GROUP ALGEBRAS WITH UNITS SATISFYING A GROUP
IDENTITY II

CHIA-HSIN LIU AND D. S. PASSMAN

ABSTRACT. We classify group algebras of torsion groups over a field of char-
acteristic p > 0 with units satisfying a group identity.

1. INTRODUCTION

A group U is said to satisfy a group identity if there exists a nontrivial word w =
w(x1,...,2,) in the free group generated by x4, ... ,x, such that w(u,... ,u,) =
1 for all u; € U. In early 1980s, Brian Hartley made the conjecture that if the units
of the group algebra of a torsion group G over a field K satisfy a group identity, then
the group algebra K|[G] satisfies a polynomial identity. This was settled recently
for group algebras over infinite fields in [GSV97], and completely solved in [Liu].
Some natural questions we can ask are: “If the group algebra satisfies a polynomial
identity, does the unit group satisfy a group identity? If not, what additional
conditions are required to make it true?” After [GSV97] appeared, these questions
were answered in [Pas97] for group algebras over infinite fields. Indeed, the paper
showed that, for the group algebra K[G] of a torsion group G over an infinite field K
of characteristic p > 0, the unit group satisfies a group identity if and only if K[G]
satisfies a polynomial identity and G’ is a p-group of bounded period. The proof
given in [Pas97] uses two facts: [GJV94, Proposition 1] and [GSV97, Lemma 2.3].
[GIV94, Proposition 1] basically says that if units of an algebra over an infinite
field satisfy a group identity, then the product of any two square zero elements
is nilpotent of bounded degree. This proposition was modified and extended to
algebras over an arbitrary field in [Liu, Lemmas 3.1, 3.2], and thus it is natural
to expect that the results in [Pas97] can be extended to group algebras over finite
fields. On the other hand, [GSV97, Lemma 2.3] asserts that for any nonabelian
finite group G and any infinite field K of characteristic p > 0, if the units of the
group algebra K[G] satisfy a group identity, then G’ must be a finite p-group. This
is no longer true when K is finite. Actually, if G’ is a p-group, then we do obtain
the same result as in [Pas97].

Theorem 1.1. Let K[G] be the group algebra of a torsion group G over a field K
of characteristic p > 0 and let U(K[G]) be the group of units of K[G]. If G’ is a
p-group, then the following are equivalent.

1. U(K[G]) satisfies a group identity.

2. G has a normal p-abelian subgroup of finite index, and G’ has bounded period.

3. U(K|[G]) satisfies (x,y)pk =1 for some integer k > 0.
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Surprisingly, if G’ is not a p-group, then not only can the period of G’ be bounded,
but also the period of the whole group G can be bounded.

Theorem 1.2. Let K[G] be the group algebra of a torsion group G over a field K
of characteristic p > 0 and let U(K|[G]) be the group of units of K[G]. If G’ is not
a p-group, then the following are equivalent.
1. U(K[G]) satisfies a group identity.
2. G has a normal p-abelian subgroup of finite index, G has bounded period and
K is finite.
3. U(K|G]) satisfies ™ =1 for some integer n.

2. PROOFS OF THE THEOREMS

The implications 3 = 1 are trivial. The implication 2 = 3 in Theorem 1.1
has been proved by [Pas97, Section 3] whether the field K is infinite or finite.
The implication 2 = 3 in Theorem 1.2 can be obtained from the proof of [Coe82,
Theorem A]. So we need to prove 1 = 2 in both theorems.

We assume that G is a torsion group and that K is a field of characteristic p > 0.
Also, we assume that the group of units U (K [G]) of the group algebra K [G] satisfies
the group identity w = 1. In view of [Liu, Theorem 1.1] and [Pas85, Corollary
5.3.10], G has a normal p-abelian subgroup A of finite index. In particular, G is
locally finite.

Let us record some lemmas we need. The following is from [Liu, Lemma 2.3].

Lemma 2.1. Let R = K[H] be the group algebra of a locally finite group H and
assume that the group of units U(R) satisfies w = 1. If S is any subalgebra of R
or R is any homomorphic image of R, then U(S) and U(R) also satisfy w = 1.

The following lemma is from [Liu, Lemma 3.2]. Note that this result is an
analogue of [GJV94, Proposition 1] for algebras over arbitrary fields and plays a
crucial role in our proofs.

Lemma 2.2. Let R be an algebra over a field K and suppose U(R) satisfies w = 1.
Let a,b € R such that a*> = b> = 0. If ab is nilpotent, then (ab)? = 0 for some
integer d determined by w.

For the rest of the paper, we fix notation so that d will be as in the above lemma.
If M, (F) is the n by n matrix algebra over a field F and U(M,,(F)) satisfies w = 1,
then we have the following bounds on the size of the field and the degree n as shown
in [Liu, Lemma 3.3].
Lemma 2.3. Let F be any field. If U(M,(F)) satisfies w =1 and n > 2, then

1. |F| <d and hence F is a finite field.
2. n <2logpd+2<2logy,d+2.

Let m be the smallest integer not less than 2log, d + 2 and define
N = [T . (F).
|F|<d
Certainly, N is finite and determined by d.

Lemma 2.4. Let x be a nonidentity p'-element in G', and let y be a nonidentity
p'-element in a normal p'-subgroup of G. If U(K[G]) satisfies w = 1, then y™ = 1.
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Proof. Suppose by way of contradiction that y~ # 1. Since z € G’, we can write

= (z1,91)(T2,92) - (Tn, yn) # 1.

Note that z7'y¥ is a p’-element since y is in a normal p’-subgroup of G. If z # yV,
let « = (1 —a271)(1 — y¥), then « is not a nilpotent by [Pas85, Lemma 2.3.3].
If 2 = yN, let « = 1 — 2, so that « is also not nilpotent in this case. Observe
that H = (x1,Y1,...,%n,Yn,y) is a finite subgroup of G since G is locally finite.
If K is infinite, then G’ is a p-group by [Pas97, Theorem 1.1]. Thus K is finite
here. Let J = J(K[H]), the Jacobson radical of K[H], and now write K[H|/J =
® >, My, (F;) where the F; are fields since K is finite. Now « is not nilpotent, so
a+ J is not zero in K[H]/J. Hence there exists a natural map

0: K[H]/J — My, (F;)

for some j with 6(a+J) # 0. In particular, (1—z~'+J) # 0 and §(1 —z+J) # 0.
If n; =1, then
Oz +J) = [T 0(iys) +7) =[]0 + 7). 0(y; + 1)) = 1
i=1 i=1

since Fj is commutative. But 6(1 — 27! + J) # 0, and hence n; > 2. Also
U(My,;(F};)) satisfies w = 1 by Lemma 2.1. Hence n; < m and |Fj| < d by
Lemma 2.3. So we get 6(y™ +J) = 0(y+ J)N = 1 since 0(y + J) € U(M,, (Fj)) —
U(M,(F;)). This implies that 8(«w + J) = 0, a contradiction. Therefore, y¥ =
1. (|

The following is an analogue of [Pas97, Lemma 2.3].

Lemma 2.5. Suppose that G = (A,t) where A is a normal abelian p-subgroup and
t has finite order q. If U(K[G]) satisfies w = 1, then G’ has finite period.

Proof. The proof given in [Pas97, Lemma 2.3] basically works here. First, [Pas97,
Lemma 2.1] holds for group algebras over arbitrary fields by Lemma 2.1. The
argument given in the proof of [Pas97, Lemma 2.3] shows that we can assume G
is the semidirect product of A by (t) and that ¢ has prime order ¢g. So the only
concern now is how we use Lemma 2.2, an analogue of [GJV94, Proposition 1].

If ¢ # p, we take two square zero elements a = 7a 1(1 —t71) and B =
(ga — tr(a))T as in the proof of [Pas97, Lemma 2.3]. Notice that qa — tr(a) has
augmentation 0 hence is in the augmentation ideal w(K|[A]). But now A is a locally
finite normal p-subgroup of G of finite index, so we have w(K[A]) = J(K[A]) and
J(K[A)K[G] C J(K[G]) by [Pas85, Lemma 8.1.17] and [Pas85, Theorem 7.2.7].
This implies that 5 and hence af are in J(K[G]). Also, J(K[G]) is nil since G is
locally finite and we see that «f is nilpotent. Therefore, we can apply Lemma 2.2
to conclude that (o/3)? = 0 for some integer d depending on the group identity.

If ¢ = p, both 7 and a~!7a have square 0 and augmentation 0, so the product
Ta"1ra is in w(K[G]). But now G is a locally finite p-group, so w(K|[G]) is nil and
Lemma 2.2 implies that (7a~'7a)? = 0.

Therefore, the proof of [Pas97, Lemma 2.3] applies here and we deduce that G’
has finite period. O

Lemma 2.6. Suppose that A is a normal abelian p-subgroup of G of finite index.
If U(K[G]) satisfies w =1, then G’ has finite period.
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Proof. Use Lemma 2.5 and the proof of [Pas97, Lemma 2.4]. O

Lemma 2.7. If U(K|[G]) satisfies w = 1 and G’ is not a p-group, then the p’-
elements of G have finite period.

Proof. Since U(K|[G]) satisfies w = 1, [Liu, Theorem 1.1] and [Pas85, Corollary
5.3.10] imply that G has a normal p-abelian subgroup A of finite index. Note that
A’ is a finite normal p-subgroup of G, (G/A’) is not a p-group, and U(K[G/A'])
satisfies w = 1 by Lemma 2.1. Thus it suffices to consider G/A’, or equivalently, we
may assume that A is abelian. Write A = P x @Q where P is the set of p-elements
of A and @ is the set of p’-elements of A. Since A is a normal abelian subgroup of
G, P and @ are normal subgroups of GG. Also, A is a subgroup of G of finite index,
so it suffices to bound the period of Q. Now since G’ is not a p-group, there exist
a nonidentity p’-element z in G’. For any nonidentity v in @, we have y» =1 by
Lemma 2.4. This shows that () has finite period and hence the p’-elements of G
have finite period. O

Lemma 2.8. If U(K|[G]) satisfies w =1, then G’ has finite period.

Proof. As in the proof of Lemma 2.7, we can assume that A is abelian and write
A=PxQ. If G'is a p-group, it suffices to consider G/Q since @ is a p’-group.
If G’ is not a p-group, Lemma 2.7 implies that @ has finite period, hence it still
suffices to consider G/Q in this case. We can now assume that A is a p-group.
Therefore G’ has finite period by Lemma 2.6. O

Lemma 2.9. If U(K|G]) satisfies w = 1 and G’ is not a p-group, then the p-
elements of G have bounded period.

Proof. As usual, we can assume that A is abelian and write A = P x Q. If B =
(P,G), then B is a normal subgroup of G contained in P N G’. Thus B is a p-
group of finite period by Lemma 2.8. Therefore, it suffices to consider G/B, or
equivalently we can assume that P is central in G. Now, notice that A has finite
index in G, hence it suffices to bound the period of P.

Since G’ is not a p-group, we can find a p’-element in G’ with

xr = (iv1,y1)(£v2,y2) ce (xnayn) 7é 1.

Let H = (x1,Y1,--.,%n,Yn), then z € H' and H is finite since G is locally finite.
If C = HnN P, then C is a finite normal p-subgroup of G since P is central. It
suffices to consider G/C, or equivalently we can assume H NP = 1. G’ is not
a p-group, so K is finite by [Pas97, Theorem 1.1]. Let J = J(K[H]) and write
K[H|/J = &), My, (F;) where F; are fields since K is finite. If all n; = 1, then
K[H]/J is commutative and © + J = 1+ J. Since J is nil, we get that x is a
p-element, a contradiction. Therefore, there exists some n; > 2. Since finite fields
are perfect, by Wedderburn’s Principle Theorem [Row91, Theorem 2.5.37], K[H]
contains a copy of K[H]/J and hence it contains a copy of My(K). Note that
P x H = PH since P is central and H N P = 1. Thus we have

My(K[P]) = K[P] @k Mz(K) — K[P] @k K[H]
~ K[P x H] = K|PH] C K[G].
Since U(K[G]) satisfies w = 1, U(M3(K[P])) also satisfies w = 1. If y is any

element in P, then 1 — y is nilpotent since P is a p-group. Let a = (8 1 E y>7
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- <(1) g) Then a,b € M,(K[P]) and ab — <1 Y 8) is nilpotent since 1y

is. Lemma 2.2 now implies that (ab)? = 0. Fix an integer k so that p* > d. Then
(ab)pk =0, so we get (1 — y)pk =0and y?" = 1. Hence P has finite period dividing
p®. This completes the proof. [l

Lemma 2.10. 1 =2

Proof. [Pas85, Corollary 5.3.10] and [Liu, Theorem 1.1] imply that G has a normal
p-abelian subgroup of finite index.

If G’ is a p-group, then Lemma 2.8 implies that G’ has finite period.

If G’ is not a p-group, [Pas97, Theorem 1.1] implies that K must be finite. Since
G is a torsion group, Lemma 2.7 and 2.9 imply that the whole group G has finite
period. O
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