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FILTRATIONS IN SEMISIMPLE LIE ALGEBRAS, I

Y. BARNEA AND D. S. PASSMAN

Abstract. In this paper, we study the maximal bounded Z-filtrations of a

complex semisimple Lie algebra L. Specifically, we show that if L is simple of

classical type An, Bn, Cn or Dn, then these filtrations correspond uniquely
to a precise set of linear functionals on its root space. We obtain partial, but

not definitive, results in this direction for the remaining exceptional algebras.

Maximal bounded filtrations were first introduced in the context of classify-
ing the maximal graded subalgebras of affine Kac-Moody algebras, and the

maximal graded subalgebras of loop toroidal Lie algebras. Indeed, our main

results complete this classification in most cases. Finally, we briefly discuss the
analogous question for bounded filtrations with respect to other Archimedean

ordered groups.

1. Introduction

Let L be a Lie algebra over a field K. A Z-filtration F = {Fi | i ∈ Z} of L is a
collection of K-subspaces

· · · ⊆ F−2 ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ F2 ⊆ · · ·
indexed by the integers Z such that [Fi, Fj ] ⊆ Fi+j for all i, j ∈ Z. One usually also
assumes that

⋃
i Fi = L and

⋂
i Fi = 0. In particular, F0 is a Lie subalgebra of L

and each Fi is an F0-Lie submodule of L. Furthermore, we say that the filtration
is bounded if there exist integers ` and `′ with F` = 0 and F`′ = L. In this case, it
is clear that each Fi, with i < 0, is ad-nilpotent on L.

If A is any finite-dimensional Lie algebra then the Ado-Iwasawa Theorem (see
[J, Chapter VI]) implies that A embeds in some L = gln and therefore we obtain
a filtration of L with F−1 = 0, F0 = A and F1 = L. Thus, it is clearly hopeless to
attempt to classify all the bounded filtrations of the various gln, even if only up to
isomorphism. Nevertheless, there is at least something that can be done.

Again, let F be a filtration of an arbitrary Lie algebra L. If G = {Gi | i ∈ Z} is
a second such filtration, we say that G contains F , or G is larger than F , if Gi ⊇ Fi

for all i. In particular, it makes sense to speak about maximal bounded filtrations,
and it is the goal of this paper to classify such filtrations when L is a complex
semisimple Lie algebra.

Maximal bounded filtrations were first introduced in the context of classifying
the maximal graded subalgebras of affine Kac-Moody algebras, and the maximal
graded subalgebras of loop toroidal Lie algebras. Recall that an affine Kac-Moody
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algebra can be realized as a central extension, by a 1-dimensional center, of the Lie
algebra L ⊗C C[t, 1/t], where L is a finite dimensional complex simple Lie algebra
and C[t, 1/t] is the complex group algebra of the infinite cyclic group 〈t〉. Notice
that L⊗C C[t, 1/t] is naturally a Z-graded Lie algebra. The following theorem was
obtained by Shalev, Zelmanov and the first author. It is stated in a sharpened
form, based on an observation from [B].

Theorem 1.1. [BSZ] Let L be a finite dimensional central simple Lie algebra over
an arbitrary field K, and let M = ⊕

∑
i∈Z Mi ti be a maximal Z-graded subalgebra

of L⊗K K[t, 1/t]. Then one of the following holds.
(i) There exist a prime p and a Z/pZ-grading L = L0 ⊕L1 ⊕ · · · ⊕Lp−1 of L,

such that Mi = Li mod p, for all i ∈ Z.
(ii) There exists a maximal subalgebra H of L such that M = H ⊗K K[t, 1/t].
(iii) The set {Mi | i ∈ Z} is a maximal bounded filtration of L.

We remark that L is central simple if it is a simple Lie algebra over K and if

{T ∈ GLK(L) | T [x, y] = [Tx, y] = [x, Ty] for all x, y ∈ L},
its centroid, is equal to K. It is known, by [J, Theorem X.1.3], that such Lie
algebras remain central simple under all field extensions. Furthermore, if L is
merely assumed to be simple, then [J, Theorem X.1.2] asserts that its centroid is
necessarily a field containing K. In particular, if L is a finite dimensional simple
Lie algebra and if K is algebraically closed, then L is central simple.

Now, if K = C is the field of complex numbers, then the cyclic gradings of such
Lie algebras L correspond to automorphisms of finite order, and these were classi-
fied by Kac, see [K]. Furthermore, the maximal subalgebras of such Lie algebras
were characterized in Dynkin’s papers [D1, D2]. Therefore, the classification of
maximal graded subalgebras of affine Kac-Moody algebras will be completed once
all maximal bounded filtrations of simple complex Lie algebras are known, and the
results of the present paper achieve this in almost all cases.

Finally, [B] studied the maximal graded subalgebras of loop toroidal Lie algebras
and reduced their classification to the determination of certain maximal bounded
filtrations indexed by finitely generated additive subgroups of R. Because of this,
we also briefly consider filtrations with respect to general Archimedean ordered
groups. These groups are, of course, all additive subgroups of the real numbers R
and hence are either dense or isomorphic to Z. The following lemma applies equally
well to filtrations over dense subgroups, and with the same proof, but we state it
only for filtrations indexed by the group Z.

Lemma 1.2. Let L be a finite-dimensional semisimple Lie algebra and let F =
{Fi | i ∈ Z} be a bounded filtration of L. Then F is contained in a maximal
bounded filtration.

Proof. Let dimK L = d and let F = {Fi | i ∈ Z} be given with Fa = L for some
a ≥ 1. If G = {Gi | i ∈ Z} is any bounded filtration containing F , then we also
have Ga = L. Consider the chain of subspaces of L given by

G0 ⊇ G−a ⊇ G−2a ⊇ · · · ⊇ G−da.

Since there are d + 1 members of this chain and since dimK L = d, it follows that
either they are all distinct and hence G−da = 0, or two adjacent members are equal.
In the latter case, say G−(i−1)a = G−ia for some i ≥ 1. Since Ga = L, it follows
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that [L,G−ia] = [Ga, G−ia] ⊆ G−(i−1)a = G−ia, and therefore G−ia is a Lie ideal
of L. But the subscript −ia is negative and G is bounded, so it is clear that G−ia

is ad-nilpotent on L and hence on itself. In other words, G−ia is a nilpotent ideal
of L and, since L is semi-simple, we conclude that G−ia = 0. Thus G−da = 0 in all
cases and, with this, Zorn’s Lemma clearly yields the result. �

Of course, filtrations often arise from gradings and bounded filtrations arise from
finite gradings. Recall that L = ⊕

∑
i∈Z Li is a Z-grading of the Lie algebra if each

Li is a K-subspace with [Li, Lj ] ⊆ Li+j for all i, j. Furthermore, this grading is
said to be finite if only finitely many of the components Li are nonzero. In this
case, it is clear that each Li with i 6= 0 is ad-nilpotent on L. Now any such grading
determines an associated Z-filtration F = {Fi | i ∈ Z} by defining Fi =

∑
j≤i Lj ,

and we have

Lemma 1.3. Let L be a semisimple Lie algebra with a finite Z-grading given by
L = ⊕

∑
i Li. If F = {Fi | i ∈ Z} is the filtration associated to this grading, then

F is a maximal bounded filtration.

Proof. By assumption, only finitely many of the components Li are nonzero. Hence,
since Fi =

∑
j≤i Lj , it is clear that F is at least a bounded filtration. Suppose, by

way of contradiction, that G = {Gi | i ∈ Z} is a bounded filtration properly larger
than F , and define Xi = Gi−1 ∩ Li. Of course, only finitely many of these can be
nonzero. Furthermore, since Lk ⊆ Fk ⊆ Gk, we see that [Lk, Xi] ⊆ Xi+k and hence
X =

∑
i Xi is a Lie ideal of L.

We claim that X is not zero. Indeed, since G is properly larger than the filtration
F , it follows that Gt is properly larger than Ft for some t, and hence we can choose
z ∈ L with z ∈ Gt \ Ft. Write z =

∑
i zi ∈

∑
i Li as the sum of its homogeneous

components, and let n be the maximal subscript with zn 6= 0. Since z /∈ Ft, we
must have n > t. Then z ∈ Gn−1 and z − zn ∈

∑
i≤n−1 Li = Fn−1 ⊆ Gn−1, so

0 6= zn ∈ Gn−1 ∩ Ln = Xn ⊆ X, as required.
Next, we claim that X is Lie nilpotent. To this end, let a be an integer with

Li = 0 for all i > a, let b be an integer with Gj = 0 for all j < b, and let
[Xi1 , Xi2 , . . . , Xin

]α be any n-fold Lie product. Since Xi ⊆ Li, it is clear that the
n-fold product is contained in Ls where s = i1 + i2 + · · ·+ in. On the other hand,
since Xi ⊆ Gi−1, we see that the product is also contained in Gs−n. In particular,
if this product is nonzero, then we must have s ≤ a and s−n ≥ b. Thus n−s ≤ −b
and, by adding the two inequalities, we have n ≤ a−b. It follows that X is a nonzero
nilpotent Lie ideal of L of nilpotence index ≤ a − b + 1, and this contradicts the
semisimplicity assumption. Thus, F is indeed maximal. �

It is clear that the last paragraph of the above argument is simpler and more
natural than the corresponding ring-theoretic proof in [P, Lemma 1.2].

The previous two results are easily seen to be false without some sort of semisim-
plicity assumption. Indeed, suppose L = L0⊕L1, where L0 is a Lie subalgebra and
L1 is a nonzero abelian ideal. Then this is a finite grading of L, and its associated
filtration F satisfies F−1 = 0, F0 = L0, and F1 = L. But F is not maximal since its
0-term can certainly be extended to all of L. Furthermore, if L0 is semisimple and
if G is the filtration of L given by G−1 = 0 and G0 = L, then G is not contained in
a maximal bounded filtration. Indeed, it is easy to see that any bounded filtration
of L containing G can be extended to a filtration having arbitrarily many negative
terms equal to the ideal L1.
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Finally, suppose L = A ⊕ B is a direct sum of the two Lie algebras A and B.
If A = {Ai | i ∈ Z} and B = {Bi | i ∈ Z} are bounded filtrations of A and B,
respectively, and if we define Li = Ai ⊕ Bi ⊆ L, then L = {Li | i ∈ Z} is easily
seen to be a bounded filtration of L. For convenience, we write L = A⊕B and we
say that L is the sum of A and B. With this notation, we have

Lemma 1.4. Let L be a Lie algebra and let F = {Fi | i ∈ Z} be a bounded
Z-filtration of L.

(i) Suppose L = A⊕B is a direct sum of the K-Lie algebras A and B. Then
L is maximal if and only if L = A ⊕ B with A and B maximal bounded
filtrations of A and B, respectively.

(ii) Suppose L is a finite dimensional complex semisimple Lie algebra, and
write L = L1 ⊕L2 ⊕ · · · ⊕Lk as a finite direct sum of simple Lie algebras.
Then F is maximal if and only if it is a sum F = F1 ⊕ F2 ⊕ · · · ⊕ Fk,
where each Fj is a maximal bounded filtration of Lj.

Proof. (i) Let α : L → A and β : L → B denote the natural projections, and let F =
{Fi | i ∈ Z} be given. If Ai = α(Fi) ∼= (Fi +B)/B and if Bi = β(Fi) ∼= (Fi +A)/A,
then it is easy to see that A = {Ai | i ∈ Z} and B = {Bi | i ∈ Z} are bounded
filtrations of A and B, respectively. Furthermore, it is clear that Fi ⊆ Ai ⊕ Bi, so
F ⊆ A ⊕ B. In particular, if F is maximal, then F = A ⊕ B, and clearly both A
and B are maximal.

Conversely, suppose F ′ = A′ ⊕ B′ is a sum of maximal bounded filtrations, and
let F ⊇ F ′ be arbitrary. Since F ⊆ A⊕B, by the result of the previous paragraph,
we have A ⊇ A′ and B ⊇ B′. But A′ and B′ are maximal, so we must have equality
throughout. In particular, F = F ′, and F ′ is maximal.

(ii) This follows from the structure of finite dimensional semisimple Lie algebras
(see [Hu, Theorem 5.2]) and the obvious extension of part (i) above to finite direct
sums of Lie algebras. �

Thus, the study of maximal bounded filtrations in semisimple complex Lie alge-
bras immediately reduces to the simple case. Because of this fact, we are mostly
concerned in this paper with the simple Lie algebras, namely the algebras of type
An, Bn, Cn, Dn, E6, E7, E8, F4 and G2.

Our main result is essentially given below. More precise versions of each part
can be found in later sections of this paper.

Theorem 1.5. Let L be a finite dimensional complex simple Lie algebra and let
F = {Fi | i ∈ Z} be a bounded filtration. Suppose H is a Cartan subalgebra of L,
write V for the root space of L, and let V̂ = Hom(V, R) denote its dual space.

(i) If F is maximal and if L is of type An, Bn, Cn or Dn, then F0 contains
a Cartan subalgebra of L.

(ii) The maximal filtrations F with F0 ⊇ H are in one-to-one correspondence
with the linear functionals λ in a certain subset M of V̂ .

(iii) M is the set of all functionals that take on integer values on some basis of
V consisting of roots of L. In particular, M is a finite union of subgroups
of V̂ , each isomorphic to Zn, where n = dimR V .

We suspect that part (i) above is also true for the exceptional Lie algebras E6,
E7, E8, F4 and G2. While we have not been able to prove this, we do include a
section of general lemmas which are, at the very least, suggestive.
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For (ii), we use the root space decomposition of L with respect to the Cartan
subalgebra H. If λ is any linear functional on V , then λ defines a filtration Fλ of
L with H contained in its 0-term. Furthermore, any maximal filtration with H in
the 0-term must be of this type. It is not true, in general, that Fλ = Fµ if and only
if λ = µ. However, when the filtration is maximal, then Fλ uniquely determines λ,
and hence we obtain the one-to-one correspondence.

Finally, in (iii), if L is of type An, then M is the set of all linear functionals that
take on integer values on the roots Φ of L. If L is of type Bn, Cn or Dn, then M
is essentially (but not quite) the set of all functionals that take on integer or half
integer values on the roots. The remaining types can be dealt with via computer
computations. We include a tabulation at least for G2 and F4. There are also
general results that can be read off from the description of an arbitrary root in
terms of a root basis. In particular, the description of the highest root, as given in
[Bo, Plates I-IX], yields some interesting information about M.

2. Matrix Rings and Maximal Filtrations

Let R be an associative K-algebra with 1. A Z-filtration G = {Gi | i ∈ Z} of R
is a collection of K-subspaces

· · · ⊆ G−2 ⊆ G−1 ⊆ G0 ⊆ G1 ⊆ G2 ⊆ · · ·

indexed by the integers Z such that GiGj ⊆ Gi+j for all i, j ∈ Z. One usually
also assumes that

⋃
i Gi = R and

⋂
i Gi = 0. As with Lie algebras, we say that

the filtration is bounded if there exist integers ` and `′ with G` = 0 and G`′ = R.
Furthermore, if G′ = {G′

i | i ∈ Z} is a second such filtration, we say that G′ contains
G, or G′ is larger than G, if G′

i ⊇ Gi for all i. In particular, it makes sense to speak
about maximal bounded filtrations. We remark that the definition of filtration here
differs slightly from that of [P] where arbitrary rings were considered. In that case,
the Gi are merely assumed to be additive subgroups of R. However, in view of [P,
Lemma 2.1], there is no difference when dealing with maximal bounded filtrations.

Now suppose that R = Mm(K) and let L be a Lie subalgebra of glm(K). The
goal of this section is to compare the filtrations of R to those of L. We then apply
known results for R to obtain corresponding information about L. In particular,
we will show that if L is of type An, Bn, Cn or Dn, and if F = {Fi | i ∈ Z} is a
maximal bounded filtration of L, then F0 contains a Cartan subalgebra of L. To
start with, we have

Lemma 2.1. Let G = {Gi | i ∈ Z} be a bounded filtration of R = Mm(K) and let
L ⊆ glm(K). If GL = {Fi | i ∈ Z} is defined by Fi = Gi ∩ L, then GL is a bounded
filtration of L.

Proof. If x, y ∈ L ⊆ R, then [x, y] = xy − yx since L is a Lie subalgebra of
glm(K). In particular, [Fi, Fj ] ⊆ FiFj + FjFi ⊆ GiGj + GjGi ⊆ Gi+j , and thus
[Fi, Fj ] ⊆ Gi+j ∩ L = Fi+j , as required. �

Conversely, suppose F = {Fi | i ∈ Z} is a filtration of L. Then we extend F to
the ring R by defining FR = {F̃a | a ∈ Z} to be the family of subspaces given by

F̃a =
∑

Fi1Fi2 · · ·Fis
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where the sum is over all s ≥ 0 and all subscripts with i1 + i2 + · · · + is ≤ a. Of
course, when s = 0 the subscript sum is 0 and the empty product is equal to K.
The following is a key observation.

Lemma 2.2. Let L be a Lie subalgebra of glm(K) and assume that L generates
Mm(K) as a K-algebra. Assume further that every x ∈ L which is ad-nilpotent on
glm(K) is necessarily a nilpotent matrix. If F = {Fi | i ∈ Z} is a bounded filtration
of L, then FR = {F̃a | a ∈ Z} is a bounded filtration of Mm(K).

Proof. It is clear that F̃aF̃b ⊆ F̃a+b for all a, b ∈ Z. Also, by assumption, L generates
Mm(K) and, since dimK Mm(K) < ∞, we have Mm(K) = L0 + L1 + · · · + Lt for
some t ≥ 1. In particular, if F`′ = L with `′ > 0, then F̃`′t = Mm(K). Next, let
x ∈ F−1 and note that x is ad-nilpotent on L. Since Mm(K) = L0 + L1 + · · ·+ Lt,
where L0 = K, and since adx is a derivation on Mm(K), it follows that x is ad-
nilpotent on glm(K). Thus, by assumption, x is a nilpotent matrix. We can now
apply Engel’s Theorem (see [Hu, Corollary 3.3]) to the Lie subalgebra F−1 to deduce
that there exists a flag 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wm = Km with F−1Wi ⊆ Wi−1. In
particular, Fm

−1 = 0.
Since F is bounded, we know that F` = 0 for some ` < 0. We show by induction

on s that if Fi1Fi2 · · ·Fis 6= 0, then m` < i1 + i2 + · · · + is. This is clear for
s = 0 where, by assumption, the subscript sum is 0 and the empty product is K,
or for s = 1, since i1 > `. Now let s ≥ 2 and note that FiFj ⊆ FjFi + [Fi, Fj ] ⊆
FjFi +Fi+j since L ⊆ glm(K). In particular, if we interchange two adjacent factors
in Fi1Fi2 · · ·Fis

6= 0, say Fir
and Fir+1 , then either

Fi1 · · ·Fir−1Fir+1Fir
· · ·Fis

6= 0

or
Fi1 · · ·Fir−1Fir+ir+1 · · ·Fis 6= 0

or both. If the latter occurs, then m` < i1 + i2 + · · ·+ is by induction on s. Thus,
we can assume throughout that the former occurs and this enables us to put the
subscripts in their natural order.

In other words, we now have F
k`+1
`+1 · · ·F k−1

−1 F k0
0 · · ·F kn

n 6= 0 and in particular
0 6= F

k`+1
`+1 · · ·F k−1

−1 ⊆ F k
−1, where k = k−1 + k−2 + · · · + k`+1. Since Fm

−1 = 0, it
follows that k < m, so k` > m` and hence

i1 + i2 + · · ·+ is ≥ (−1)k−1 + (−2)k−2 + · · ·+ (` + 1)k`+1 ≥ k` > m`.

This proves the inductive result, and the definition of F̃a now implies that F̃m` = 0.
In other words, FR is a bounded filtration of R. �

In order to apply the above, we need the following well known observation.

Lemma 2.3. Let x ∈ Mm(K) and assume that x is ad-nilpotent in its action on
glm(K). If K is the algebraic closure of K, then x = k + z where k ∈ K is a scalar
matrix and z ∈ Mm(K) is nilpotent. Furthermore:

(i) If K is a perfect field, then k ∈ K and z ∈ Mm(K).
(ii) If trx = 0 and m 6= 0 in K, then x = z is nilpotent.
(iii) If ∗ is an involution on Mm(K) fixing K elementwise and if char K 6= 2,

then x∗ = −x implies that x = z is nilpotent.
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Proof. If K is the algebraic closure of K, then Mm(K) ⊇ Mm(K) and it is clear
that x is ad-nilpotent on glm(K). Suppose x has at least two distinct eigenvalues,
say α and β, and let vα and vβ be corresponding eigenvectors. If u ∈ Mm(K) with
uvα = λvβ for some λ ∈ K, then

(u adx)vα = (ux− xu)vα = uαvα − xλvβ = λ(α− β)vβ .

In particular, if y ∈ glm(K) with yvα = vβ , then
(
y (adx)i

)
vα = (α − β)ivβ , and

hence (ad x)i 6= 0 for all i, contrary to our assumption. It follows that x has only
one eigenvalue k ∈ K, and therefore x = k + z with z nilpotent.

(i) Since k is the unique root of the characteristic polynomial of x, we conclude
that k ∈ K if K is a perfect field.

(ii) If tr x = 0, then mk = 0 and therefore k = 0 when m 6= 0 in K.
(iii) Since ∗ fixes K elementwise, it is clear that ∗ extends to an involution on

Mm(K) = K ⊗K Mm(K). Now suppose x∗ = −x. Since x− k is a singular matrix,
so also is (x− k)∗ = −x− k = −(x + k). Hence −k = k and again k = 0. �

As an example, we have

Lemma 2.4. Let K be an algebraically closed field, let R = Mm(K), and let L be
a Lie subalgebra of glm(K) acting irreducibly on Km. Suppose L = [L,L] and that
m 6= 0 in K. If F = {Fi | i ∈ Z} is a bounded Z-filtration of L, then FR is a
bounded Z-filtration of R.

Proof. Since Km is an irreducible L-module, the finite dimensional associative K-
algebra 〈L〉 generated by L is a primitive subring of R. Thus, since K is algebraically
closed, it follows that 〈L〉 = R. Furthermore, the assumption L = [L,L] implies
that L ⊆ slm(K) and hence that tr L = 0. In view of part (ii) of the preceding
lemma, we see that if x ∈ L is ad-nilpotent on glm(K), then x is a nilpotent matrix.
Lemma 2.2 now yields the result. �

Our main applications of this correspondence between the filtrations of L and
those of R are given below, and use results of the second author in [P]. We start
with the special linear Lie algebra.

Proposition 2.5. Let K be a field, let L = slm(K) with m ≥ 2, and suppose that
F = {Fi | i ∈ Z} is a maximal bounded filtration of L. If m 6= 0 in K, then F0

contains a Cartan subalgebra of L.

Proof. If R = Mm(K) with m ≥ 2, then it is clear that L = slm(K) generates
R as an associative K-algebra. Furthermore, if x ∈ L is ad-nilpotent on glm(K),
then it follows from Lemma 2.3(ii) that x is a nilpotent matrix. We conclude from
Lemma 2.2 that FR = {F̃i | i ∈ Z} is a bounded filtration of R, and [P, Lemma 1.1]
implies that FR extends to a maximal bounded filtration G = {Gi | i ∈ Z} of R.

In view of Lemma 2.1, GL = {Gi ∩ L | i ∈ Z} is a bounded filtration of L, and
note that Gi ∩L ⊇ F̃i ∩L ⊇ Fi. Thus, GL ⊇ F and, since F is a maximal bounded
filtration of L, we conclude that GL = F . In particular, G0 ∩ L = F0. But G0

contains a full diagonal D = Dm(K), by [P, Lemma 2.5], and hence we see that
F0 = G0 ∩ L contains H = D ∩ L = {y ∈ D | tr y = 0}.

Finally, note that glm(K) is a direct sum of 1-dimensional adD-modules, and
hence L is a direct sum of 1-dimensional adH-modules. Furthermore, it is easy
to see that CL(H) = H and therefore the complete reducibility of the action of
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adH on L implies that NL(H) = CL(H) = H. Thus H ⊆ F0 is indeed a Cartan
subalgebra of L. �

Now let ∗ be an involution of Mm(K) of the first kind, so that ∗ acts trivially
on K. As is well known, the set of all skew-symmetric matrices under the action of
∗ is a Lie subalgebra of glm(K). For such Lie algebras, we have

Proposition 2.6. Let K be an algebraically closed field of characteristic 6= 2, let
∗ be an involution of Mm(K) of the first kind, and let L be the Lie subalgebra
of glm(K) consisting of all skew-symmetric matrices under the action of ∗. If
F = {Fi | i ∈ Z} is a maximal bounded filtration of L and if m ≥ 3, then F0

contains a Cartan subalgebra of L.

Proof. Let R = Mm(K) and let L be the Lie subalgebra of glm(K) consisting of all
skew-symmetric matrices under the action of ∗. Since m ≥ 3, [He, Theorem 2.1.10]
implies that L generates R. Furthermore, if x ∈ L is ad-nilpotent on glm(K), then
it follows from Lemma 2.3(iii) that x is a nilpotent matrix. We therefore conclude
from Lemma 2.2 that FR = {F̃i | i ∈ Z} is a bounded filtration of R, and we note
that each Fi is ∗-stable. Thus each F̃i is also ∗-stable and, by [P, Lemma 1.1], FR

extends to a bounded ∗-stable filtration G = {Gi | i ∈ Z} maximal in the collection
of all ∗-stable bounded filtrations.

In view of Lemma 2.1, GL = {Gi ∩ L | i ∈ Z} is a bounded filtration of L, and
note that Gi ∩L ⊇ F̃i ∩L ⊇ Fi. Thus, GL ⊇ F and, since F is a maximal bounded
filtration of L, we conclude that GL = F . In particular, G0 ∩ L = F0. By [P,
Lemma 5.7], we can write 1 = e1 + e2 + · · ·+ em as an orthogonal sum of primitive
idempotents with D = Dm(K) =

∑m
i=1 Kei ⊆ G0. Furthermore, {e1, e2, . . . , em} is

a ∗-stable set containing at most one ∗-stable idempotent. In particular, F0 = G0∩L
contains H = D ∩ L =

∑m
i=1 K(ei − e∗i ).

Finally, note that glm(K) is a direct sum of 1-dimensional adD-modules, and
hence L is a direct sum of 1-dimensional adH-modules. Furthermore, it is easy to
see that H is self centralizing in L. Indeed, if ei 6= e∗i , then the centralizer of ei−e∗i
in R also commutes with (ei − e∗i )

2 = ei + e∗i , and hence it centralizes both ei and
e∗i . Since {e1, e2, . . . , em} contains at most one idempotent fixed by ∗, it therefore
follows easily that CR(H) = CR(D) = D and hence that CL(H) = D ∩ L = H.
The complete reducibility of the action of adH on L now implies that NL(H) =
CL(H) = H, and H ⊆ F0 is indeed a Cartan subalgebra of L. �

The preceding two propositions now combine to yield

Corollary 2.7. Let K be the field of complex numbers and let L be a simple K-Lie
algebra of type An, Bn, Cn or Dn. If F = {Fi | i ∈ Z} is a maximal bounded
filtration of L, then F0 contains a Cartan subalgebra of L.

Proof. The simple Lie algebras L of type An, Bn, Cn or Dn are described in [Hu,
Section 1.1]. Type An is, of course, sln+1(K), while Bn, Cn and Dn are defined
to be the set of all matrices x in Mm(K) satisfying sx = −xT s where xT is the
transpose of x. Here m = 2n or 2n + 1, and s is a suitable fixed matrix depending
upon the type. In particular, if ∗ : Mm(K) → Mm(K) is given by y∗ = s−1yT s,
then ∗ is easily seen to be an involution of the matrix ring since sT = ±s, and L is
the set of all skew-symmetric matrices under the action of ∗. Propositions 2.5 and
2.6 now yield the result. �
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The five remaining simple Lie algebras L, namely those of type E6, E7, E8, F4

and G2 are not easily identified as subspaces of a suitable Mm(K). Thus, they have
to be treated differently. In Section 7, we will discuss some techniques which may
lead to a proof of the analog of Corollary 2.7 for these algebras.

3. Cartan Filtrations

Let L be a finite-dimensional simple Lie algebra over the complex numbers K.
In this section, we consider filtrations F = {Fi | i ∈ Z} where, of course, each
Fi is a K-subspace of L. For convenience, we say that a bounded Z-filtration F
of L is Cartan if F0 contains a Cartan subalgebra L0 of L. Our goal here is to
determine the maximal bounded Z-filtrations of L that are also Cartan. Note that,
if G = {Gi | i ∈ Z} is a filtration containing the filtration F , then G0 ⊇ F0 ⊇ L0 and
hence G is also Cartan. Let L = L0 +

∑
α∈Φ Lα be the root space decomposition of

L. Here Φ = Φ(L) is the set of roots of L and each Lα with α ∈ Φ is a 1-dimensional
subspace of L. The basic tool here is the degree function f of F defined by

f(α) = min{i ∈ Z | Lα ⊆ Fi}.
Since F is bounded, f(α) is a well-defined integer for all α ∈ Φ. For convenience,
set Φ′ = Φ ∪ 0 and define f(0) = 0.

Lemma 3.1. Let F = {Fi | i ∈ Z} be a Cartan filtration of the simple Lie algebra
L and let f be its degree function.

(i) For each i ∈ Z, we have Fi =
∑

Lα, where the sum is over all α ∈ Φ′ with
f(α) ≤ i. In particular, f uniquely determines the filtration.

(ii) If α, β and α + β are contained in Φ, then f(α) + f(β) ≥ f(α + β).
Furthermore, f(α) + f(−α) ≥ 0.

(iii) If G = {Gi | i ∈ Z} is a second Cartan filtration of L with degree function
g, then G contains F if and only if g(α) ≤ f(α) for all α ∈ Φ.

Proof. (i) Since F0 ⊇ L0, it follows that [L0, Fi] ⊆ Fi for all i ∈ Z. Thus Fi is
an L0-module under the adjoint action and hence each such Fi is a direct sum of
various Lα’s with α ∈ Φ along with Fi ∩ L0. Note that Lα ⊆ Fi if and only if
i ≥ f(α). Furthermore, by assumption, L0 ⊆ F0 ⊆ Fi for all i ≥ 0. Also, because
no nonzero element of L0 can be ad-nilpotent on L, we must have L0 ∩ Fi = 0 if
i < 0. Since f(0) = 0, the result is now clear.

(ii) Say f(α) = a and f(β) = b. Then Lα ⊆ Fa and Lβ ⊆ Fb, so [Lα, Lβ ] ⊆
[Fa, Fb] ⊆ Fa+b. Since α + β ∈ Φ, we know that [Lα, Lβ ] = Lα+β by [Hu,
Proposition 8.4]. Thus Lα+β ⊆ Fa+b and, by definition, we have f(α + β) ≤
a + b = f(α) + f(β). Furthermore, 0 6= [Lα, L−α] ⊆ L0 ⊆ F0, so we also have
f(α) + f(−α) ≥ f(0) = 0.

(iii) In view of the above, the inclusions Fi ⊆ Gi for all i ∈ Z occur if and
only if Lα ⊆ Fi implies that Lα ⊆ Gi. Obviously, the latter occurs precisely when
f(α) ≥ g(α) for all α ∈ Φ. �

Now let V be the real inner product space determined by Φ(L), the root set of
L. If λ : V → R is a linear functional, we define the filtration Fλ = {Fi | i ∈ Z} by
Fi =

∑
α Lα, where the sum is over all α ∈ Φ′ with λ(α) ≤ i. Recall that if a ∈ R

is a real number then dae is the smallest integer bigger than or equal to a.

Lemma 3.2. If λ : V → R, then Fλ is a Cartan filtration of L with degree function
given by fλ(α) = dλ(α)e.



10 Y. BARNEA AND D. S. PASSMAN

Proof. Fix a, b ∈ Z, let Lα be a summand of Fa and let Lβ be a summand of Fb.
Then α, β ∈ Φ′ and, by definition, we have a ≥ λ(α) and b ≥ λ(β). If [Lα, Lβ ] = 0,
then certainly [Lα, Lβ ] ⊆ Fa+b. On the other hand, if [Lα, Lβ ] 6= 0, then we know
that γ = α + β ∈ Φ′ and that [Lα, Lβ ] ⊆ Lγ . But then λ(γ) = λ(α) + λ(β) ≤ a + b,
so Lγ ⊆ Fa+b and again we conclude that [Lα, Lβ ] ⊆ Fa+b. Thus, Fλ is a filtration,
and it is Cartan since λ(0) = 0. Finally, Lα ⊆ Fi if and only if i ≥ λ(α), so the
minimum value of the integer i is precisely dλ(α)e. �

Since Fλ is a Z-filtration, it is clear that Fλ does not uniquely determine λ in
general, and certainly not all of these are maximal. Indeed, when we determine
which of these dual filtrations are maximal, we will have to consider those λ in the
dual space V̂ of V with λ(Φ) ⊆ Z or perhaps with some other restriction on the
values taken on. These specific questions will be discussed and answered in the
next several sections. Now, we note

Lemma 3.3. Fλ is the filtration associated with a Z-grading of L, having L0 in
the 0-component, if and only if λ(Φ) ⊆ Z.

Proof. If λ(Φ) ⊆ Z, then Fλ comes from the Z-grading obtained by giving Lα the
grade λ(α). On the other hand, if Fλ comes from such a grading then, since L0

is in the 0-component, it follows as above that each component is a direct sum of
suitable Lα with α ∈ Φ′. But, for α 6= 0, we have 0 6= [Lα, L−α] ⊆ L0, so the
grade of Lα and of L−α must be negatives of each other. This, in turn, implies
that dλ(α)e = −dλ(−α)e = −d−λ(α)e = bλ(α)c, where the latter expression is the
greatest integer in λ(α). Hence, λ(α) ∈ Z. �

Now, if all roots in Φ have the same length, then we consider them to be short.
Otherwise, there are two different lengths, the short roots and the long ones. For
convenience, we let ‖σ‖ denote the common length of a short root. If α ∈ Φ, we
define k(α) to equal the number of short roots β with (α, β) < 0 and β 6= ±α.
Next, we define

d(α) =

{
(k(α) + 4)·(‖α‖/‖σ‖)2, if α is a short root;
k(α)·(‖α‖/‖σ‖)2, if α is a long root.

Since the Weyl group acts transitively on the roots in Φ having the same length
[Hu, Lemma 10.4C], it is clear that the parameters k(α) and d(α) depend only upon
the length of the root α ∈ Φ(L). With this, and using the description of V as given
in [Bo, Plates I-IX], it is easy to determine the entries in the following table.

Short Root Long Root
Type k(α) d(α) k(α) d(α)
An 2(n− 1) 2(n + 1) none
Bn 0 4 2 4
Cn 4(n− 2) 4(n− 1) 2(n− 1) 4(n− 1)
Dn 4(n− 2) 4(n− 1) none
E6 20 24 none
E7 32 36 none
E8 56 60 none
F4 8 12 6 12
G2 2 6 2 6
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As a consequence of the Bn, Cn, F4 and G2 computations above, we have

Lemma 3.4. If L is a simple Lie algebra, then the parameter d = d(α) is the same
for all roots α ∈ Φ(L).

We will offer a partial explanation for this equality after Lemma 3.6 is proved.
Next, we need

Lemma 3.5. Let α, β ∈ Φ with α 6= ±β and with β a short root. If (α, β) < 0,
then α + β is a short root in Φ, (α, β) = −‖α‖2/2 and (α, α + β) = −(α, β).

Proof. Since (α, β) < 0, [Hu, Lemma 9.4] implies that α+β is a root. Furthermore,
using ‖α‖ ≥ ‖β‖, we see that 2(α, β)/‖α‖2 = <β, α> = −1. In particular, (α, β) =
−‖α‖2/2, and ‖α + β‖2 = ‖α‖2 + 2(α, β) + ‖β‖2 = ‖β‖2. Thus α + β is short, and
(α, α + β) = ‖α‖2 + (α, β) = −(α, β), as required. �

With this observation, we can now prove the following key lemma in a surpris-
ingly easy manner. Here d is the parameter given by Lemma 3.4.

Lemma 3.6. Let F = {Fi | i ∈ Z} be a Cartan filtration of the simple Lie algebra
L. If V is the root space of L, then there exists a linear functional λ : V → R such
that F ⊆ Fλ and λ(Φ) ⊆ Z/d.

Proof. Let f be the degree function of F , let Ψ denote the set of short roots in Φ,
and let d > 0 be the common value of the d(α) as given in Lemma 3.4. Define the
functional µ : V → R by

µ(v) =
∑
β∈Ψ

2(v, β)·f(β)/‖β‖2

and let λ : V → R be given by λ = µ/d. We will show that F ⊆ Fλ.
To this end, fix α ∈ Φ and let Ψ(α) denote the set of short roots β with β 6= ±α

and with (α, β) < 0. Recall that the size of Ψ(α) is precisely equal to k(α).
Furthermore, note that Ψ∗(α) = −Ψ(α) is the set of short roots β with β 6= ±α
and with (α, β) > 0. In particular, this set is disjoint from Ψ(α) and they both
have the same size. By the preceding lemma, if β ∈ Ψ(α), then α + β ∈ Ψ∗(α).
Thus, by size considerations, the set α + Ψ(α) of all such α + β is precisely equal
to Ψ∗(α).

Now let β ∈ Ψ(α). Since α + β ∈ Φ by Lemma 3.5, Lemma 3.1(ii) implies that
f(α) ≥ f(α + β) − f(β). Thus, since −(α, β) = ‖α‖2/2 > 0, we can multiply the
previous inequality by this positive quantity to obtain

‖α‖2·f(α)/2 ≥ (α, β)·f(β)− (α, β)·f(α + β).

In particular, since (α, α + β) = −(α, β) by Lemma 3.5, this yields

‖α‖2·f(α)/2 ≥ (α, β)·f(β) + (α, α + β)·f(α + β).

Hence, summing over all β ∈ Ψ(α), we get

‖α‖2·k(α)·f(α)/2 ≥
∑

β∈Ψ(α)

(α, β)·f(β) +
∑

β∈Ψ(α)

(α, α + β)·f(α + β).

As we indicated, the set α + Ψ(α) is precisely equal to Ψ∗(α), so the second sum-
mation above is just

∑
β∈Ψ∗(α)(α, β)·f(β), and hence we have

(∗) ‖α‖2·k(α)·f(α)/2 ≥
∑

β∈Ψ(α)∪Ψ∗(α)

(α, β)·f(β).
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Now if α is a long root, then Ψ(α) ∪ Ψ∗(α) is the set of all short roots β ∈ Ψ
with (α, β) 6= 0. Thus, the right-hand summand in (∗) is unchanged if we add the
remaining short roots β, since all of these satisfy (α, β) = 0. Doing this, we then
obtain

‖α‖2·k(α)·f(α)/2 ≥
∑
β∈Ψ

(α, β)·f(β).

Thus, since ‖β‖2 = ‖σ‖2 for all β ∈ Ψ, we have

d(α)·f(α) = k(α)·f(α)·(‖α‖/‖σ‖)2 ≥
∑
β∈Ψ

f(β)·2(α, β)/‖β‖2 = µ(α)

and hence f(α) ≥ µ(α)/d(α) = µ(α)/d = λ(α).
On the other hand, if α is a short root, then there are two additional short roots

β with (α, β) 6= 0, namely β = α and β = −α. But certainly

‖α‖2·2·f(α)/2 ≥ (α, α)·f(α)

and, by Lemma 3.1(ii), we have f(α) ≥ −f(−α), so

‖α‖2·2·f(α)/2 ≥ (α,−α)·f(−α).

By adding these two expressions to (∗) and then adding all those short roots with
(α, β) = 0, we get

‖α‖2·(k(α) + 4)·f(α)/2 ≥
∑
β∈Ψ

(α, β)·f(β),

and hence

d(α)·f(α) = (k(α) + 4)·f(α)·(‖α‖/‖σ‖)2 ≥
∑
β∈Ψ

f(β)·2(α, β)/‖β‖2 = µ(α).

Again, we have f(α) ≥ µ(α)/d(α) = µ(α)/d = λ(α).
Thus, for both short roots and long roots, we have f(α) ≥ λ(α) and, since f(α)

is an integer, this yields f(α) ≥ dλ(α)e = fλ(α), by Lemma 3.2. Hence since Fλ is
a Cartan filtration, Lemma 3.1(iii) yields Fλ ⊇ F , and the result follows. Note also
that 2(α, β)/‖β‖2 ∈ Z for all roots α, β ∈ Φ, so µ(Φ) ⊆ Z and λ(Φ) ⊆ Z/d. �

The above argument certainly used the fact that d(α) is the same for all roots in
Φ(L). But the proof can also be used to obtain this equality. Indeed, let us write ds

for the common value of d(α) over all short roots α, guaranteed by the transitivity
of the Weyl group, and use d` for the case of long roots. Let κ : V → R be a nonzero
linear functional with κ(Φ) ⊆ Z and set F = Fκ. Then f(α) = fκ(α) = κ(α) for
all α ∈ Φ and, as we observed previously, F is the filtration associated with a
Z-grading of L.

The latter implies that if α, β and α + β are in Φ, then f(α) + f(β) = f(α + β)
and f(α) + f(−α) = 0. In particular, all of the inequalities in the proof of the
above lemma are equalities in this special case. It then follows that if α is a
long root, then κ(α) = f(α) = µ(α)/d`. Similarly, if α is a short root, we have
κ(α) = f(α) = µ(α)/ds. Since the long roots span V , by [Hu, Lemma 10.4B], the
first equation implies that κ = µ/d`. Since the short roots span V , we also have
κ = µ/ds. In other words, d`κ = µ = dsκ and, since κ 6= 0, we conclude that
d` = ds, as required.
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4. Maximal Dual Filtrations

Let Φ denote the set of roots of the Lie algebra L, and let V be the real inner
product space they span. In this section, we consider the set M of all linear func-
tionals λ in the dual space V̂ of V for which the filtration Fλ is maximal. We start
with a simple observation.

Lemma 4.1. Assume that Fλ ⊆ Fµ. If α ∈ Φ is a root with λ(α) ∈ Z, then
λ(α) = µ(α). In particular, if the root space V has a basis of roots {α1, α2, . . . , αn}
with λ(αi) ∈ Z for all i, then λ = µ and hence Fλ = Fµ.

Proof. Since Fλ ⊆ Fµ, it follows from Lemmas 3.1(iii) and 3.2 that the corre-
sponding degree functions satisfy dλ(ω)e = fλ(ω) ≥ fµ(ω) = dµ(ω)e for all roots
ω ∈ Φ. In particular, when ω = α or −α, we have λ(α) ≥ dµ(α)e ≥ µ(α) and
−λ(α) ≥ d−µ(α)e ≥ −µ(α). Thus λ(α) = µ(α), as required. �

Conversely, we have the following key result.

Lemma 4.2. Let Fλ be a maximal filtration of L. Then the root space V has a
basis of roots {α1, α2, . . . , αn} with λ(αi) ∈ Z for all i.

Proof. Let W be the real subspace of V spanned by all those roots α ∈ Φ with
λ(α) ∈ Z. The goal is to show that W = V . Suppose, by way of contradiction that
this is not the case. Since Φ spans V , we can extend a basis of W to one of V by
adjoining roots β0, β1, . . . , βk ∈ Φ with k ≥ 0. Let δ0 be the dual basis functional
on V corresponding to β0, so that δ0(β0) = 1, δ0(βi) = 0 for i > 0, and δ0(W ) = 0.
For any real number t, we define the functional λt : V → R by λt = λ+ tδ0, and we
study the behavior of this functional with t in the interval (0, 1).

Since δ0 vanishes on W , we see that λ and λt agree on this subspace. Hence λt

does not change on roots α with λ(α) ∈ Z. The remaining roots ω all have λ(ω)
strictly between two consecutive integers, and hence dλt(ω)e = dλ(ω)e when t is
small. On the other hand, λt(β0) = λ(β0) + t, so λt(β0) will take on an integer
value for some t in (0, 1). Since the root set Φ is finite, we can now let t ∈ (0, 1)
be minimal with λt(ω0) ∈ Z for some root ω0 /∈ W . We consider the associated
filtration F = Fλt with degree function f = fλt .

If ω ∈ Φ ∩W , then λt(ω) = λ(ω) and hence, by Lemma 3.2, f(ω) = dλt(ω)e =
dλ(ω)e = fλ(ω). If ω ∈ Φ\W with λt(ω) /∈ Z, then the minimality of t implies that
λt(ω) and λ(ω) are in the same open interval (b, b+1) with b ∈ Z. Hence, we again
have f(ω) = dλt(ω)e = dλ(ω)e = fλ(ω). Thus, we need only consider the roots like
ω0 with the property that λt(ω) has just become an integer. Of course, with any
such root ω, we also have λt(−ω) = −λt(ω) ∈ Z.

Suppose λt(ω) has just become an integer and say a < λ(ω) < a + 1 for some
a ∈ Z. Then −a − 1 < λ(−ω) < −a, so fλ(ω) = dλ(ω)e = a + 1 and fλ(−ω) =
dλ(−ω)e = −a. By the minimality of t, we know that λt(ω) = a or a + 1. If
λt(ω) = a, then dλt(ω)e = a and dλt(−ω)e = −a, so

f(ω) = dλt(ω)e = a < a + 1 = dλ(ω)e = fλ(ω)

and
f(−ω) = dλt(−ω)e = −a = dλ(−ω)e = fλ(−ω).

On the other hand, if λt(ω) = a + 1, then dλt(ω)e = a + 1 and dλt(−ω)e = −a− 1.
Thus

f(ω) = dλt(ω)e = a + 1 = dλ(ω)e = fλ(ω)
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and
f(−ω) = dλt(−ω)e = −a− 1 < −a = dλ(−ω)e = fλ(−ω).

In either case, we see that the degree function f is strictly smaller than fλ, so
Lemma 3.1(iii) implies that F = Fλt is strictly larger than Fλ. Since this contra-
dicts the fact that Fλ is a maximal bounded filtration, we conclude that W = V . �

With this, we can now quickly prove

Proposition 4.3. Let V be the root space of the Lie algebra L and let Fλ be a dual
filtration with λ : V → R. Then Fλ is a maximal filtration of L if and only if V has
a basis {α1, α2, . . . , αn} consisting of roots with λ(αi) ∈ Z for all i. Furthermore,
when this occurs, then Fλ = Fµ implies that λ = µ.

Proof. If Fλ is maximal, then the previous lemma implies that a suitable basis
{α1, α2, . . . , αn} ⊆ Φ exists with λ(αi) ∈ Z for all i. Conversely, suppose that this
basis exists and let F be any filtration with Fλ ⊆ F . Then, by Lemma 3.6, there
exists a dual filtration Fµ with F ⊆ Fµ. Since Fλ ⊆ Fµ, Lemma 4.1 and the basis
information now imply that λ = µ, so Fλ = F = Fµ and we conclude that Fλ is
indeed maximal. A second application of Lemma 4.1 yields the result. �

For each of the finitely many bases B of V consisting of roots, let

ΛB = {λ ∈ V̂ | λ(B) ⊆ Z}.

Since dimR V = n, it follows that ΛB is a subgroup of V̂ isomorphic to Zn. Now
suppose that B0 ⊆ Φ is a basis of Φ. By this, we mean that any root in Φ is an
integer linear combination of the elements of B0, and uniquely so. Setting

ΛΦ = {λ ∈ V̂ | λ(Φ) ⊆ Z},

we see that ΛΦ = ΛB0 , ΛB ⊇ ΛΦ and |ΛB : ΛΦ| < ∞ for any basis B ⊆ Φ of V .
Finally, if d is the common value of the parameter d(α) as given by Lemma 3.4,
then clearly

ΛΦ/d = {λ ∈ V̂ | λ(Φ) ⊆ Z/d}.

With all this notation, we have

Corollary 4.4. Let M ⊆ V̂ be the set of all linear functionals λ with Fλ a maximal
bounded filtration.

(i) M =
⋃

B ΛB, a finite union of subgroups of V̂ , each isomorphic to Zn.
(ii) If λ ∈ M, then Zλ ⊆ M.
(iii) M is a finite union of cosets of the group ΛΦ

∼= Zn.
(iv) M ⊆ ΛΦ/d.

Proof. Part (i) is an immediate consequence of Proposition 4.3, and parts (ii) and
(iii) follow directly from it. Finally, if λ ∈ M then, by Lemma 3.6, there exists a
functional λ′ ∈ ΛΦ/d with Fλ ⊆ Fλ′ . Thus Fλ = Fλ′ and hence λ = λ′ ∈ ΛΦ/d by
the uniqueness aspect of Proposition 4.3. �

In the next two sections, we will take a closer look at M for each type of simple
Lie algebra.
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5. Maximal Dual Filtrations for An, Bn, Cn, Dn

In view of Lemma 3.6, the maximal Cartan filtrations of L are necessarily dual
filtrations associated to linear functionals λ : V → R. In this section, we determine
precisely which dual filtrations are maximal for the families An, Bn, Cn and Dn.
Surprisingly, there are real differences between these four cases and consequently it
is necessarily to deal with them separately. We start with An, where the filtrations
behave quite like those of full matrix rings (see [P, Theorem 3.6(ii)]).

Proposition 5.1. Let L be a simple Lie algebra of type An, with n ≥ 1, and let F
be a bounded Cartan Z-filtration of L. Then F is maximal if and only if F = Fλ,
where λ : V → R is a linear functional with λ(Φ) ⊆ Z.

Proof. If F = Fλ with λ(Φ) ⊆ Z, then it follows immediately from Proposition 4.3
that F is maximal.

Conversely, suppose F is a maximal Cartan filtration. Then Lemma 3.6 implies
that F = Fλ for some functional λ. Let W be the real inner product space of
dimension n + 1 with orthonormal basis {e0, e1, . . . , en}. Then V is a hyperplane
in W and Φ(L) is the set of all ei − ej with i 6= j. Extend λ to a linear functional
on W and let λ(ei) = wi ∈ R. Set vi = dwie and define µ : W → R by µ(ei) = vi.
If fλ is the degree function of Fλ and if fµ is the degree function for Fµ, then for
all roots α = ei − ej we have

fλ(α) = dλ(α)e = dwi − wje ≥ dwie − dwje = vi − vj = µ(α) = fµ(α),

by [P, Lemma 3.3]. Thus Lemma 3.1(iii) implies that Fλ ⊆ Fµ and, by the maxi-
mality of Fλ, we have Fλ = Fµ. Hence, the uniqueness aspect of Proposition 4.3
yields λ = µ, and therefore λ(Φ) = µ(Φ) ⊆ Z. �

For the remaining three families we consider in this section, it is convenient to
first isolate a few arithmetic facts. For any real number x, let us define its average
to be

av x =
bxc+ dxe

2
.

Note that av x ∈ Z/2, the set of half integers. Indeed, if x is an integer, then
certainly av x = x. On the other hand, if k < x < k + 1 for some k ∈ Z, then
av x = k + (1/2). When we speak about the parity of a number in Z/2, we will
mean the parity of its numerator. Thus, the even parity numbers are precisely the
integers, while the odd parity numbers are elements of the set Z + (1/2).

Lemma 5.2. Let x, y ∈ R. Then we have dxe ≥ av x, av(−x) = −(av x), and
dx + ye ≥ av x + av y.

Proof. If x is an integer, then av(−x) = −x = −(av x). On the other hand, if k <
x < k + 1 for some k ∈ Z, then av x = k + (1/2). Furthermore, −k− 1 < −x < −k,
so av(−x) = −k − 1 + (1/2) = −k − (1/2) = −(av x).

Now, if y is an integer, then

dx + ye = dxe+ y ≥ av x + av y.

Similarly, the inequality holds if x is an integer. Finally, if a < x < a + 1 and
b < y < b + 1 with a, b ∈ Z, then x + y > a + b, so

dx + ye ≥ a + b + 1 = (a + (1/2)) + (b + (1/2)) = av x + av y,

as required. �
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For the simple Lie algebras of type Bn, Cn or Dn, it seems more appropriate to
describe the functionals in terms of the orthonormal basis Ω = {e1, e2, . . . , en} for
V given by [B, Plates II-IV]. Note however that we allow C2 to occur here, but we
insist that n ≥ 3 for Bn and Dn.

Lemma 5.3. Let L be a simple Lie algebra of type Bn, Cn or Dn. If λ : V → R is
a linear functional, then there exists a linear functional µ : V → R with µ(Ω) ⊆ Z/2
and with Fλ ⊆ Fµ.

Proof. Let λ(ei) = wi and define µ : V → R by µ(ei) = av(wi) for i = 1, 2, . . . , n.
Then certainly µ(Ω) ⊆ Z/2 and we claim that Fλ ⊆ Fµ. In view of Lemmas 3.1(iii)
and 3.2, it suffices to show that dλ(α)e = fλ(α) ≥ fµ(α) = dµ(α)e for all roots
α ∈ Φ. To start with, consider the roots α = ±ei ± ej , possibly with i = j. Then,
for any fixed choice of signs, Lemma 5.2 implies that

dλ(α)e = d±wi ± wje ≥ av(±wi) + av(±wj) = ± av(wi)± av(wj) = µ(α),

so dλ(α)e ≥ dµ(α)e. On the other hand, if α = ±ei, the same argument applies by
merely setting wj = 0. �

Finally, we combine the proofs of the following three key results.

Proposition 5.4. Let L be a simple Lie algebra of type Bn, with n ≥ 3, and let F
be a bounded Cartan Z-filtration of L. Then F is maximal if and only if F = Fλ,
where λ : V → R is a linear functional with λ(Ω) ⊆ Z/2 satisfying the additional
property that there is no subscript i0 such that λ(ei0) ∈ Z + (1/2) while λ(ei) ∈ Z
for the remaining i 6= i0.

Since the short roots of Lie algebras of type Bn are all of the form ±ei, the
condition λ(Ω) ⊆ Z/2 can be replaced by the assertion that λ takes on half integer
values on the short roots.

Proposition 5.5. Let L be a simple Lie algebra of type Cn, with n ≥ 2, and let F
be a bounded Cartan Z-filtration of L. Then F is maximal if and only if F = Fλ,
where λ : V → R is a linear functional with λ(Ω) ⊆ Z/2.

Since the long roots of L above are of the form ±2ei, the condition λ(Ω) ⊆ Z/2
is equivalent to the assertion that λ takes on integer values on the long roots. If we
choose any such λ so that not all λ(ei) have the same parity, then some λ(ei)+λ(ej)
is not an integer. In particular, λ(Φ) 6⊆ Z and hence we obtain a maximal Cartan
filtration Fλ that is not associated to a Z-grading.

Proposition 5.6. Let L be a simple Lie algebra of type Dn, with n ≥ 3, and let F
be a bounded Cartan Z-filtration of L. Then F is maximal if and only if F = Fλ,
where λ : V → R is a linear functional with λ(Ω) ⊆ Z/2 satisfying the additional
property that there is no subscript i0 such that λ(ei0) has a parity different from
that of the remaining λ(ei).

Proof. By Lemma 3.6, we know that any maximal Cartan filtration is necessarily a
dual filtration Fλ and, by Lemma 5.3 and the uniqueness part of Proposition 4.3,
we know that λ(Ω) ⊆ Z/2. Thus, by Propostion 4.3 again, we need only determine
those λ ∈ V̂ with λ(Ω) ⊆ Z/2 and with λ(B) ⊆ Z for some basis B of V consisting
entirely of roots.
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To start with, if L is of type Cn, then B = {2e1, 2e2, . . . , 2en} ⊆ Φ. Furthermore,
B is clearly a basis for V and λ(B) ⊆ Z, so any such λ yields a maximal filtration.
This proves Proposition 5.5.

Now let L be of type Bn or Dn, with n ≥ 3, and let λ be given. For convenience,
write Ω+ = {ei | λ(ei) ∈ Z} and Ω− = {ei | λ(ei) ∈ Z + (1/2)}. If i 6= j, and
λ(ei) and λ(ej) have the same parity, then λ(ei + ej) and λ(ei − ej) both belong to
Z. Furthermore, ei + ej and ei − ej are roots, and together they span Rei + Rej .
With this, it follows easily that if |Ω+| 6= 1, then RΩ+ has a basis B+ of roots
with λ(B+) ⊆ Z. Similarly, if |Ω−| 6= 1, then RΩ− has a basis B− of roots with
λ(B−) ⊆ Z. In particular, since RΩ+ + RΩ− = RΩ = V , we conclude that Fλ is
maximal unless |Ω+| = 1 or |Ω−| = 1.

Since |Ω| = n ≥ 3, it therefore suffices to assume that |Ω+| = 1 or |Ω−| = 1,
but not both. In other words, there exists a unique subscript i0 such that λ(ei0)
has parity different from the remaining λ(ei). If L is of type Dn, then the roots of
L are all of the form ±ei ± ej , with i 6= j, and it is clear that ei0 cannot belong
to the space spanned by the roots α with λ(α) ∈ Z. Thus, in this case, Fλ is not
maximal, and consequently Proposition 5.6 is proved.

On the other hand, if L is of type Bn, then L has the additional roots ±ei.
In particular, if λ(ei0) ∈ Z, then there does exist a suitable basis of roots α with
λ(α) ∈ Z. Thus, the only exceptional case here occurs when λ(ei0) ∈ Z + (1/2).
This completes the proof. �

One can prove directly that the exceptional filtrations in both Propositions 5.4
and 5.6 are not maximal. Indeed, let λ ∈ V̂ and ei0 ∈ Ω be given with λ(ei0) having
parity different from the remaining λ(ei), and set Ω′ = Ω\{ei0}. If µ : V → R agrees
with λ on RΩ′ and if µ(ei0) = λ(ei0) ± (1/2), then the argument of Lemma 4.2,
applied to any root ω = ei0 + ej , shows that Fλ is strictly smaller than Fµ.

6. Maximal Dual Filtrations for E6, E7, E8, F4 and G2

Again, we let L denote a finite dimensional simple complex Lie algebra with
root set Φ and with root space V of dimension n. Recall that M is the subset of
V̂ consisting of all linear functionals λ such that Fλ is a maximal filtration of L,
and that ΛΦ

∼= Zn is the subgroup of V̂ consisting of all linear functionals λ with
λ(Φ) ⊆ Z. Furthermore, if d is the common value of the parameters d(α) as given
by Lemma 3.4, then Corollary 4.4(iii)(iv) asserts that M is a finite union of cosets
of ΛΦ and that

ΛΦ ⊆ M ⊆ ΛΦ/d = {λ ∈ V̂ | dλ ∈ ΛΦ} ∼= Zn.

It follows that there exists a smallest positive integer e = e(L) with eλ ∈ ΛΦ for all
λ ∈ M, and that e divides d. In particular, d is an upper bound for e.

We can also obtain an easy lower bound for the parameter e. To this end, we fix
a basis B0 = {β1, β2, . . . , βn} ⊆ Φ for Φ. By this we mean that B0 is a basis for V
and that every root in Φ is an integral linear combination of the members of B0. In
particular, if α ∈ Φ, then we can write α =

∑n
i=1 ciβi uniquely with ci ∈ Z, and we

define f(α) to be the (positive) least common multiple of the nonzero coefficients
ci. With this notation, we have

Lemma 6.1. If α ∈ Φ, then f(α) divides e = e(L).
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Proof. Write α = c1β1+c2β2+· · ·+cnβn and, for convenience, suppose that cn 6= 0.
If λ : V → R is defined by λ(βj) = 0 for all j 6= n and λ(βn) = 1/cn, then λ takes
on integer values on the set {β1, β2, . . . , βn−1, α} which is clearly an R-basis of V
consisting of roots. Thus, by Proposition 4.3, we see that λ ∈ M. Furthermore,
|cn| is clearly the smallest positive integer t with tλ ∈ ΛΦ. Thus |cn| divides e, and
hence f(α) divides e. �

One expects the above result to yield the most information when the coefficients
ci are large, and this is indeed the case. Specifically, we use the bases given in the
nine plates at the end of [Bo], and we note that these plates also contain information
on the coefficients of all positive roots having at least one coefficient larger than 1.
With this, it is easy to verify that each f(α) divides f = f(β), where β is a highest
root of L. The f -row of the following chart is obtained from this data.

Type An Bn Cn Dn E6 E7 E8 F4 G2

d 2(n + 1) 4 4(n− 1) 4(n− 1) 24 36 60 12 6
e 1 2 2 2 ? ? 60 12 6
f 1 2 2 2 6 12 60 12 6

Of course, the d-row in the above comes from the chart immediately preceding
Lemma 3.4, while the e-entries for An, Bn, Cn and Dn come from the work of
Section 5. Finally, the e-entries for E8, F4 and G2 follow from the facts that f
divides e and that e divides d. This leaves only two unknown values, namely e(E6)
which is either 6, 12 or 24, and e(E7) which is either 12 or 24. It is interesting to
note that e = f for all of the known values.

In the remainder of this section, we will describe specific computations, using
Maple 9, for the algebras G2 and F4. For the five exceptional Lie algebras, computa-
tions can be based on the fact that M ⊆ ΛΦ/d and that M consists of a finite union
of cosets of the subgroup ΛΦ. Indeed, since |ΛΦ/d : ΛΦ| = dn, this means that we
need only test dn coset representatives and determine which of these elements are in
M. Furthermore, it is clear that these coset representatives can be easily described
in terms of a basis B0 = {β1, β2, . . . , βn} ⊆ Φ of Φ. In fact, one posssible choice
for this set is given by all those λ ∈ V̂ such that λ(βi) = 0/d, 1/d, . . . , or (d− 1)/d
for all i = 1, 2, . . . , n. Finally, using Proposition 4.3, we can test whether each such
λ is in M by determining all roots α ∈ Φ with λ(α) ∈ Z and seeing whether there
are enough of these roots to span the vector space V .

The general approach is as follows. Let A denote the matrix whose rows are
indexed by the positive roots α ∈ Φ and whose entries in the α-row are the coef-
ficients in the expression for α as an integral linear combination of the basis B0.
For example, if L is of type G2 then, as in [Bo, Plate IX], we have B0 = {β1, β2}
and positive roots β1, β2, β1 + β2, 2β1 + β2, 3β1 + β2, and 3β1 + 2β2. In particular,
in this case, A is the 6× 2 matrix whose transpose AT is given by

AT =
[
1 0 1 2 3 3
0 1 1 1 1 2

]
.

Next, for each of the dn choices of λ we form the column matrix B whose entries are
λ(β1), λ(β2), . . . , λ(βn). Then AB is a column matrix with α-row entry precisely
equal to λ(α). Thus, we need only determine which of these entries are integers,
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obtain the submatrix C of A consisting of all those α-rows with λ(α) ∈ Z, and then
determine the rank of C. By Proposition 4.3, λ ∈ M if and only if rank C = n.

Of course, as a practical matter, we merely keep track of the numerators of each
λ(βi) and work in the ring Z/dZ. Indeed, by so doing, we can actually think of these
coset representatives as being members of the factor group (ΛΦ/d)/(ΛΦ) which is
isomorphic to (Z/dZ)n.

When L is of type G2, there are dn = 62 = 36 possibilities to consider and 6
of these (or 16.7%) turn out to be members of M. These are listed in the chart
below, where each entry is an ordered pair of numbers in Z/6Z corresponding to
the values (λ(β1), λ(β2)).

G2: Order ≤ 2 Order 3
(0,0) (0,3) (3,0) (3,3) (2,0) (4,0)

As we remarked above, we view these elements as members of the factor group
(ΛΦ/6)/(ΛΦ) ∼= (Z/6Z)2. Since the first four of these elements have order ≤ 2, we
see that they constitute all four elements of (Z/2Z)2 ⊆ (Z/6Z)2. Translating this
back to ΛΦ/6, it follows that M ⊇ ΛΦ/2. The remaining two elements have order 3
and are inverses of each other. We conclude that M = (ΛΦ/2) ∪H where H is the
cyclic extension of ΛΦ of type (3) generated by the functional λ with λ(β1) = 1/3
and λ(β2) = 0. This, of course, agrees with the result of Corollary 4.4(i) which
asserts that M is a finite union of subgroups of V̂ , each containing ΛΦ.

The computations for L of type F4 proceed in a similar manner. In this case,
it is easier to describe the roots in terms of the elements {e1, e2, e3, e4}, and so
the matrix A is constructed using this basis for V , and its entries are integers
and half integers. For any coset representative λ defined by its values on B0 =
{e2−e3, e3−e4, e4, (e1−e2−e3−e4)/2}, we first compute λ(e1), λ(e2), λ(e3), λ(e4)
and use these as the entries of the column matrix B. Again, the α-entry of the
column matrix AB is equal to λ(α). There are 124 = 20, 736 possibilities to consider
and surprisingly only 72 (or 0.35%) correspond to members of M. These 72 coset
representatives, viewed in (Z/12Z)4, are listed in the following three tables. The
first table indicates that the coset representatives in M, viewed in the factor group,
include all 16 elements of (Z/12Z)4 having order ≤ 2, and hence M ⊇ ΛΦ/2.

F4: Order ≤ 2
(0,0,0,0) (6,0,0,0) (0,6,0,0) (0,0,6,0)
(0,0,0,6) (6,6,0,0) (6,0,6,0) (6,0,0,6)
(0,6,6,0) (0,6,0,6) (0,0,6,6) (6,6,6,0)
(6,6,0,6) (6,0,6,6) (0,6,6,6) (6,6,6,6)

Next, we consider the set S4 of coset representatives in M having order 4 modulo
ΛΦ. There are 24 of these and surprisingly they group into three sets of size 8 each
having the same square. Thus the elements in the first two rows each have square
(0, 0, 0, 6), the elements in the third and fourth rows have square (0, 0, 6, 0), and
those in the last two rows have square (0, 0, 6, 6). Note that, in each pair of rows,
each element occurs with its inverse in the same column.
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F4: Order 4
(0,0,6,3) (0,6,0,3) (6,0,6,3) (6,6,6,3)
(0,0,6,9) (0,6,0,9) (6,0,6,9) (6,6,6,9)
(0,0,3,0) (0,6,3,6) (6,0,3,6) (6,6,3,6)
(0,0,9,0) (0,6,9,6) (6,0,9,6) (6,6,9,6)
(0,0,3,3) (0,6,3,9) (6,0,3,3) (6,6,3,3)
(0,0,9,9) (0,6,9,3) (6,0,9,9) (6,6,9,9)

As in our previous discussion, we would like to combine as many of these elements
as possible into subgroups of (Z/12Z)4 consisting entirely of elements of M/ΛΦ. To
start with, if x, y ∈ S4 have different squares, then it is easy to check that xy2 /∈ M.
Thus, we can only group together elements with the same square. In this case, it
is tempting to suspect, for example, that the 8 elements in the first two rows are
the eight elements of order 4 in a group isomorphic to (Z/4Z) × (Z/2Z)2, but it
is easy to check that this is not the case, Thus, the best we can hope to do is to
combine elements into groups of order 8 and this is quite easy. Indeed, let x and
y be commuting group elements of order 4 with x2 = y2 and y 6= x±1. Then x
and y generate a group 〈x, y〉 of order 8 having x±1, y±1 as its four elements of
order 4. Since we know that all elements of order 1 and 2 are contained in M/ΛΦ,
it follows that 〈x, y〉 ⊆ M/ΛΦ. In particular, by combining elements of order 4 as
above, we can partition S4, in numerous ways, as the disjoint union of six sets, each
corresponding to the elements of order 4 in a subgroup of (Z/12Z)4 isomorphic to
(Z/4Z)× (Z/2Z). Hence M ⊇

⋃6
i=1 Hi, where each Hi is a subgroup of V̂ which is

a (4, 2) extension of ΛΦ.
Finally, M/ΛΦ contains 32 elements of order 3, and we denote the subset of these

elements by S3. Furthermore, it is not hard to see that (ΛΦ/12)/(ΛΦ) contains
precisely eight subgroups of type (3, 3) having their 8 nonidentity elements in S3,
and each element of S3 is contained in precisely two of these subgroups. Since any
such subgroup intersects four others nontrivially, it is necessarily disjoint from the
remaining three. As a consequence, if S3 can be partitioned into a disjoint union
of some of these 8 element sets, then each of these subsets can be contained in at
most one partition of this type. In particular, S3 has at most two such partitions,
one of which is given below. Here, each pair of rows constitutes an 8 element set,
and each element occurs with its inverse in the same column.

F4: Order 3 (Partition 1)
(0,0,4,0) (4,4,0,4) (4,4,4,4) (4,4,8,4)
(0,0,8,0) (8,8,0,8) (8,8,8,8) (8,8,4,8)
(0,4,0,0) (4,0,8,8) (4,4,8,8) (4,8,8,8)
(0,8,0,0) (8,0,4,4) (8,8,4,4) (8,4,4,4)
(0,4,0,4) (4,0,4,4) (4,4,4,8) (4,8,4,0)
(0,8,0,8) (8,0,8,8) (8,8,8,4) (8,4,8,0)
(0,4,4,8) (4,0,8,0) (4,4,0,8) (4,8,4,4)
(0,8,8,4) (8,0,4,0) (8,8,0,4) (8,4,8,8)

As a consequence, the above table describes four of the eight (3, 3) subgroups. As
it turns out, a second partition also exists and is given below. Hence, the following
table describes the remaining four subgroups. By using either of these partitions,
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along with our previous comments on the elements of order 2 and 4, we conclude
that M can be described as a union of eleven subgroups, namely

M = (ΛΦ/2) ∪
6⋃

i=1

Hi ∪
4⋃

j=1

H̃j ,

where each H̃j is a (3, 3) extension of ΛΦ.

F4: Order 3 (Partition 2)
(0,0,4,0) (4,4,0,8) (4,4,4,8) (4,4,8,8)
(0,0,8,0) (8,8,0,4) (8,8,8,4) (8,8,4,4)
(0,4,0,0) (4,0,4,4) (4,4,4,4) (4,8,4,4)
(0,8,0,0) (8,0,8,8) (8,8,8,8) (8,4,8,8)
(0,4,0,4) (4,0,8,0) (4,4,8,4) (4,8,8,8)
(0,8,0,8) (8,0,4,0) (8,8,4,8) (8,4,4,4)
(0,4,4,8) (4,0,8,8) (4,4,0,4) (4,8,4,0)
(0,8,8,4) (8,0,4,4) (8,8,0,8) (8,4,8,0)

Note that, for Lie algebras of type An, Bn, Cn, Dn, F4 and G2, the set M/ΛΦ

contains only elements of prime power order. However, the construction given in
Lemma 6.1 shows that, if L ∼= E8, then M/ΛΦ contains an element of order 6. A
complete description and count of the maximal functionals for all the isomorphism
types of Lie algebras can be found in part II of this work, [BP]. We show, for
example, in a noncomputational manner, that the orders of the elements of M/ΛΦ

are 1, 2, 3, 4, 5 or 6. In particular, the equality e = f always holds, and there is a
real reason for this to occur. Furthermore, some of the properties mentioned above,
concerning the functionals for G2 and F4, are easily explained in this new context.
The work in [BP] is based on techniques and results from the paper [D1], since we
associate to each functional a certain semisimple subalgebra of L of maximal rank.

Finally, Maple 9 worksheets, in text readable format, for specific computations
in all the exceptional Lie algebras can be found on www.math.wisc.edu/˜passman/
abstracts.html.

7. Lie Algebras with Trivial Centers

If L is one of the five exceptional simple finite dimensional complex Lie algebras
and if F = {Fi | i ∈ Z} is a maximal bounded filtration of L, then we have not as
yet been able to show that F0 contains a Cartan subalgebra of L. In this section,
we offer some general Lie theoretic lemmas which may eventually lead to a solution
of this problem. As will be apparent, these results hold in a much more general
context. To start with, let L be an arbitrary Lie algebra over a field K. If Z(L),
the center of L is nonzero, then L has no maximal filtrations. Indeed, any bounded
filtration can be properly enlarged by adjoining Z(L) to each nonzero term and to
any number of zero terms. Thus, in the following, we assume that L is an arbitrary
Lie algebra, but with the additional condition that Z(L) = 0. The first result is
fairly easy and not unexpected.

Lemma 7.1. Let F = {Fi | i ∈ Z} be a maximal bounded filtration of L. If
Gi = {x ∈ L | [x, Fj ] ⊆ Fi+j for all j ∈ Z}, then Fi = Gi for all i.
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Proof. It is clear that each Gi is a subspace of L and that Gi ⊇ Fi. Thus, it suffices
to show that G = {Gi | i ∈ Z} is a bounded filtration. To this end, note first that
[Gi, Fk] ⊆ Fi+k implies that

[[Gi, Gj ], Fk] ⊆ [[Gj , Fk], Gi] + [[Fk, Gi], Gj ]

⊆ [Fj+k, Gi] + [Fi+k, Gj ] ⊆ Fi+j+k.

Thus [Gi, Gj ] ⊆ Gi+j . Furthermore, [Gi, Fk] ⊆ Fi+k ⊆ Fi+1+k, so Gi ⊆ Gi+1

and G is indeed a filtration. Finally, if Fa = 0 and Fb = L, then Gb = L and
[Ga−b, L] = [Ga−b, Fb] ⊆ Fa = 0. In other words, Ga−b ⊆ Z(L) and hence, by
assumption, Ga−b = 0. Thus G is bounded and the result follows. �

In particular, with i = 0, we have

F0 = {x ∈ L | [x, Fj ] ⊆ Fj for all j ∈ Z} =
⋂
j

NL(Fj),

where NL denotes the normalizer in L. We will sharpen this result below.
To start with, if x1, x2, . . . , xn ∈ L, we use the symbol [x1, x2, . . . , xn]α to de-

note any n-fold Lie product of these elements. Here, the subscript α is somehow
presumed to hold the associativity information. One such product is obtained by
associating to the left, and for this one, we drop the subscript. Thus

[x1, x2, x3, . . . , xn] = [[[[x1, x2], x3], . . .], xn].

If X1, X2, . . . , Xn are K-subspaces of L, we use [X1, X2, . . . , Xn]α to denote the
K-subspace of L spanned by all [x1, x2, . . . , xn]α with xi ∈ Xi. The following is
presumably well known.

Lemma 7.2. Let X1, X2, . . . , Xn be subspaces of L. Then, for all α, we have

[X1, X2, . . . , Xn]α ⊆
∑

σ∈Symn

[Xσ(1), Xσ(2), . . . , Xσ(n)],

where the right-hand summands all associate to the left.

Proof. We proceed by induction on n, the result being clear for n = 1. If n > 1,
we can write [X1, X2, . . . , Xn]α = [R,S], where this indicates the last Lie product
taken. Thus R is an r-fold Lie product, S is an s-fold Lie product and r + s = n.
For fixed n, we proceed by induction on min(r, s) which, for convenience, we can
assume to equal s. If min(r, s) = s = 1, then S = Xj for some j, and say j = n.
By induction, R ⊆

∑
σ∈Symn−1

[Xσ(1), Xσ(2), . . . , Xσ(n−1)] and therefore

[X1, X2, . . . , Xn]α = [R,Xn] ⊆
∑

σ∈Symn−1

[Xσ(1), Xσ(2), . . . , Xσ(n−1), Xn],

and we are done.
On the other hand, if min(r, s) = s > 1, then S = [U, V ] with U of length u ≥ 1,

V of length v ≥ 1, and with u + v = s. Now note that

[X1, X2, . . . , Xn]α = [R,S] = [R, [U, V ]] ⊆ [[R,U ], V ] + [[R, V ], U ],

and that each of [[R,U ], V ] and [[R, V ], U ] has length n, but with a smaller minimum
than [R,S]. Thus, induction applies to each of these two summands, and the lemma
is proved. �

As a first consequence, we obtain



FILTRATIONS IN SEMISIMPLE LIE ALGEBRAS, I 23

Lemma 7.3. Let F = {Fi | i ∈ Z} be a bounded filtration with Fa = 0 for some
a < 0. Fix ` ≥ 0, let

X = {x ∈ L | [x, Fj ] ⊆ Fj+` for all j < 0},
and define deg X = `. Furthermore, write deg Fi = i and if C = [U1, U2, . . . , Un]α
is an n-fold commutator with each Uk either equal to X or to some Fi, then we set
deg C =

∑n
k=1 deg Uk. If C 6= 0, then deg C > a.

Proof. We proceed by induction on n ≥ 1. If n = 1, then C = Fi or X, and if
C = X, then deg C = deg X = ` ≥ 0 > a. On the other hand, if C = Fi and C 6= 0,
then surely deg C = i > a.

Now suppose n > 1. By Lemma 7.2,

0 6= C = [U1, U2, . . . , Un]α ⊆
∑

σ∈Symn

[Uσ(1), Uσ(2), . . . , Uσ(n)],

and hence at least one of the right-hand summands is nonzero. Thus, without loss
of generality, we can assume that C = [U1, U2, . . . , Un] is associated to the left,
so that C = [B,Un], where B = [U1, U2, . . . , Un−1]. Obviously, B 6= 0 and, since
deg C = deg B + deg Un, the result clearly follows if deg Un ≥ 0. Thus, we need
only consider the case where Un = Fj with j < 0.

Since the adjoint map is a derivation, we have

0 6= C = [B,Fj ] ⊆
n−1∑
i=1

[U1, . . . , Ui−1, [Ui, Fj ], . . . , Un−1]

and hence one of the right-hand summands is nonzero. Say it is the ith term, so
0 6= Si = [U1, . . . , Ui−1, [Ui, Fj ], . . . , Un−1]. If Ui = Fk, then [Ui, Fj ] ⊆ Fk+j and
hence 0 6= D = [U1, . . . , Ui−1, Fj+k . . . , Un−1]. Thus, by induction, deg D > a. But
deg D = deg C, since Fk and Fj in C are replaced by Fk+j in D, so the result
follows in this case.

On the other hand, if Ui = X, then [Ui, Fj ] = [X, Fj ] ⊆ Fj+`, since j < 0, and
hence 0 6= E = [U1, . . . , Ui−1, Fj+`, . . . , Un−1]. Thus, by induction, deg E > a. But
deg E = deg C, since X and Fj in C are replaced by Fj+` in E, and therefore the
lemma is proved. �

This now yields

Lemma 7.4. If F = {Fi | i ∈ Z} is a maximal bounded filtration and ` ≥ 0 is a
nonnegative integer, then

F` = {x ∈ L | [x, Fj ] ⊆ Fj+` for all j < 0}.
In particular,

F0 =
⋂
j<0

NL(Fj) ⊇ CL(F−1),

where CL(F−1) is the centralizer of F−1.

Proof. Set X = {x ∈ L | [x, Fj ] ⊆ Fj+` for all j < 0}, so that X is a subspace of L
containing F`. Using the degree notation of the preceding lemma, we define

Gr =
∑

[U1, U2, . . . , Un]α,

where the sum is over all n ≥ 1 and all choices of α, with each Uk either an Fi

or X, and with deg[U1, U2, . . . , Un]α = r. It is clear that G = {Gr | r ∈ Z} is a
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filtration containing F , and G is bounded by Lemma 7.3. Thus, by maximality, we
have G = F . In particular, X = [X] ⊆ G` = F`, and we have therefore obtained
the reverse inclusion. �

With this, we see that any maximal bounded filtration F = {Fi | i ∈ Z} is
determined by those Fj with j < 0. Surprisingly, we can also characterize the
terms F` with ` < 0 in a similar manner to the above. However, here certain Fj

with j ≥ 0 must also come into play.

Lemma 7.5. If F = {Fi | i ∈ Z} is a maximal bounded filtration and ` < 0 is a
negative integer, then

F` = {x ∈ L | [x, Fj ] ⊆ Fj+` for all j < −`}.

In particular, Z(F−`−1) ⊆ F`.

Proof. Set X = {x ∈ L | [x, Fj ] ⊆ Fj+` for all j < −`}, so that X is a subspace of
L with X ⊇ F`. We prove, by induction on i ∈ Z, that [X, Fi] ⊆ Fi+`, and we are
given that this inclusion holds for all i < −`.

Now suppose that i ≥ −` and that the inclusion holds for all smaller i. Since
i + ` ≥ 0, we can use the characterization of Fi+` given in the preceding lemma.
To this end, let j < 0 and note that

[[X, Fi], Fj ] ⊆ [[X, Fj ], Fi] + [X, [Fi, Fj ]].

By hypothesis, [X, Fj ] ⊆ Fj+`, so [[X, Fj ], Fi] ⊆ [Fj+`, Fi] ⊆ Fj+i+`. Furthermore,
[Fi, Fj ] ⊆ Fi+j and, since i + j < i, induction yields [X, [Fi, Fj ]] ⊆ [X, Fi+j ] ⊆
Fj+i+`. Thus, [[X, Fi], Fj ] ⊆ Fj+i+` for all j < 0, so Lemma 7.4 implies that
[X, Fi] ⊆ Fi+`, as required.

We now know that [X, Fi] ⊆ Fi+` for all i ∈ Z, and therefore Lemma 7.1 yields
the result. �

As we indicated, if L has a maximal bounded filtration F = {Fi | i ∈ Z},
then Z(L) = 0. It is possible that such maximal filtrations must necessarily satisfy
Z(F0) = 0 in general. Here, we show at least

Lemma 7.6. If L 6= 0 and if F = {Fi | i ∈ Z} is a maximal bounded filtration,
then F0 is not abelian.

Proof. Suppose, by way of contradiction, that F0 is abelian. By the previous lemma,
with ` = −1, we see that F0 = Z(F0) ⊆ F−1, so F−1 = F0. Furthermore, since
F0 ⊇ C(F−1) = C(F0), by Lemma 7.4, and since L 6= 0, it follows that F0 6= 0.
Now suppose that F0 = F−1 = · · · = F`+1 for some integer ` ≤ −2. We apply the
previous lemma to show that F0 ⊆ F`.

To start with, since F0 is abelian, if j ≤ 0 then [F0, Fj ] = 0 ⊆ Fj+`. On
the other hand, if 0 < j < −`, then 0 > −j > ` and 0 > j + ` > `. Thus
[F0, Fj ] = [F−j , Fj ] ⊆ F0 = Fj+`. It now follows from Lemma 7.5 that F0 ⊆ F` and
hence that F0 = F`. Continuing in this manner, we see that F0 = Fk for all k ≤ 0
and this contradicts the fact that F is bounded. �

Hopefully, these lemmas will contribute to a later work on this subject, yielding
stronger and more interesting results of this type.
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8. Filtrations over Archimedean Ordered Groups

Let L be a Lie algebra over the field K and let G be an ordered group, written
additively. Then F = {Fi | i ∈ G} is a G-filtration of L if each Fi is a K-subspace
of L, [Fi, Fj ] ⊆ Fi+j for all i, j ∈ G, and Fi ⊆ Fj whenever i ≤ j. Of course, one
also assumes that

⋃
i Fi = L and

⋂
i Fi = 0. In particular, F0 is a Lie subalgebra

of L, and each Fi is an adF0-submodule. Again, we say that F is bounded if there
exist `, `′ ∈ G with F` = 0 and F`′ = L.

As in the case when G = Z, we would like the boundedness of F to imply that
each Fi with i < 0 is ad-nilpotent on L. This would, of course, follow if for any
i < 0 there exists a positive integer m with mi + `′ ≤ `. Thus, if we wish to
restrict our study to bounded filtrations that enjoy properties similar to those of
Z-filtrations, it makes sense to assume that G is an Archimedean ordered group.
In this case, one knows from [Ho] that G is an abelian group, and then from [Ba]
that G is an additive subgroup of the reals R. In particular, either G ∼= Z or G is a
dense subgroup of R. Of course, in view of the skew symmetry of the Lie product,
it certainly makes sense to assume that G is abelian for any Lie filtration.

Since the G ∼= Z case has already been considered, we will restrict our attention
in this section to dense subgroups of R. Furthermore, since the arguments for dense
subgroups are quite similar, and sometimes easier, than those for Z, we will merely
stress the differences when they occur, and just sketch the proofs. For convenience,
we say that the filtration F = {Fi | i ∈ G} is upper continuous if the condition
Fi =

⋂
i′>i Fi′ holds for all i ∈ G.

Lemma 8.1. Let L be a Lie algebra and let G be a dense subgroup of the additive
group of real numbers R. If F = {Fi | i ∈ G} is a bounded filtration of L, then
F is contained in a bounded upper continuous filtration F . In particular, if F is
maximal, then it must be upper continuous.

Proof. Let F = {F i | i ∈ G} be defined by F i =
⋂

i′>i Fi. If i, j, k ∈ G with
k > i + j, then the denseness of G implies that there exist i′ > i and j′ > j with
i + j < i′ + j′ ≤ k. With this, it follows that [F i, F j ] ⊆ F i+j , and then F is easily
seen to be a bounded filtration of the Lie algebra L containing F . �

Next, suppose that L = A ⊕ B is a direct sum of the two Lie algebras A and
B. If A = {Ai | i ∈ G} and B = {Bi | i ∈ G} are bounded filtrations of A and B,
respectively, and if, as before, we define Li = Ai ⊕ Bi ⊆ L, then L = {Li | i ∈ G}
is easily seen to be a bounded G-filtration of L. Again, we write L = A ⊕ B and
say that L is the sum of A and B. With this notation, the proof of Lemma 1.4
immediately yields

Lemma 8.2. Let L be a K-Lie algebra and let F = {Fi | i ∈ G} be a bounded
G-filtration of L.

(i) Suppose L = A⊕B is a direct sum of the K-Lie algebras A and B. Then
F is maximal if and only if F = A ⊕ B with A and B maximal bounded
G-filtrations of A and B, respectively.

(ii) Suppose L is a finite dimensional complex semisimple Lie algebra, and
write L = L1 ⊕L2 ⊕ · · · ⊕Lk as a finite direct sum of simple Lie algebras.
Then F is maximal if and only if it is a sum F = F1 ⊕ F2 ⊕ · · · ⊕ Fk,
where each Fj is a maximal bounded G-filtration of Lj.
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Thus, the study of maximal bounded G-filtrations in semisimple complex Lie
algebras also reduces to the simple case, and then it is clear that the work of
Section 2 carries over to this context with just minor changes. To start with, we
must replace F−1 by the Lie subalgebra F0− =

⋃
j<0 Fj in the proof of Lemma 2.2.

Furthermore, we must cite the references [P, Theorem 6.5 and Lemma 6.7] rather
than [P, Lemmas 2.5 and 5.7] in the proofs of Propositions 2.5 and 2.6. With these
modifications, we obtain the following G-analogs of the latter two propositions.

Proposition 8.3. Let K be a field, let L = slm(K) with m ≥ 2, and suppose that
F = {Fi | i ∈ G} is a maximal bounded G-filtration of L. If m 6= 0 in K, then F0

contains a Cartan subalgebra of L.

Proposition 8.4. Let K be an algebraically closed field of characteristic 6= 2, let
∗ be an involution of Mm(K) of the first kind, and let L be the Lie subalgebra of
glm(K) consisting of all the skew-symmetric matrices under the action of ∗. If
F = {Fi | i ∈ G} is a maximal bounded G-filtration of L and if m ≥ 3, then F0

contains a Cartan subalgebra of L.

These, of course, now combine to yield

Corollary 8.5. Let K be the field of complex numbers and let L be a simple K-Lie
algebra of type An, Bn, Cn or Dn. If F = {Fi | i ∈ G} is a maximal bounded
G-filtration of L, then F0 contains a Cartan subalgebra of L.

Let L be an arbitrary finite dimensional simple Lie algebra over the complex
numbers K. We say that a bounded G-filtration F = {Fi | i ∈ G} of L is Cartan
if F0 contains a Cartan subalgebra L0 of L. In view of the preceding corollary, our
next goal is obviously to determine the maximal bounded G-filtrations of L that are
also Cartan. Note that, if G = {Gi | i ∈ G} is a filtration containing the filtration
F , then G0 ⊇ F0 ⊇ L0 and hence G is also Cartan. Let L = L0 +

∑
α∈Φ Lα be

the root space decomposition of L with respect to L0. Here Φ = Φ(L) is the set of
roots of L and each Lα with α ∈ Φ is a 1-dimensional subspace of L. As before,
our basic tool here is the degree function f of F , this time defined by

f(α) = inf{i ∈ G | Lα ⊆ Fi}.
Since F is bounded, f(α) is a well-defined real number for all α ∈ Φ. Again, we
write Φ′ = Φ ∪ 0 and define f(0) = 0.

Lemma 8.6. Let F = {Fi | i ∈ G} be a Cartan filtration of the simple Lie algebra
L and let f be its degree function. Assume that F is upper continuous.

(i) For each i ∈ G, we have Fi =
∑

Lα, where the sum is over all α ∈ Φ′ with
f(α) ≤ i. In particular, f uniquely determines the filtration.

(ii) If α, β and α + β are contained in Φ, then f(α) + f(β) ≥ f(α + β).
Furthermore, f(α) + f(−α) ≥ 0.

(iii) If G = {Gi | i ∈ G} is a second upper continuous Cartan filtration of L
with degree function g, then G contains F if and only if g(α) ≤ f(α) for
all roots α ∈ Φ.

Proof. We begin with part (i). Since F0 ⊇ L0 and since each Fi is an adF0-module,
it follows that each Fi is a direct sum of suitable Lαs along with Fi ∩ L0. As in
the proof of Lemma 3.1(i), we know that L0 ∩ Fi = 0 if i < 0, and L0 ∩ Fi = L0

if i ≥ 0. Thus, since λ(0) = 0, this term behaves correctly. Furthermore, by the
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definition of the function f , it is clear that Lα does not occur in Fi if i < f(α). On
the other hand, suppose i ≥ f(α) and let i′ ∈ G with i′ > i ≥ f(α). Then again,
the definition of f implies that Lα ⊆ Fi′ , and upper continuity yields the result.
Parts (ii) and (iii) follow as in Lemma 3.1(ii)(iii). �

Now let V be the real inner product space determined by Φ(L), the root set
of L. As before, if λ : V → R is a linear functional, we define the dual filtration
Fλ = {Fi | i ∈ G} by Fi =

∑
α Lα, where the sum is over all α ∈ Φ′ with λ(α) ≤ i.

Lemma 8.7. If λ : V → R, then Fλ is an upper continuous Cartan filtration of L
with degree function given by fλ(α) = λ(α). Furthermore, Fλ ⊆ Fµ if and only if
the functionals λ and µ are equal.

Proof. The first part is clear. For the second, we know that Fλ ⊆ Fµ if and only if
µ(α) = fµ(α) ≤ fλ(α) = λ(α) for all roots α. But −α is also a root, so −µ(α) =
µ(−α) ≤ λ(−α) = −λ(α) and we obtain the reverse inequality λ(α) ≤ µ(α). Thus
Fλ ⊆ Fµ implies that λ = µ, as required. �

This is, of course, markedly different from the case of Z-filtrations where the ceil-
ing function d e brings number theoretic considerations into play. The importance
of these dual filtrations is again based on

Lemma 8.8. Let F = {Fi | i ∈ G} be a Cartan filtration of the simple Lie algebra
L. If V is the root space of L, then there exists a linear functional λ : V → R such
that F ⊆ Fλ.

Proof. In view of Lemma 8.1, we can assume that F is upper continuous. In par-
ticular, F is determined by its degree function f and, since the proof of Lemma 3.6
only involves degree functions, it clearly carries over to this context. �

It is an easy consequence of the preceding two lemmas that each Fλ is a maximal
G-filtration, and with this, our main result on filtrations over dense Archimedean
ordered groups follows immediately. Indeed, we have

Theorem 8.9. Let L be a finite dimensional complex simple Lie algebra, let G be a
dense subgroup of R, and let F = {Fi | i ∈ G} be a bounded G-filtration. Suppose H

is a Cartan subalgebra of L, write V for the root space of L, and let V̂ = Hom(V, R)
denote its dual space.

(i) If F is maximal and if L is of type An, Bn, Cn or Dn, then F0 contains
a Cartan subalgebra of L.

(ii) The maximal filtrations F with F0 ⊇ H are precisely the filtrations Fλ

with λ a linear functional of V . In particular, there is a one-to-one corre-
spondence between these maximal filtrations and the elements of V̂ .

Again, we suspect that part (i) above is also true for the exceptional Lie algebras
E6, E7, E8, F4 and G2.
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