1. Let R be a UFD.
 a. If I is a nonzero prime ideal of R, show that I is generated by prime elements.
 b. If $\pi \in R$ is prime, show that $I = (\pi)$ is a prime ideal.
 c. Prove that the polynomial ring $R[x_1, x_2, \ldots]$, in infinitely many indeterminants, is a UFD. You can quote lemmas from class.

2. Let R be a PID and let I be a nonzero ideal of R.
 a. Show that I is prime if and only if $I = (\pi)$ for some prime element π. Conclude that the nonzero prime ideals of R are maximal.
 b. Show that I is primary if and only if it is a prime power.

3. Let R be a commutative Noetherian ring.
 a. Prove that $r \in R$ is a zero divisor (that is, $rs = 0$ for some $0 \neq s \in R$) if and only if r is contained in one of the prime ideals that occur in a normal primary decomposition of the zero ideal.
 b. If all the prime ideals of R are maximal, prove that R is Artinian.

4. Let F be a field, set $R = F[x, y]$ and $M = (x, y)$.
 a. Show that the F-vector space $V_n = M^{n-1}/M^n$ has dimension n.
 b. If $r_1, r_2, ..., r_k \in R$ generate the ideal M^{n-1}, use part (a) to prove that $k \geq n$.

5. Let R be a domain and let M be a multiplicatively closed subset. If I is an ideal of R define $I' = I : M = \{r \in R \mid rm \in I \text{ for some } m \in M\}$.
 a. Show that I' is an ideal of R, $I' \supseteq I$ and $I'' = I'$. Thus $'$ is a closure operator.
 b. If I is primary, show that either $I' = I$ or $I' = R$.
 c. Show that there is a one-to-one correspondence between the closed ideals of R and the ideals of the localization R_M.

6. Let R be a commutative ring.
 a. Suppose A and B are ideals of R with A finitely generated and with R/A and R/B both Noetherian rings. Prove that A/AB is a Noetherian R-module and conclude that R/AB is a Noetherian ring.
 b. If R is not Noetherian, show that there exists an ideal P of R maximal with the property of being not finitely generated. Use (a) to deduce that P is a prime ideal.
 c. Let V be a nonzero right module for the polynomial ring $R[t]$. If V has $n < \infty$ generators as an R-module, use the determinental trick to prove that there exists a monic polynomial in $R[t]$ of degree n that annihilates V. This is the Cayley-Hamilton theorem from linear algebra.