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IDENTITY II
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Abstract. We classify group algebras of torsion groups over a field of char-
acteristic p > 0 with units satisfying a group identity.

1. Introduction

A group U is said to satisfy a group identity if there exists a nontrivial word w =
w(x1, . . . , xn) in the free group generated by x1, . . . , xn such that w(u1, . . . , un) =
1 for all ui ∈ U . In early 1980s, Brian Hartley made the conjecture that if the units
of the group algebra of a torsion group G over a field K satisfy a group identity, then
the group algebra K[G] satisfies a polynomial identity. This was settled recently
for group algebras over infinite fields in [GSV97], and completely solved in [Liu].
Some natural questions we can ask are: “If the group algebra satisfies a polynomial
identity, does the unit group satisfy a group identity? If not, what additional
conditions are required to make it true?” After [GSV97] appeared, these questions
were answered in [Pas97] for group algebras over infinite fields. Indeed, the paper
showed that, for the group algebra K[G] of a torsion group G over an infinite field K
of characteristic p > 0, the unit group satisfies a group identity if and only if K[G]
satisfies a polynomial identity and G′ is a p-group of bounded period. The proof
given in [Pas97] uses two facts: [GJV94, Proposition 1] and [GSV97, Lemma 2.3].
[GJV94, Proposition 1] basically says that if units of an algebra over an infinite
field satisfy a group identity, then the product of any two square zero elements
is nilpotent of bounded degree. This proposition was modified and extended to
algebras over an arbitrary field in [Liu, Lemmas 3.1, 3.2], and thus it is natural
to expect that the results in [Pas97] can be extended to group algebras over finite
fields. On the other hand, [GSV97, Lemma 2.3] asserts that for any nonabelian
finite group G and any infinite field K of characteristic p > 0, if the units of the
group algebra K[G] satisfy a group identity, then G′ must be a finite p-group. This
is no longer true when K is finite. Actually, if G′ is a p-group, then we do obtain
the same result as in [Pas97].

Theorem 1.1. Let K[G] be the group algebra of a torsion group G over a field K
of characteristic p > 0 and let U(K[G]) be the group of units of K[G]. If G′ is a

p-group, then the following are equivalent.

1. U(K[G]) satisfies a group identity.

2. G has a normal p-abelian subgroup of finite index, and G′ has bounded period.

3. U(K[G]) satisfies (x, y)pk

= 1 for some integer k ≥ 0.
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Surprisingly, if G′ is not a p-group, then not only can the period of G′ be bounded,
but also the period of the whole group G can be bounded.

Theorem 1.2. Let K[G] be the group algebra of a torsion group G over a field K
of characteristic p > 0 and let U(K[G]) be the group of units of K[G]. If G′ is not

a p-group, then the following are equivalent.

1. U(K[G]) satisfies a group identity.

2. G has a normal p-abelian subgroup of finite index, G has bounded period and

K is finite.

3. U(K[G]) satisfies xn = 1 for some integer n.

2. Proofs of the Theorems

The implications 3 ⇒ 1 are trivial. The implication 2 ⇒ 3 in Theorem 1.1
has been proved by [Pas97, Section 3] whether the field K is infinite or finite.
The implication 2 ⇒ 3 in Theorem 1.2 can be obtained from the proof of [Coe82,
Theorem A]. So we need to prove 1 ⇒ 2 in both theorems.

We assume that G is a torsion group and that K is a field of characteristic p > 0.
Also, we assume that the group of units U(K[G]) of the group algebra K[G] satisfies
the group identity w = 1. In view of [Liu, Theorem 1.1] and [Pas85, Corollary
5.3.10], G has a normal p-abelian subgroup A of finite index. In particular, G is
locally finite.

Let us record some lemmas we need. The following is from [Liu, Lemma 2.3].

Lemma 2.1. Let R = K[H ] be the group algebra of a locally finite group H and

assume that the group of units U(R) satisfies w = 1. If S is any subalgebra of R
or R̄ is any homomorphic image of R, then U(S) and U(R̄) also satisfy w = 1.

The following lemma is from [Liu, Lemma 3.2]. Note that this result is an
analogue of [GJV94, Proposition 1] for algebras over arbitrary fields and plays a
crucial role in our proofs.

Lemma 2.2. Let R be an algebra over a field K and suppose U(R) satisfies w = 1.
Let a, b ∈ R such that a2 = b2 = 0. If ab is nilpotent, then (ab)d = 0 for some

integer d determined by w.

For the rest of the paper, we fix notation so that d will be as in the above lemma.
If Mn(F ) is the n by n matrix algebra over a field F and U(Mn(F )) satisfies w = 1,
then we have the following bounds on the size of the field and the degree n as shown
in [Liu, Lemma 3.3].

Lemma 2.3. Let F be any field. If U(Mn(F )) satisfies w = 1 and n ≥ 2, then

1. |F | ≤ d and hence F is a finite field.

2. n < 2 log|F | d + 2 ≤ 2 log2 d + 2.

Let m be the smallest integer not less than 2 log2 d + 2 and define

N =
∏

|F |≤d

|U(Mm(F ))|.

Certainly, N is finite and determined by d.

Lemma 2.4. Let x be a nonidentity p′-element in G′, and let y be a nonidentity

p′-element in a normal p′-subgroup of G. If U(K[G]) satisfies w = 1, then yN = 1.
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Proof. Suppose by way of contradiction that yN 6= 1. Since x ∈ G′, we can write

x = (x1, y1)(x2, y2) · · · (xn, yn) 6= 1.

Note that x−1yN is a p′-element since y is in a normal p′-subgroup of G. If x 6= yN ,
let α = (1 − x−1)(1 − yN), then α is not a nilpotent by [Pas85, Lemma 2.3.3].
If x = yN , let α = 1 − x, so that α is also not nilpotent in this case. Observe
that H = 〈x1, y1, . . . , xn, yn, y〉 is a finite subgroup of G since G is locally finite.
If K is infinite, then G′ is a p-group by [Pas97, Theorem 1.1]. Thus K is finite
here. Let J = J(K[H ]), the Jacobson radical of K[H ], and now write K[H ]/J =
⊕

∑

i Mni
(Fi) where the Fi are fields since K is finite. Now α is not nilpotent, so

α + J is not zero in K[H ]/J . Hence there exists a natural map

θ : K[H ]/J → Mnj
(Fj)

for some j with θ(α+J) 6= 0. In particular, θ(1−x−1+J) 6= 0 and θ(1−x+J) 6= 0.
If nj = 1, then

θ(x + J) =

n
∏

i=1

θ((xi, yi) + J) =

n
∏

i=1

(θ(xi + J), θ(yi + J)) = 1

since Fj is commutative. But θ(1 − x−1 + J) 6= 0, and hence nj ≥ 2. Also
U(Mnj

(Fj)) satisfies w = 1 by Lemma 2.1. Hence nj ≤ m and |Fj | ≤ d by

Lemma 2.3. So we get θ(yN + J) = θ(y + J)N = 1 since θ(y +J) ∈ U(Mnj
(Fj)) ↪→

U(Mm(Fj)). This implies that θ(α + J) = 0, a contradiction. Therefore, yN =
1.

The following is an analogue of [Pas97, Lemma 2.3].

Lemma 2.5. Suppose that G = 〈A, t〉 where A is a normal abelian p-subgroup and

t has finite order q. If U(K[G]) satisfies w = 1, then G′ has finite period.

Proof. The proof given in [Pas97, Lemma 2.3] basically works here. First, [Pas97,
Lemma 2.1] holds for group algebras over arbitrary fields by Lemma 2.1. The
argument given in the proof of [Pas97, Lemma 2.3] shows that we can assume G
is the semidirect product of A by 〈t〉 and that t has prime order q. So the only
concern now is how we use Lemma 2.2, an analogue of [GJV94, Proposition 1].

If q 6= p, we take two square zero elements α = τa−1(1 − t−1) and β =
(qa − tr(a))τ as in the proof of [Pas97, Lemma 2.3]. Notice that qa − tr(a) has
augmentation 0 hence is in the augmentation ideal ω(K[A]). But now A is a locally
finite normal p-subgroup of G of finite index, so we have ω(K[A]) = J(K[A]) and
J(K[A])K[G] ⊆ J(K[G]) by [Pas85, Lemma 8.1.17] and [Pas85, Theorem 7.2.7].
This implies that β and hence αβ are in J(K[G]). Also, J(K[G]) is nil since G is
locally finite and we see that αβ is nilpotent. Therefore, we can apply Lemma 2.2
to conclude that (αβ)d = 0 for some integer d depending on the group identity.

If q = p, both τ and a−1τa have square 0 and augmentation 0, so the product
τa−1τa is in ω(K[G]). But now G is a locally finite p-group, so ω(K[G]) is nil and
Lemma 2.2 implies that (τa−1τa)d = 0.

Therefore, the proof of [Pas97, Lemma 2.3] applies here and we deduce that G′

has finite period.

Lemma 2.6. Suppose that A is a normal abelian p-subgroup of G of finite index.

If U(K[G]) satisfies w = 1, then G′ has finite period.
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Proof. Use Lemma 2.5 and the proof of [Pas97, Lemma 2.4].

Lemma 2.7. If U(K[G]) satisfies w = 1 and G′ is not a p-group, then the p′-
elements of G have finite period.

Proof. Since U(K[G]) satisfies w = 1, [Liu, Theorem 1.1] and [Pas85, Corollary
5.3.10] imply that G has a normal p-abelian subgroup A of finite index. Note that
A′ is a finite normal p-subgroup of G, (G/A′)′ is not a p-group, and U(K[G/A′])
satisfies w = 1 by Lemma 2.1. Thus it suffices to consider G/A′, or equivalently, we
may assume that A is abelian. Write A = P × Q where P is the set of p-elements
of A and Q is the set of p′-elements of A. Since A is a normal abelian subgroup of
G, P and Q are normal subgroups of G. Also, A is a subgroup of G of finite index,
so it suffices to bound the period of Q. Now since G′ is not a p-group, there exist
a nonidentity p′-element x in G′. For any nonidentity y in Q, we have yN = 1 by
Lemma 2.4. This shows that Q has finite period and hence the p′-elements of G
have finite period.

Lemma 2.8. If U(K[G]) satisfies w = 1, then G′ has finite period.

Proof. As in the proof of Lemma 2.7, we can assume that A is abelian and write
A = P × Q. If G′ is a p-group, it suffices to consider G/Q since Q is a p′-group.
If G′ is not a p-group, Lemma 2.7 implies that Q has finite period, hence it still
suffices to consider G/Q in this case. We can now assume that A is a p-group.
Therefore G′ has finite period by Lemma 2.6.

Lemma 2.9. If U(K[G]) satisfies w = 1 and G′ is not a p-group, then the p-
elements of G have bounded period.

Proof. As usual, we can assume that A is abelian and write A = P × Q. If B =
(P, G), then B is a normal subgroup of G contained in P ∩ G′. Thus B is a p-
group of finite period by Lemma 2.8. Therefore, it suffices to consider G/B, or
equivalently we can assume that P is central in G. Now, notice that A has finite
index in G, hence it suffices to bound the period of P .

Since G′ is not a p-group, we can find a p′-element in G′ with

x = (x1, y1)(x2, y2) · · · (xn, yn) 6= 1.

Let H = 〈x1, y1, . . . , xn, yn〉, then x ∈ H ′ and H is finite since G is locally finite.
If C = H ∩ P , then C is a finite normal p-subgroup of G since P is central. It
suffices to consider G/C, or equivalently we can assume H ∩ P = 1. G′ is not
a p-group, so K is finite by [Pas97, Theorem 1.1]. Let J = J(K[H ]) and write
K[H ]/J = ⊕

∑

i Mni
(Fi) where Fi are fields since K is finite. If all ni = 1, then

K[H ]/J is commutative and x + J = 1 + J . Since J is nil, we get that x is a
p-element, a contradiction. Therefore, there exists some nj ≥ 2. Since finite fields
are perfect, by Wedderburn’s Principle Theorem [Row91, Theorem 2.5.37], K[H ]
contains a copy of K[H ]/J and hence it contains a copy of M2(K). Note that
P × H ∼= PH since P is central and H ∩ P = 1. Thus we have

M2(K[P ]) ∼= K[P ] ⊗K M2(K) ↪→ K[P ] ⊗K K[H ]

∼= K[P × H ] ∼= K[PH ] ⊆ K[G].

Since U(K[G]) satisfies w = 1, U(M2(K[P ])) also satisfies w = 1. If y is any

element in P , then 1 − y is nilpotent since P is a p-group. Let a =

(

0 1 − y
0 0

)

,
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b =

(

0 0
1 0

)

. Then a, b ∈ M2(K[P ]) and ab =

(

1− y 0
0 0

)

is nilpotent since 1 − y

is. Lemma 2.2 now implies that (ab)d = 0. Fix an integer k so that pk ≥ d. Then

(ab)pk

= 0, so we get (1− y)pk

= 0 and ypk

= 1. Hence P has finite period dividing
pk. This completes the proof.

Lemma 2.10. 1 ⇒ 2

Proof. [Pas85, Corollary 5.3.10] and [Liu, Theorem 1.1] imply that G has a normal
p-abelian subgroup of finite index.

If G′ is a p-group, then Lemma 2.8 implies that G′ has finite period.
If G′ is not a p-group, [Pas97, Theorem 1.1] implies that K must be finite. Since

G is a torsion group, Lemma 2.7 and 2.9 imply that the whole group G has finite
period.
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[Coe82] Sônia P. Coelho, Group rings with units of bounded exponent over the center, Can. J.
Math. 34 (1982), no. 6, 1349–1364.

[GJV94] A. Giambruno, E. Jespers, and A. Valenti, Group identities on units of rings, Arch.
Math. (Basel) 63 (1994), no. 4, 291–296.

[GSV97] A. Giambruno, S. Sehgal, and A. Valenti, Group algebras whose units satisfy a group

identity, Proc. Amer. Math. Soc. 125 (1997), no. 3, 629–634.
[Liu] Chia-Hsin Liu, Group algebras with units satisfying a group identity, Proc. Amer. Math.

Soc., submitted.
[Pas85] D. S. Passman, The algebraic structure of group rings, Robert E. Krieger, Malabar,

1985.
[Pas97] D. S. Passman, Group algebras whose units satisfy a group identity II, Proc. Amer.

Math. Soc. 125 (1997), no. 3, 657–662.
[Row91] L. H. Rowen, Ring theory, Academic Press, San Diego, 1991.

Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706

E-mail address: chliu@math.wisc.edu, passman@math.wisc.edu


