

$$V^\perp = \{x \in \mathbb{R}^n : \langle x, v \rangle_n = 0 \text{ for every } v \in V\}.$$

Similarly, if $W \subset \mathbb{R}^m$ is a subspace of W, the orthogonal complement is the set

$$W^\perp = \{y \in \mathbb{R}^m : \langle y, w \rangle_m = 0 \text{ for every } w \in W\}.$$

Problem 9: Show that the range $R(A)$ is spanned by the columns of the matrix A.

Problem 10: Show that for every $x \in \mathbb{R}^n$ and every $y \in \mathbb{R}^m$ we have

\[\langle A^t x, y \rangle_m = \langle x, A^t y \rangle_n. \]
Problem 11: Prove that V^\perp is a subspace of \mathbb{R}^n and that W^\perp is a subspace of \mathbb{R}^m.

Problem 12: Prove that
\[\dim(V) + \dim(V^\perp) = n, \]
\[\dim(W) + \dim(W^\perp) = m. \]

Problem 13: Prove that $R(A)^\perp = N(A^\top)$ and that $R(A^\top)^\perp = N(A)$.

Problem 14: Prove that the dimension of the range $R(A)$ of the mapping A equals the dimension of the range $R(A^\top)$ of the mapping A^\top. In other words, prove that the dimension of the subspace of \mathbb{R}^m spanned by the columns of A (called the column rank of A) equals the dimension of the subspace of \mathbb{R}^n spanned by the rows of A (called the row rank of A).