BURNSIDE'S THEOREM FOR HOPF ALGEBRAS

D. S. PASSMAN AND DECLAN QUINN

(Communicated by Ken Goodearl)

ABSTRACT. A classical theorem of Burnside asserts that if \(\chi \) is a faithful complex character for the finite group \(G \), then every irreducible character of \(G \) is a constituent of some power \(\chi^n \) of \(\chi \). Fifty years after this appeared, Steinberg generalized it to a result on semigroup algebras \(K[G] \) with \(K \) an arbitrary field and with \(G \) a semigroup, finite or infinite. Five years later, Rieffel showed that the theorem really concerns bialgebras and Hopf algebras. In this note, we simplify and amplify the latter work.

Let \(K \) be a field and let \(A \) be a \(K \)-algebra. A map \(\Delta: A \to A \otimes A \) is said to be a comultiplication on \(A \) if \(\Delta \) is a coassociative \(K \)-algebra homomorphism. For convenience, we call such a pair \((A, \Delta) \) a b-algebra. Admittedly, this is rather nonstandard notation. One is usually concerned with bialgebras, that is, algebras which are endowed with both a comultiplication \(\Delta \) and a counit \(\varepsilon: A \to K \). However, semigroup algebras are not bialgebras in general, and the counit rarely comes into play here. Thus it is useful to have a name for this simpler object.

Now a b-algebra homomorphism \(\theta: A \to B \) is an algebra homomorphism which is compatible with the corresponding comultiplications, and the kernel of such a homomorphism is called a b-ideal. It is easy to see that \(I \) is a b-ideal of \(A \) if and only if \(I \triangleleft A \) with \(\Delta(I) \subseteq I \otimes A + A \otimes I \). Of course, the b-algebra structure can be used to define the tensor product of \(A \)-modules. Specifically, if \(V \) and \(W \) are left \(A \)-modules, then \(A \) acts on \(V \otimes W \) via \(a(v \otimes w) = \Delta(a)(v \otimes w) \) for all \(a \in A, \ v \in V, \ w \in W \). Notice that if \(I \) is a b-ideal of \(A \), then the set of all \(A \)-modules \(V \) with \(\text{ann}_A V \supseteq I \) is closed under tensor product. Conversely, we have

Proposition 1. Let \(A \) be a b-algebra and let \(\mathcal{F} \) be a family of \(A \)-modules closed under tensor product. Then
\[
I = \bigcap_{V \in \mathcal{F}} \text{ann}_A V
\]
is a b-ideal of \(A \).

Proof. Certainly \(I \) is an ideal of \(A \). Now let \(X = \oplus_{V \in \mathcal{F}} V \) be the direct sum of the modules in \(\mathcal{F} \). Then \(X \) is an \(A \)-module and \(\text{ann}_A X = \bigcap_{V \in \mathcal{F}} \text{ann}_A V = \)
I. Furthermore, since \(X \otimes X = \sum_{V, W \in \mathcal{F}} V \otimes W \) and since each \(V \otimes W \in \mathcal{F} \), it follows that \(I \) annihilates \(X \otimes X \). In other words,
\[
\Delta(I) \subseteq \text{ann}_{\mathcal{A}}(X \otimes X) = I \otimes A + A \otimes I
\]
and \(I \) is a b-ideal of \(A \). \(\Box \)

The assumption that \(\mathcal{F} \) is closed under tensor product can be weakened somewhat in the above. Indeed, suppose that for each \(V, W \in \mathcal{F} \) there exists \(U \in \mathcal{F} \) with \(\text{ann}_A U \subseteq \text{ann}_A V \otimes W \). Then certainly \(I \subseteq \text{ann}_A U \) annihilates \(V \otimes W \), so \(I \) annihilates \(X \otimes X \) and hence \(I \) is a b-ideal of \(A \).

Now if \((A, \Delta, \epsilon)\) is a bialgebra with counit \(\epsilon \), then \(I \) is a bi-ideal of \(A \) if and only if it is a b-ideal with \(\epsilon(I) = 0 \). Furthermore, we can trivially guarantee that the ideal \(I \) of the previous proposition satisfies \(\epsilon(I) = 0 \) by including the principal module \(K_e \) in the set \(\mathcal{F} \). Thus we have

**Proposition 1*. Let \(A \) be a bialgebra and let \(\mathcal{F} \) be a family of \(A \)-modules closed under tensor product. If \(K_e \in \mathcal{F} \), then
\[
I = \bigcap_{V \in \mathcal{F}} \text{ann}_A V
\]
is a bi-ideal of \(A \).

Since the coassociativity of \(\Delta \) guarantees that the tensor product of \(A \)-modules is associative, it makes sense to define the \(n \)-th tensor power of \(V \) by
\[
V^{\otimes n} = V \otimes V \otimes \cdots \otimes V \quad (n \text{ times})
\]
for all \(n \geq 1 \). Here, \(V^{\otimes 1} = V \) and \(V^{\otimes m} \otimes V^{\otimes n} = V^{\otimes (m+n)} \) for all \(m, n \geq 1 \). It is now a simple matter to prove the following result of [Ri].

Corollary 2. Let \(A \) be a b-algebra and let \(V \) be an \(A \)-module. If \(\text{ann}_A V \) contains no nonzero b-ideal, then \(\mathcal{F}(V) = \bigoplus_{n=1}^{\infty} V^{\otimes n} \) is a faithful \(A \)-module.

Proof. \(\mathcal{F} = \{ V^{\otimes n} \mid n = 1, 2, \ldots \} \) is a set of \(A \)-modules which is clearly closed under tensor product. Thus, by Proposition 1,
\[
I = \bigcap_{n=1}^{\infty} \text{ann}_A V^{\otimes n} = \text{ann}_A \mathcal{F}(V)
\]
is a b-ideal of \(A \). But \(I \subseteq \text{ann}_A V^{\otimes 1} = \text{ann}_A V \), so the hypothesis implies that \(I = 0 \) and hence that \(\mathcal{F}(V) \) is faithful. \(\Box \)

If \(A \) is a bialgebra, then one usually defines \(V^{\otimes 0} \) to equal \(K_e \), since the latter module behaves like the identity element under tensor product. Thus we have

**Corollary 2*. Let \(A \) be a bialgebra and let \(V \) be an \(A \)-module. If \(\text{ann}_A V \) contains no nonzero bi-ideal, then \(\mathcal{F}^*(V) = \bigoplus_{n=1}^{\infty} V^{\otimes n} \) is a faithful \(A \)-module.

Let \(V \) be an \(A \)-module. If \(J \) is an ideal of \(A \) contained in \(\text{ann}_A V \), then we can think of \(V \) as having been lifted from an \(A/J \)-module. In particular, \(V \) is faithful if and only if it is not lifted from any proper homomorphic image of \(A \). Similarly, if \(A \) is a b-algebra, we might say that \(V \) is b-faithful if it is
not lifted from any proper b-algebra homomorphic image of \(A \). In other words, \(V \) is b-faithful if and only if \(\text{ann}_A V \) contains no nonzero b-ideal of \(A \). Thus Corollary 2 asserts that any b-faithful module \(V \) gives rise to the faithful tensor module \(\mathcal{T}(V) \). This is essentially Burnside's Theorem.

Let us look at some examples. To start with, recall that a multiplicative semigroup \(G \) is a set having an associative multiplication and an identity element 1. Semigroups may contain a zero element \(0 \neq 1 \) satisfying \(0g = g0 = 0 \) for all \(g \in G \), and as usual we let \(G^* = G \setminus \{0\} \) denote the set of nonzero elements of \(G \). The semigroup algebra \(K[G] \) is then a \(K \)-vector space with basis \(G^* \) and with multiplication inherited from that of \(G \). Notice that the zero element of \(G \), if it exists, is identified with the zero element of \(K[G] \). Furthermore, \(K[G] \) is a b-algebra with \(\Delta \) defined by \(\Delta(g) = g \otimes g \) for all \(g \in G^* \). Given this comultiplication, it is easy to see that the only possible bialgebra structure on \(K[G] \) would have counit \(\epsilon \) given by \(\epsilon(g) = 1 \) for all \(g \in G^* \). But then, \(\epsilon \) is an algebra homomorphism if and only if \(G^* \) is multiplicatively closed, or equivalently if and only if there are no zero divisors in \(G \). In other words, most semigroup algebras are just not bialgebras in this way.

If \(H \) is also a semigroup, then a semigroup homomorphism \(\theta: G \to H \) preserves the multiplication and, by definition, it satisfies \(\theta(1) = 1 \) and \(\theta(0) = 0 \) if \(G \) has a zero element. In particular, it follows that \(\theta \) extends to a \(K \)-algebra homomorphism \(\tilde{\theta}: K[G] \to K[H] \) which is clearly a b-algebra map. Hence \(\ker \tilde{\theta} \) is a b-ideal of \(K[G] \). As is well known, these are the only possible b-ideals. Since the argument is so simple, we briefly sketch it here.

Let \(I \) be a b-ideal of \(K[G] \) and let \(\tilde{\phi} \) be the b-algebra epimorphism defined by \(\tilde{\phi}: K[G] \to K[G]/I = C \). Then \(H = \tilde{\phi}(G) \) is a multiplicative sub-semigroup of \(C \) and, since \(\tilde{\phi} \) is a b-algebra homomorphism, it is easy to see that \(H \) consists of group-like elements. In particular, it follows from [Sw, Proposition 3.2.1(b)] that \(H^* \) is a linearly independent subset of \(C \). Furthermore, since \(G^* \) spans \(K[G] \), we know that \(H^* \) spans \(C \). Thus it is clear that \(C = K[H] \) and that the map \(\phi: K[G] \to K[H] \) is the natural extension of the semigroup epimorphism \(\phi: G \to H \), namely, the restriction of \(\tilde{\phi} \) to \(G \). Since \(I = \ker \phi \), this fact is proved.

By combining the above with Corollary 2, we can quickly obtain Steinberg's generalization of the classical result of Burnside [B, §226]. The original Burnside theorem concerned modules for the complex group algebra \(C[G] \) with \(|G| < \infty \), and the proof used the character theory of finite groups. The argument in [St] is more transparent and, of course, it is more general. But the following proof, due to Rieffel in [Ri], shows precisely why the \(G \)-faithfulness assumption on the \(K[G] \)-module \(V \) is both natural and relevant.

Let \(G \) be a semigroup and let \(V \) be a \(K[G] \)-module. We say that \(G \) acts faithfully on \(V \) if for all distinct \(g_1, g_2 \in G \) we have \((g_1 - g_2)V \neq 0 \). Of course, if \(G \) is a group, then this condition is equivalent to \((g-1)V \neq 0 \) for all \(1 \neq g \in G \).

Theorem 3. Let \(G \) be a semigroup and let \(G \) act faithfully on the \(K[G] \)-module \(V \). Then \(K[G] \) acts faithfully on the tensor module \(\mathcal{T}(V) = \oplus_{n=1}^{\infty} V^{\otimes n} \).

Proof. Let \(I \) be a b-ideal of \(K[G] \) contained in \(\text{ann}_{K[G]} V \). As we observed, there exists a semigroup epimorphism \(\phi: G \to H \) such that \(I \) is the kernel of the corresponding algebra map \(\phi: K[G] \to K[H] \). If \(I \neq 0 \), then \(\phi \) cannot be
one-to-one on G and hence there exist distinct $g_1, g_2 \in G$ with $\delta(g_1 - g_2) = 0$. In particular, this implies that $g_1 - g_2 \in I$, so $(g_1 - g_2)V = 0$, contradicting the fact that G is faithful on V. In other words, the G-faithful assumption implies that $\text{ann}_{K[G]} V$ contains no nonzero b-ideal. Corollary 2 now yields the result. \hfill \square

An analogous result holds for enveloping algebras. For simplicity of notation, let us assume that either

1. K is a field of characteristic 0, L is a Lie algebra over K, and $U(L)$ is its enveloping algebra, or
2. K has characteristic $p > 0$, L is a restricted Lie algebra over K, and $U(L)$ is its restricted enveloping algebra.

In either case, $U(L)$ is a b-algebra, and in fact a Hopf algebra, with comultiplication determined by $\Delta(\ell) = \ell \otimes 1 + 1 \otimes \ell$ for all $\ell \in L$. Furthermore, if H is a second (restricted) Lie algebra and if $\theta: L \to H$ is a (restricted) Lie algebra homomorphism, then θ extends uniquely to a b-algebra homomorphism $\bar{\theta}: U(L) \to U(H)$. In particular, $\ker \bar{\theta}$ is a b-ideal of $U(L)$. As is well known, the converse is also true, namely, every b-ideal of $U(L)$ arises in this manner. The argument for this is elementary and similar to the one for semigroup rings. A sketch of the proof is as follows.

Let I be a b-ideal of $U(L)$ and let ϕ be the b-algebra epimorphism defined by $\phi: U(L) \to U(L)/I = C$. Then $H = \phi(L)$ is a (restricted) Lie subalgebra of C and H generates C as a K-algebra. In particular, if $\{ h_i \mid i \in \mathcal{I} \}$ is a basis for H, indexed by the ordered set (\mathcal{I}, \prec), then C is spanned by monomials of the form $h_{i_1}^{e_1} h_{i_2}^{e_2} \cdots h_{i_n}^{e_n}$ with $i_1 \prec i_2 \prec \cdots \prec i_n$ and with integers $e_j \geq 0$. Furthermore, when $\text{char} K = p > 0$ and L is restricted, then $e_j < p$ for all j. Since ϕ is a b-algebra epimorphism, it follows that the elements of H are primitive. Thus, by the work of [Sw, Chapter 13], these straightened monomials are K-linearly independent and therefore $C = U(H)$. In other words, the map $\phi: U(L) \to U(H)$ is the natural extension of the (restricted) Lie algebra epimorphism $\phi: L \to H$ where, of course, ϕ is the restriction of ϕ to L. Since $I = \ker \phi$, this fact is proved.

Now let V be a $U(L)$-module. We say that L acts faithfully on V if, for all $0 \neq \ell \in L$, we have $\ell V \neq 0$. The Lie algebra analog of the preceding result is then

Theorem 4. Let $U(L)$ be a (restricted) enveloping algebra satisfying (1) or (2) above. If L acts faithfully on the $(U(L))$-module V, then $U(L)$ acts faithfully on the tensor module $\mathcal{T}(V) = \oplus_{n=1}^{\infty} V^{\otimes n}$.

As indicated in [M], a theorem of this nature can be used to prove the following interesting result of Harish-Chandra [H, Theorem 1]. Recall that a K-algebra A is residually finite if the collection of its ideals I of finite codimension has intersection equal to 0. In other words, these algebras are precisely the subdirect products of finite-dimensional K-algebras.

Corollary 5. If L is a finite-dimensional Lie algebra over a field K of characteristic 0, then $U(L)$ is residually finite.

Proof. By Ado's theorem (see [J, §VI.2]), $A = U(L)$ has a finite K-dimensional module V on which L acts faithfully. Thus, the preceding theorem implies
that \(0 = \text{ann}_A \mathcal{F}(V) = \cap_{n=1}^{\infty} I_n \), where \(I_n = \text{ann}_A V^\otimes n \). But each \(V^\otimes n \) is a finite-dimensional \(A \)-module, so \(I_n = \text{ann}_A V^\otimes n \) is an ideal of \(A \) of finite codimension, and the result follows. \(\square \)

If \(L \) is a finite-dimensional restricted Lie algebra, then its restricted enveloping algebra \(U(L) \) is also finite dimensional. Thus the characteristic \(p > 0 \) analog of the above is trivial. On the other hand, infinite-dimensional analogs in all characteristics are obtained in [M].

In the remainder of this paper we will restrict our attention to finite-dimensional Hopf algebras. To start with, a Hopf algebra \((A, \Delta, \epsilon, S) \) is a bialgebra with antipode \(S: A \rightarrow A \), and a Hopf ideal is the kernel of a Hopf algebra homomorphism. It is easy to see that \(I \triangleleft A \) is a Hopf ideal if and only if it is a b-ideal with \(\epsilon(I) = 0 \) and \(S(I) \subseteq I \). Similarly, a \(K \)-subalgebra \(B \) of \(A \) is a Hopf subalgebra if and only if it is a b-subalgebra which is closed under the antipode \(S \). Of course, the b-subalgebra condition means that \(\Delta(B) \subseteq B \otimes B \). The following is a special case of a surprising result due to Nichols [N, Theorem 1]. A simple proof of the subalgebra case can also be found in [Ra, Lemma 1].

Lemma 6. If \(A \) is a finite-dimensional Hopf algebra, then any b-subalgebra of \(A \) is a Hopf subalgebra and any b-ideal of \(A \) is a Hopf ideal of \(A \).

Proof. Let \(B \) denote either a b-subalgebra of \(A \) or a b-ideal of \(A \). Furthermore, let \(E = \text{Hom}_K(A, A) \) be the convolution algebra of \(A \) and set

\[
F = \{ f \in E \mid f(B) \subseteq B \}.
\]

Certainly \(F \) is a \(K \)-subspace of \(E \) and, in fact, \(F \) is closed under convolution multiplication. To see the latter, let \(f, g \in F \). If \(B \) is a b-subalgebra of \(A \), then \(\Delta(B) \subseteq B \otimes B \) implies that

\[
(f \ast g)(B) \subseteq f(B)g(B) \subseteq B^2 = B.
\]

On the other hand, if \(B \) is a b-ideal of \(A \), then \(\Delta(B) \subseteq A \otimes B + B \otimes A \) implies that

\[
(f \ast g)(B) \subseteq f(A)g(B) + f(B)g(A) \subseteq AB + BA = B
\]

since \(B \triangleleft A \).

Now observe that the identity map \(\text{Id} \) is contained in \(F \). Thus, by the above, \(F \) contains the convolution powers \(\text{Id}^n \) of \(\text{Id} \) for all \(n > 0 \). Furthermore, since \(A \) is finite dimensional, \(E \) is also finite dimensional and hence the map \(\text{Id} \) is algebraic over \(K \). In particular, for some \(m \geq 1 \), we can write \(\text{Id}^m \) as a finite \(K \)-linear combination of the powers \(\text{Id}^i \) with \(i > m \). But \(\text{Id} \) has convolution inverse \(S \), so by multiplying the expression for \(\text{Id}^m \) by \(S^m \) and by \(S^{m+1} \) in turn, we deduce first that \(\epsilon = \text{Id}^{\otimes 0} \in F \) and then that \(S = \text{Id}^{(-1)} \in F \). In other words, \(\epsilon(B) \subseteq B \) and \(S(B) \subseteq B \).

Finally, if \(B \) is a b-subalgebra of \(A \), then \(S(B) \subseteq B \) implies that \(B \) is a Hopf subalgebra. On the other hand, if \(B \) is a b-ideal of \(A \), then \(\epsilon(B) \subseteq B \cap K = 0 \). Thus, since \(S(B) \subseteq B \), we conclude that \(B \) is a Hopf ideal of \(A \). \(\square \)

The preceding result is false in general for infinite-dimensional Hopf algebras. Some rather complicated counterexamples appear in [N].
Theorem 7. Let A be a finite-dimensional Hopf algebra.

(i) If \mathcal{F} is a family of A-modules which is closed under tensor product, then
$$\bigcap_{V \in \mathcal{F}} \text{ann}_A V$$
is a Hopf ideal of A.

(ii) Suppose V is an A-module whose annihilator contains no nonzero Hopf ideal of A. Then $\mathcal{F}(V) = \oplus_{n=1}^{\infty} V^{\otimes n}$ is a faithful A-module.

This follows immediately from Proposition 1, Corollary 2, and Lemma 6. We can now obtain some consequences of interest. First, recall that an A-module V is semisimple if it is a direct sum of simple modules.

Corollary 8. If A is a finite-dimensional Hopf algebra, then the set of semisimple A-modules is closed under tensor product if and only if the Jacobson radical $J(A)$ is a Hopf ideal of A.

Proof. Let \mathcal{F} be the set of all semisimple A-modules. If \mathcal{F} is closed under \otimes, then Theorem 7(i) implies $J(A) = \bigcap_{V \in \mathcal{F}} \text{ann}_A V$ is a Hopf ideal of A. Conversely, if $J(A)$ is a Hopf ideal, then \mathcal{F} consists of all the modules for the Hopf algebra $A/J(A)$ and therefore \mathcal{F} is surely closed under tensor product.

In a similar manner, we prove

Corollary 9. Let A be a finite-dimensional semisimple Hopf algebra and let \mathcal{F} be a family of simple A-modules. Suppose that, for all $V, W \in \mathcal{F}$, every irreducible submodule of $V \otimes W$ is contained in \mathcal{F}. Then $I = \bigcap_{V \in \mathcal{F}} \text{ann}_A V$ is a Hopf ideal of A and \mathcal{F} is the set of all simple A/I-modules.

Proof. Let \mathcal{F} be the set of all finite direct sums (with multiplicities) of elements of \mathcal{F}. Since A is semisimple, the hypothesis implies that \mathcal{F} is closed under tensor product. Hence, by Theorem 7(i), $I = \bigcap_{V \in \mathcal{F}} \text{ann}_A V = \bigcap_{W \in \mathcal{F}} \text{ann}_A W$ is a Hopf ideal of A. Furthermore, since A/I is semisimple, it follows that \mathcal{F} must be the set of all simple A/I-modules.

Our final consequence uses the fact that any finite-dimensional Hopf algebra A is a Frobenius algebra [LS, §5] and hence that every simple A-module is isomorphic to a minimal left ideal of A.

Corollary 10. Let A be a finite-dimensional Hopf algebra and let V be an A-module whose annihilator contains no nonzero Hopf ideal of A. Then every simple A-module is isomorphic to a submodule of $V^{\otimes n}$ for some $n \geq 1$.

Proof. It follows from Theorem 7(ii) that $\mathcal{F}(V) = \oplus_{n=1}^{\infty} V^{\otimes n}$ is a faithful A-module. Now let W be a simple A-module, so that W is isomorphic to a minimal left ideal $L \subseteq A$. Since $L \neq 0$, we have $L \mathcal{F}(V) = 0$ and hence $LV^{\otimes n} \neq 0$ for some $n \geq 1$. In particular, there exists $u \in V^{\otimes n}$ with $Lu \neq 0$. But then the minimality of L implies that $W \cong L \cong Lu \subseteq V^{\otimes n}$, as required.

ACKNOWLEDGMENT

In closing, the authors would like to thank S. Montgomery and M. Cohen for informing us about references [M] and [Ri], respectively.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WISCONSIN 53706
E-mail address: passman@math.wisc.edu

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13244
E-mail address: dpquinn@mailbox.syr.edu