Let G be a finite, nonabelian simple group. Suppose H is a proper subgroup of G with index $|G : H| = n > 1$.

1. Show that G embeds isomorphically in Alt_n, and that $n \geq 5$.

2. If $n \leq 8$, prove that G has no elements of order 10.

3. Viewing G as a subgroup of Alt_n, show that either $G = \text{Alt}_n$ or $|\text{Alt}_n : G| \geq n$. Hence either $|G| = n!/2$ or $|G| \leq (n - 1)!/2$.

4. Show that there is no nonabelian simple group of order 120. Indeed, if G is such a group, deduce from the above that $n \geq 8$, so $|H| \leq 15$. Now determine the number of Sylow 5-subgroups of G.

5. Show that the only nonabelian simple group of order 60 is Alt_5. To this end, suppose by way of contradiction that G is such a group and that G is not isomorphic to Alt_5. First, deduce from the above that $n \geq 6$, so $|H| \leq 10$. Next, show that G contains 24 elements of order 5. Finally, prove that a Sylow 2-subgroup P of G is a self-normalizing T.I. set, so G has 45 elements of order 2 or 4. (Recall that P is a T.I. set if distinct conjugates of P are disjoint. To prove that P is a T.I. set, you might consider the centralizer of the intersection of two such conjugates.)