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Abstract. Let K be a field and let G be a multiplicative group. The group ring
K[G] is an easily defined, rather attractive algebraic object. As the name implies,

its study is a meeting place for two essentially different algebraic disciplines. Indeed,

group ring results frequently require a blend of group theoretic and ring theoretic
techniques. A natural, but surprisingly elusive, group ring problem concerns the

semiprimitivity of K[G]. Specificially, we wish to find necessary and sufficient con-
ditions on the group G for its group algebra to have Jacobson radical equal to zero.

More generally, we wish to determine the structure of the ideal JK[G]. In the case

of infinite groups, this problem has been studied with reasonable success during the
past 40 years, and our goal here is to survey what is known. In particular, we de-

scribe some of the techniques used, discuss a number of the results which have been

obtained, and mention several tantalizing conjectures.

§1. Introduction

Let us first consider a possible way of defining the polynomial ring in two vari-
ables, say x and y, over a field K. To start with, form the set S = {xayb |
a, b = 0, 1, 2, . . . } of monomials in x and y, and define multiplication in S by
xayb · xcyd = xa+cyb+d. In this way, S becomes an associative semigroup with
identity element 1 = x0y0. Next, let K[x, y] = K[S] be the K-vector space with
basis consisting of the elements of S. In other words, every element of K[x, y] is a
formal finite sum

∑
ka,bx

ayb with coefficients ka,b ∈ K. Of course, the addition in
K[x, y] is the usual vector space addition, and multiplication in K[x, y] is defined
distributively using the multiplication in S. Since the associative law for multi-
plication in S clearly carries over to K[S], it follows that K[x, y] is an associative
K-algebra. Similarly, we could define the Laurent polynomial ring K[x, y, x−1, y−1]
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by taking S to be the multiplicative group S = {xayb | a, b = 0,±1,±2, . . . } and
again forming K[S]. Indeed, this is our first example of a group ring.

More generally, let K be a field and let G be any multiplicative group. Then the
group algebra or group ring K[G] is a K-vector space with basis consisting of the
elements of G. Thus every element of K[G] is a formal finite sum

α =
∑
g∈G

kgg

with coefficients kg ∈ K. Again, addition in K[G] is the obvious vector space
operation, and we define multiplication distributively using the given multiplication
of G. In this way, K[G] becomes an associative K-algebra, with structure highly
dependent on the nature of G. Basic references for group algebras include the books
[MZ73], [iP79a], [dP72a], [dP77a], [sS78a] and [sS93a].

As is well known, group rings are important tools in both group theory and ring
theory. For example, they provide the correct framework to study and understand
the ordinary and modular character theory of finite groups. Furthermore, when G is
a polycyclic-by-finite group, then K[G] is a right and left Noetherian K-algebra and
hence it is a useful testing ground for the rich theory of noncommutative Noetherian
rings. In turn, the module theory of the latter group algebra can feed back into
group theory to yield information on the structure of abelian-by-polycyclic groups.
But, group rings are more than just useful tools. They are easily defined, rather
attractive algebraic objects which are worthy of being considered in their own right.
Their study is necessarily ring theoretic in nature, but the techniques and proofs
exhibit a strong group theoretic flavor. The goal of this paper is to survey the
progress made on a rather ellusive group ring problem.

If R is an associative ring with 1, then a (right) R-module V is just a right
R-vector space. Thus V is an additive abelian group which admits right multi-
plication by R, and such that this scalar multiplication satisfies the usual axioms.
Of course, these rules are precisely equivalent to the existence of a natural ring
homomorphism θV :R → End(V ), where End(V ) is the ring of endomorphisms of
the additive abelian group V . We say that V 6= 0 is irreducible if V has no proper
R-submodule. In other words, the irreducible R-modules are the natural analogs of
the 1-dimensional vector spaces over fields. For convenience, we let Irr(R) denote
the set of all such irreducible R-modules.

A ring R is said to be primitive if it has a faithful irreducible module. In other
words, R is primitive if there exists V ∈ Irr(R) with θV a one-to-one map. Such
rings have a nice, rather natural structure; they are dense sets of linear transfor-
mations over division rings. Unfortunately, primitive rings are fairly scarce, so the
next best situation is to study the ring R by looking at all its irreducible modules.
But there is still a fundamental obstruction here, namely

JR =
⋂

V ∈Irr(R)

ker θV = { r ∈ R | V r = 0 for all V ∈ Irr(R) }.
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This characteristic ideal is called the Jacobson radical of R, and we say that R is
semiprimitive precisely when JR = 0. Thus R is semiprimitive if and only if it is a
subdirect product of primitive rings. In particular, such rings are reasonably well
understood.

It is therefore of some interest and importance to determine those groups G
with semiprimitive group algebras K[G]. More generally, we should describe the
structure of the Jacobson radical JK[G] for any group G. In the case of finite
groups, the semiprimitivity problem has a classical solution, dating from 1898, and
depends only on the characteristic of the field. Specifically, we have

Theorem 1.1 (Maschke). [hM98] Let G be a finite group and let K be a field.

i. If charK = 0, then K[G] is semiprimitive.
ii. If charK = p > 0, then K[G] is semiprimitive if and only if G has no

elements of order p.

Of course, the goal now is to extend this result, or some variant of it, to the case
of infinite groups.

§2. Fields of Characteristic 0

It is not surprising that progress on the semiprimitivity problem for infinite
groups began with fields of characteristic 0, and indeed with the field C of complex
numbers. The first significant result appeared in 1950, with a proof using analytic
methods, including the spectral norm and the auxiliary norm of C[G].

Theorem 2.1. [cR50] If C is the field of complex numbers, then every group algebra
C[G] is semiprimitive.

This result intrigued a number of ring theorists who rightly felt that it should
have an algebraic proof. Thus, for example, the semiprimitivity problem for fields
of characteristic 0 appeared in the Ram’s Head Inn problem list [iK57] (see also
[iK70]), and an algebraic argument for Theorem 2.1 was quickly discovered. It is
instructive to consider some of the ingredients of this new proof. Recall that an
ideal I of any ring R is said to be nil if all elements of I are nilpotent. Since every
nil ideal of R is contained in JR, a first step in proving that K[G] is semiprimitive
might be to show that it has no nonzero nil ideal. In this direction we have

Lemma 2.2. Let K be a subfield of the complex numbers which is closed under
complex conjugation. If G is any group, then K[G] has no nonzero nil ideal.

Proof. Define a map ∗:K[G]→ K[G] by(∑
g

kgg
)∗

=
∑
g

k̄gg
−1
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where ¯ indicates complex conjugation. It is easy to see that (αβ)∗ = β∗α∗,
α∗∗ = α, and (α + β)∗ = α∗ + β∗. Furthermore, if α =

∑
g kgg, then the identity

coefficient of αα∗ is equal to
∑
g kgk̄g =

∑
g |kg|2. Hence αα∗ = 0 if and only if

α = 0.
Let I be a nonzero ideal of K[G] and choose 0 6= α ∈ I. Then, by the above,

β = αα∗ is a nonzero element of I, and β is easily seen to be ∗-symmetric. In
other words, any nonzero ideal of K[G] contains a nonzero ∗-symmetric element.
Next, we claim that 0 is the unique ∗-symmetric nilpotent element. Indeed, if γ is
∗-symmetric and nilpotent, then so is any power of γ. Thus it suffices to assume
that γ2 = 0. But then 0 = γ2 = γγ∗, so γ = 0 as required, and the result follows
immediately from the latter two observations. �

The second ingredient holds over any field. Note that if H is a subgroup of
G, then K[H] is naturally embedded in K[G]. Indeed, this is just the group ring
analog of the obvious polynomial ring inclusion K[x] ⊆ K[x, y]. Furthermore, since
K[G] is a free right and left K[H]-module, using coset representatives for H in G
as a free basis, we have

Lemma 2.3. Let K be any field and let H be a subgroup of G.
i. If W is an irreducible K[H]-module, then there exists an irreducible K[G]-

module V with W a submodule of VH , the restriction of V to K[H].
ii. JK[G] ∩K[H] ⊆ JK[H].

The remainder of the argument is of less interest. To start with, the Hilbert
Nullstellensatz asserts that if A is a finitely generated commutative algebra over a
field K, then JA is a nil ideal. Furthermore, recall that there is a trivial proof of
this result in case K is nondenumerable. Indeed, the same proof shows, without
the commutativity assumption, that if A is a countable dimensional algebra over
a nondenumerable field, then JA is nil. In particular, it follows from this and
Lemma 2.2 that if H is a countable group, then the complex group algebra C[H]
is semiprimitive. Finally, if G is any group and if α ∈ JC[G], then there exists a
finitely generated and hence countable subgroup H of G with α ∈ C[H]. But then
Lemma 2.3(ii) yields

α ∈ C[H] ∩ JC[G] ⊆ JC[H] = 0,

and Theorem 2.1 is proved.
Much more important is the later work of Amitsur on the behavior of the radical

under field extensions. If A is a K-algebra and if F is a field containing K, then
we denote the F -algebra F ⊗K A by AF . Thus AF is the largest ring generated by
its commuting subrings F and A, with the two copies of K identified.

Theorem 2.4. [sA57] Let F ⊇ K be fields and let A be a K-algebra.
i. J(AF ) ∩A ⊆ JA with equality when F/K is algebraic.



SEMIPRIMITIVITY OF GROUP ALGEBRAS 5

ii. If F/K is a finite separable extension, then J(AF ) = F ⊗K JA.
iii. If F is a nontrivial purely transcendental extension of K, then J(AF ) =

F ⊗K I for some nil ideal I of A.

Since K[G]F = F ⊗KK[G] = F [G], the preceding result and Lemma 2.2 applied
to the field Q of rational numbers yield

Theorem 2.5 (Amitsur). [sA59] Let K be a field of characteristic 0 so that K
contains the rational numbers Q, and let G be an arbitrary group.

i. If K/Q is not algebraic, then K[G] is semiprimitive.
ii. If K/Q is algebraic, then JK[G] = K ⊗Q Q[G] and K[G] has no nonzero

nil ideal.

In particular, the semiprimitivity problem for algebraic extensions of Q reduces
to Q itself. Presumably Q[G] is always semiprimitive, but unfortunately the above
result marks the extent of our knowledge. There has been no significant progress
on the characteristic 0 problem since Theorem 2.5 appeared in 1959.

§3. Fields of Characteristic p > 0

Now let us turn to modular fields and assume for the remainder of this paper
that charK = p > 0. In view of Theorem 1.1, it is reasonable to suppose K[G]
is semiprimitive if and only if G is a p′-group, that is a group with no elements
of order p. One direction of this is most likely true, but as we will see, the other
direction is decidedly false. We begin with an interesting trace argument.

For any group G, let tr:K[G] → K be the map which reads off the identity
coefficient, so that tr(

∑
kgg) = k1. Then tr is obviously a K-linear functional, and

it is easy to see that trαβ = trβα for all α, β ∈ K[G]. Next, we note that if A is
any K-algebra and if α1, α2, . . . , αs ∈ A, then

(α1 + α2 + · · ·+ αs)p
n

= αp
n

1 + αp
n

2 + · · ·+ αp
n

s + β

for some β ∈ [A,A], where the latter subspace is the span of all Lie products
[γ, δ] = γδ − δγ with γ, δ ∈ A.

Lemma 3.1. If G is a p′-group, then K[G] has no nonzero nil ideal.

Proof. Suppose α =
∑
kgg ∈ K[G] is nilpotent, and choose n sufficiently large so

that αp
n

= 0. Then by the preceding formula,

0 = αp
n

=
∑
g∈G

(kg)p
n

gp
n

+ β

for some β ∈
[
K[G],K[G]

]
. In particular, since tr annihilates all Lie products, we

have trβ = 0 and hence
0 =

∑
g∈G

(kg)p
n

tr gp
n

.
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But G is a p′-group, so gp
n

= 1 if and only if g = 1, and therefore tr gp
n

= 0 for
all g 6= 1. It follows that 0 = (k1)p

n

, and we conclude that if α is nilpotent, then
0 = k1 = trα.

Finally, let I be a nil ideal of K[G] and let γ =
∑
cgg ∈ I. Then γx−1 ∈ I is

nilpotent for any x ∈ G, so the above yields 0 = tr γx−1 = cx. Thus γ = 0, and
hence I = 0, as required. �

Since any finitely generated field extension of GF(p) is separably generated, it
is a simple matter to translate the argument of Theorem 2.5 to this context. In
particular, Theorem 2.4 and Lemma 3.1 yield

Theorem 3.2. Let K be a field of characteristic p > 0, write K0 = GF(p), and let
G be a p′-group.

i. If K/K0 is not algebraic, then K[G] is semiprimitive.
ii. If K/K0 is algebraic, then JK[G] = K ⊗K0 JK0[G].

If G is a p′-group, then K[G] is presumably always semiprimitive. But the
converse is certainly not true; there are numerous groups G having elements of
order p, but with JK[G] = 0. For example, we have

(1) p = 2 and G = 〈x, y | y−1xy = x−1, y2 = 1〉 is infinite dihedral.
(2) G = Z oZp is the wreath product of the infinite cyclic group Z by the cyclic

group Zp of order p.
(3) G = Zp o Z is again a wreath product and has a normal infinite elementary

abelian p-subgroup.
(4) G = Sym∞, the infinite locally finite symmetric group.

Note that (1) was the first such example; it appeared in [dW67]. Furthermore,
the groups in (3) and (4) have primitive group algebras. The real answer to the
semiprimitivity problem is most likely

Conjecture 3.3. Let K be a field of characteristic p > 0 and let G be a group.
Then JK[G] 6= 0 if and only if G has an element of order p “well placed” in G.

Of course, before this can be proved, we must first determine what “well placed”
means. To do this, it is necessary to compute numerous examples. However, we can
get some idea of the possible meaning by considering a slightly different problem.
For any ring R, let NR denote the join of all its nilpotent ideals. Thus NR is
a characteristic nil ideal called the nilpotent radical of R. For general rings, it is
neither nilpotent nor a radical, but we do have NR ⊆ JR.

Next, if A and B are subgroups of a group G, then the finitary centralizer of B
in A is defined by

DA(B) = { a ∈ A | |B : CB(a)| <∞}.

In other words, DA(B) consists of all elements of A which almost centralize B; it
is a subgroup of A normalized by NG(A) ∩ NG(B). Corresponding to this finitary
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centralizer is a finitary center, the f.c. or finite conjugate center of G, given by

∆(G) = DG(G) = {x ∈ G | |G: CG(x)| <∞}.

Thus ∆(G) consists of all elements of G having only finitely many conjugates, and
it is easy to see that ∆ = ∆(G) is a characteristic subgroup of G. Furthermore, we
let ∆+(G) be the set of torsion elements of ∆, that is the elements of finite order
in the group. Surprisingly, ∆+ = ∆+(G) is also a characteristic subgroup of G.
Indeed, ∆/∆+ is a torsion free abelian group and ∆+ is the join of all finite normal
subgroups of G.

The following result is proved using a powerful coset counting argument known
as the ∆-method.

Theorem 3.4. [dP62a,dP70a] Let W(G) denote the set of finite normal subgroups
of G, and let ∆+ = ∆+(G) = 〈W |W ∈ W(G)〉. If charK = p > 0, then

i. NK[G] = JK[∆+] ·K[G].
ii. JK[∆+] =

⋃
W∈W(G) JK[W ].

iii. NK[G] 6= 0 if and only if ∆+ contains an element of order p and hence if
and only if G has a finite normal subgroup of order divisible by p.

Note that (i) asserts that JK[∆+] is contained in NK[G] and generates it as
a right ideal. Furthermore, (iii) is an immediate consequence of parts (i) and (ii),
along with Theorem 1.1. Thus “well placed” for this radical means that the element
of order p is contained in ∆+(G) or equivalently in some finite normal subgroup of
G. We close this section with a simple, but quite useful, observation.

Lemma 3.5. [oV58] If H is a normal subgroup of G of finite index n, then

JK[G]n ⊆ JK[H] ·K[G] ⊆ JK[G].

Furthermore, if p does not divide n, then JK[H] ·K[G] = JK[G].

In particular, if JK[H] = 0 in the above, then JK[G] is nilpotent and Theo-
rem 3.4 can come into play. With this observation, it is now a simple exercise to
prove that K[G] is semiprimitive when G = Z o Zp or when p = 2 and G is infinite
dihedral.

§4. Solvable and Linear Groups

This brings us to the early 1970’s; it was time to compute some examples. We
looked for families of groups which were sufficiently diverse to give us meaningful
answers, yet simple enough to be dealt with effectively. Two obvious candidates
were the families of solvable groups and linear groups. As it turned out, the solvable
case yielded the most information and required the more interesting techniques.
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Therefore we begin our exposition with these groups. We will ignore some earlier
special case considerations and just deal with the general problem.

First, recall that G is said to be an f.c. group if G = ∆(G), or equivalently if all
conjugacy classes of G are finite. Next, let G be any group, let H be a subgroup of
G, and let I be a nonzero ideal of K[G]. Then an intersection theorem is a result
which guarantees that I ∩K[H] 6= 0 under suitable assumptions on H, G/H, or I.
There are numerous results of this nature in the literature, and Zalesskĭı proved a
marvellous one for solvable groups. Specifically, we have

Theorem 4.1. [aZ73a] If G is a solvable group, then G has a characteristic f.c. sub-
group 3(G) with the following property. If K is any field and if I is a nonzero ideal
of K[G], then I ∩K[3(G)] 6= 0.

This Zalesskĭı subgroup 3(G) is the f.c. center of a finitary analog of the Fitting
subgroup of a finite solvable group. Of course, if G is solvable and if JK[G] 6= 0,
then the preceding theorem implies that JK[G] ∩ K[3(G)] 6= 0. Thus, the next
step in the solution of the semiprimitivity problem for these groups is to deal
with this intersection. For this, we require an interesting general result which is a
noncommutative analog of the argument used to prove Theorem 2.4(iii).

Lemma 4.2. [dW67] Let G be an arbitrary group, let H / G, and suppose that
α ∈ JK[G]∩K[H]. If x is any element of G of infinite order modulo H, then there
exists a positive integer n such that

ααxαx
2
· · ·αx

n

= 0.

Here, of course, αy = y−1αy for any y ∈ G. Now, if x has infinite order modulo
H, then so does xs for any positive integer s. Thus, each such x gives rise to a
family of equations, with varying s and varying n = n(s). These Wallace equations
are rather unwieldy in general. Nevertheless, we were able to obtain a quite useful
conclusion from them provided H is a solvable f.c. group.

For any element β =
∑
bgg ∈ K[G], let us write suppβ = { g ∈ G | bg 6= 0 }. In

particular, the support of β is a finite subset of G which is nonempty when β 6= 0.
Furthermore, let quotβ denote the set of quotients xy−1 with x, y ∈ suppβ, and
for any prime p let p-quotβ denote the set of nonidentity elements of quotβ having
order a power of p. Finally, if L is any subgroup of G, we write

√
L = {x ∈ G | xn ∈ L for some n 6= 0 }.

Obviously,
√
L ⊇ L, but this root set need not be a subgroup of G.

Proposition 4.3. [dPH72] Let G be an arbitrary group, let H be a normal solvable
f.c. subgroup of G, and let α ∈ JK[G] ∩K[H]. Then

G =
⋃

x∈p-quotα

√
CG(x).
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It remained to translate the latter set theoretic union into a more understandable
condition. To start with, notice that G =

√
〈1〉 is equivalent to G being a periodic

group, and therefore the preceding root set equation is related to the Burnside
problem. Fortunately, the Burnside problem is quite simple to deal with when G
is solvable, and paper [dP73a] handled this more general situation. Specifically, it
showed that if G =

⋃n
1

√
Li is a finite union of root sets of subgroups and if G

is finitely generated and solvable, then some Li must have finite index in G. By
combining all these ingredients, we obtained

Theorem 4.4. [dPH72,dP73a,aZ73a] Let G be a solvable group and let K be a field
of characteristic p > 0. Then JK[G] 6= 0 if and only if 3(G) contains an element
x of order p which has finitely many conjugates under the action of each finitely
generated subgroup of G.

Note that the latter condition on x is equivalent to the assertion that if x ∈
H ⊆ G with H finitely generated, then x ∈ ∆+(H). In particular, if G is a finitely
generated group, then this condition reduces to the assumption that x ∈ ∆+(G),
and of course this is precisely equivalent to the nonvanishing of NK[G]. In fact,
fairly soon afterwards, Zalesskĭı built upon the preceding, added an additional
intersection theorem of sorts, and proved

Theorem 4.5. [aZ74a] If G is a finitely generated solvable group and K is a field
of characteristic p > 0, then JK[G] = NK[G].

In particular, in the above situation, we not only know when K[G] is semiprim-
itive, we actually know the complete structure of JK[G] by applying Theorem 3.4.
Most of these results have now been extended to groups which have a finite normal
series with f.c. factor groups. But these generalizations offer nothing new in the way
of ideas or techniques. Now let us move on to consider linear groups over a field F .
Here there are actually three different problems according to whether charF = 0,
charF = p = charK, or charF = q > 0 with q 6= charK. The first two cases
have been completely settled, but there is still some work to be done on the third.
The charF = p problem was dealt with using a complicated trace argument along
with the solution of another variant of the Burnside problem for linear groups. The
answer is quite similar to that for solvable groups and requires that we first define a
particular characteristic f.c. subgroup L(G). This is done in a fairly simple manner,
so L(G) is by no means as interesting as 3(G).

Theorem 4.6. [dP73b,dP73c] Let G be an F -linear group and assume that charF =
p = charK. Then JK[G] 6= 0 if and only if L(G) has an element of order p which
has finitely many conjugates under the action of each finitely generated subgroup of
G.

Now let us assume that G is a finitely generated F -linear group. If charF 6= p,
then it follows quite easily that G has a normal subgroup H of finite index which
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is residually a finite q-group for some prime q 6= p. Consequently, JK[H] = 0 and
Lemma 3.5 implies that JK[G] is nilpotent. On the other hand, if charF = p, then
it follows from the preceding theorem that JK[G] is at least locally nilpotent. In
other words, we have

Corollary 4.7. [dP74a] If G is a finitely generated linear group and charK = p >
0, then JK[G] = NK[G].

Thus a pattern began to emerge and we were led to

Conjecture 4.8. If G is any finitely generated group and if charK = p > 0, then
JK[G] = NK[G].

There was even some corroborating evidence which held for arbitrary groups.
Recall that the nilpotent radical is not a radical in general. Indeed, there exists
a finitely generated K-algebra A with N(A/NA) 6= 0. But this cannot happen
for group rings of finitely generated groups if the preceding conjecture is to hold.
Fortunately, we were able to show

Theorem 4.9. [dP74a] If G is any finitely generated group, then K[G] is a finitely
generated K-algebra satisfying N

(
K[G]/NK[G]

)
= 0. Consequently, if H is a

subgroup of G of finite index, then JK[H] = NK[H] if and only if JK[G] = NK[G].

We remark that this result, Theorem 4.5, and Corollary 4.7 were all proved using
the following quite surprising radical-like property of the ∆+ operator.

Lemma 4.10. [dP74a] Let G be a finitely generated group and let H be a normal
subgroup of G. If H ⊆ ∆+(G), then ∆+(G/H) = ∆+(G)/H.

It is easy to see that this lemma requires G to be finitely generated, and it does
not hold for the ∆ operator or indeed for the operator Z, where Z(G) is the center
of G. Unfortunately, this marks the extent of our knowledge of the semiprimitivity
question for finitely generated groups. There has been no significant progress made
on this problem since the above theorems appeared in 1973 and 1974.

§5. Locally Finite Groups

The obvious next step is to deal with arbitrary groups G under the assump-
tion that we know the answer in the finitely generated case. For convenience, let
F(G) denote the set of finitely generated subgroups of G. Then, motivated by
Theorems 4.4 and 4.6, we define a local version of the f.c. center by

Λ(G) = {x ∈ G | |H : CH(x)| <∞ for all H ∈ F(G) }.

In other words,
Λ(G) =

⋂
H∈F(G)

DG(H)
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consists of all elements of G which have only finitely many conjugates under the
action of each finitely generated subgroup of G. If we also let Λ+ = Λ+(G) be
the set of torsion elements of Λ = Λ(G), then the known structure of ∆ and ∆+

translate to

Lemma 5.1. Let G be an arbitrary group.
i. Λ and Λ+ are characteristic subgroups of G.
ii. Λ/Λ+ is torsion free abelian, and Λ+ is a locally finite group.

iii. If H / G with H ⊆ Λ+, then Λ+(G/H) = Λ+(G)/H.

Of course, a group G is locally finite if every finitely generated subgroup is finite.
For such groups, it follows easily that Λ+(G) = G. Thus, the assertion of part (ii)
that Λ+(G) is locally finite cannot be further sharpened. Notice also that part (iii)
above asserts that the operator Λ+ exhibits radical-like properties. This is clearly
a local version of Lemma 4.10.

Now suppose α ∈ JK[G] and let H be any finitely generated subgroup of G with
suppα ⊆ H. Then α ∈ JK[G] ∩K[H] ⊆ JK[H] and hence, if we happen to know
that JK[H] = NK[H], then we can use the structure of NK[H], as described in
Theorem 3.4, to better understand α. Specifically, we obtain

Theorem 5.2. [dP74a] Let G be an arbitrary group and let K be a field of char-
acteristic p > 0. If JK[H] = NK[H] for all H ∈ F(G), then

JK[G] = JK[Λ+(G)] ·K[G].

In particular, it follows from Theorem 4.5 and Corollary 4.7 that if G is either
locally solvable or locally linear, then JK[G] = JK[Λ+(G)] · K[G]. This is, in
fact, how the semiprimitivity problem for characteristic 0 linear groups was settled.
Namely, if G is such a group, then JK[G] is generated by JK[Λ+(G)], and Λ+(G)
is a locally finite characteristic 0 linear group. Thus Λ+(G) is abelian-by-finite and,
with this, we can easily obtain a result quite similar to Theorem 4.6.

Notice also that if Conjecture 4.8 holds, then Theorem 5.2 reduces the semiprim-
itivity problem to the case of locally finite groups. In other words, the general prob-
lem has now been split into two parts. First, we must study the finitely generated
case and show that JK[G] = NK[G] for such groups. Then we must settle the
problem for locally finite groups. In particular, this means that the locally finite
case is also of crucial importance, and the remainder of this survey will be devoted
to a discussion of this situation.

To start with, let us take another look at Theorems 4.4 and 4.6 in the context
of locally finite groups. In each case, we have a normal f.c. subgroup H of G and
an element x ∈ H of order p. Since H is generated by its finite normal subgroups,
it follows that x is contained in such a subgroup M . Thus M is a finite subnormal
subgroup of G of order divisible by p, and it appears that these finite subnormal
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subgroups may be the key to the solution. But inclusion in the Jacobson radical is
a local property, as will be apparent below, so a local version of subnormality may
be more appropriate.

Let G be a locally finite group and let A be a finite subgroup of G. We say that
A is locally subnormal in G, and write A lsn G, if A is subnormal in B for all finite
subgroups B of G with A ⊆ B. For example, if G is locally nilpotent, then every
finite subgroup is locally subnormal. Basic properties are as follows.

Lemma 5.3. Let G be a locally finite group and let K be a field.
i. JK[G] is a nil ideal.
ii. If A / /G, then JK[A] ⊆ JK[G].

iii. If A lsn G, then JK[A] ⊆ JK[G].

Proof. We sketch the argument. For part (i), let α ∈ JK[G] and choose a finite
subgroup H of G which contains the support of α. Then α ∈ JK[G] ∩ K[H] ⊆
JK[H] by Lemma 2.3(ii), and JK[H] is nilpotent since H is finite. Thus α is
nilpotent, and JK[G] is indeed a nil ideal. For part (ii), it suffices to assume that
A / G, and to show that JK[A] ·K[G] is a nil right ideal of K[G]. To this end, let
γ ∈ JK[A] ·K[G] and write γ =

∑n
1 αiβi with αi ∈ JK[A] and βi ∈ K[G]. Since

G/A is locally finite, there exists a finite subgroup B/A of G/A with suppβi ⊆ B
for all i. Then, by Lemma 3.5, γ =

∑n
1 αiβi ∈ JK[A] ·K[B] ⊆ JK[B], and hence

γ is nilpotent, as required. Part (iii) follows in a similar manner. �

If K is a field of characteristic p > 0, and if P is a locally finite p-group, then it
follows from part (iii) above that JK[P ] is the augmentation ideal of K[P ], namely
the kernel of the natural homomorphism K[P ]→ K given by P 7→ 1. In particular,
if P = Op(G) is the largest normal p-subgroup of G, then JK[P ] · K[G] is the
kernel of the natural homomorphism K[G]→ K[G/P ], and this kernel is contained
in JK[G] by (ii) above. In other words, we have

JK[G]/(JK[P ] ·K[G]) ∼= JK[G/P ],

and obviously Op(G/P ) = 〈1〉. Because of this, it usually suffices to assume that
Op(G) = 〈1〉.

As we will see, if Op(G) = 〈1〉, then the differences between locally subnormal
subgroups, finite subnormal subgroups, and finite subgroups of normal f.c. sub-
groups essentially disappear. Note that we are interested in the p-elements of such
a finite subgroup A, and hence our real concern is with Op′

(A), the characteristic
subgroup of A generated by its Sylow p-subgroups. In other words, we can usually
assume that A = Op′

(A). In the following definition, lenA denotes the composition
length of A, namely the common length of all composition series for A. Since A is
finite, lenA is certainly finite.

Now for any locally finite group G and fixed prime p, let
∫ p(G) be the charac-

teristic subgroup of G generated by all A lsn G with A = Op′
(A). Furthermore, for
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each integer n ≥ 1, let
∫ p
n

(G) be the subgroup of G generated by all A lsn G with
A = Op′

(A) and lenA ≤ n. Then we have

Theorem 5.4. [dP74b] Let G be a locally finite group with Op(G) = 〈1〉. Then∫ p(G) is an ascending union of the characteristic f.c. subgroups
∫ p
n

(G).

Suppose, in the above situation, that A lsn G, A = Op′
(A), and say lenA = n.

Then A ⊆
∫ p
n

(G), and the latter is a normal f.c. subgroup of G. In particular, since∫ p
n

(G) is generated by its finite normal subgroups, there exists such a subgroup B

with A ⊆ B /
∫ p
n

(G). But |B| <∞, so A / /B and therefore A / /G. Furthermore,
if we take B to be the normal closure of A in

∫ p
n

(G), then B = Op′
(B) and B / /G

with subnormal depth at most 2. Thus these several concepts all merge into one.
To handle groups having normal p-subgroups, it is natural to define Sp(G) ⊇

Op(G) so that
Sp(G)/Op(G) =

∫ p(G/Op(G)).

Then Sp(G) is a characteristic subgroup of G with a fairly nice structure which can
be read off from the preceding theorem. Furthermore, we have

Lemma 5.5. Let charK = p, and write S = Sp(G) and P = Op(G).
i. JK[S] ·K[G] ⊆ JK[G].
ii. JK[S]/(JK[P ] · K[S]) = JK[

∫ p(G/P )] =
⋃
JK[A], where the union of

over all A lsn G/P with A = Op′
(A).

iii. JK[S] 6= 0 if and only if S 6= 〈1〉, or equivalently if and only if G has a
locally subnormal subgroup of order divisible by p.

For a number of reasons it appears that the set theoretic inclusion in (i) above
may always be an equality. For example, it holds when G is a locally finite solvable
group or an F -linear group with charF = 0 or p. As we indicated earlier, the case
of locally finite linear groups in characteristic q 6= p has yet to be settled. Thus, we
are led to the following

Conjecture 5.6. If G is a locally finite group and K is a field of characteristic
p > 0, then

JK[G] = JK[Sp(G)] ·K[G].

We will discuss additional corroborating evidence for this in the next section.

§6. Locally Solvable Groups

Before we proceed further, it is worthwhile to see what the latter two conjectures
say about the semiprimitivity problem for group rings of arbitrary groups. To this
end, let G be any group and let K be a field of characteristic p > 0. If H is a finitely
generated subgroup of G, then according to Conjecture 4.8, JK[H] = NK[H], and
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therefore Theorem 5.2 yields JK[G] = JK[Λ+(G)] · K[G]. But Λ+(G) is locally
finite, so Conjecture 5.6 implies that JK[Λ+(G)] = JK[Sp(Λ+(G))] · K[Λ+(G)],
and hence we have

JK[G] = JK[Sp(Λ+(G))] ·K[G].

Furthermore, Lemma 5.5 contains an appropriate description of JK[Sp(Λ+(G))].
In particular, it follows from the above and Lemma 5.5(iii) that JK[G] 6= 0 if and
only if Sp(Λ+(G)) 6= 〈1〉, and hence if and only if G has an element x of order
p contained in a locally subnormal subgroup of Λ+(G). With this, we now know
what “well placed” means in Conjecture 3.3.

Of course, neither Conjecture 4.8 nor 5.6 has been proved, and we seem to be
quite far from the general solution. Nevertheless, there has been significant progress
made on the case of locally finite groups, so we return to this situation now. Indeed,
for the remainder of this survey, G will always denote a locally finite group and K
will be a field of characteristic p > 0. As we remarked, Conjecture 5.6 was shown,
in [dP75a], to hold for solvable groups and F -linear groups with charF = 0 or p.
Furthermore, we have

Theorem 6.1. [dP75a] Let G be a locally finite group.
i. JK[Sp(G)] · K[G] is a semiprime ideal of K[G]. It is a prime ideal when

∆+(G/Op(G)) = 〈1〉.
ii. If H is a subgroup of finite index in G, then JK[G] = JK[Sp(G)] ·K[G] if

and only if JK[H] = JK[Sp(H)] ·K[H].

Of course, an ideal I of a ring R is said to be semiprime if N(R/I) = 0, and
JR must necessarily have this property. Thus the above result at least partially
corroborates Conjecture 5.6. We remark that Theorem 6.1 was surprisingly difficult
to prove. It required intersection theorems from [DZ75], and a significant amount
of group theory. Specifically, a generalized Fitting subgroup F∗(G) was defined and
shown to have the following minimax property.

Theorem 6.2. [dP75a] Let G =
∫ p(G) with Op(G) = 〈1〉, and set F = F∗(G).

i. G = DG(F ) = { g ∈ G | |F : CF (g)| <∞}, and hence F is a characteristic
f.c. subgroup of G.

ii. Suppose G / GB where B is a finite group with |F : CF (B)| < ∞. Then
GB is generated by its locally subnormal subgroups.

In other words, part (i) shows that F is small enough to be almost central in G,
while part (ii) implies that it is big enough to control certain types of automorphisms
of G. Next, we state and prove the elementary, but extemely useful

Lemma 6.3. [dP79a] Let H / G with JK[H] = NK[H]. If D = DG(H), then

JK[G] = JK[D] ·K[G].
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Proof. Since D / G, Lemma 5.3(ii) implies that JK[D] · K[G] ⊆ JK[G]. For the
reverse inclusion, let α ∈ JK[G] and choose any subgroup B ⊇ H with |B/H| <∞
and α ∈ K[B]. Then α ∈ JK[G] ∩ K[B] ⊆ JK[B], and JK[B] = NK[B] =
JK[∆+(B)] ·K[B] by Theorems 4.9 and 3.4(i). But |B : H| <∞ and B is periodic,
so ∆+(B) = DB(H) = D∩B, and hence α ∈ JK[D∩B] ·K[B] ⊆ JK[D∩B] ·K[G].
Since this holds for all such B, it follows easily that α ∈ JK[D] ·K[G]. �

The final result of this section deals with locally p-solvable groups. Its proof
uses ∆-methods applied to finite subgroups of G, and makes crucial use of Theo-
rem 6.1(ii) and the preceding result applied to H = Op′(G). In addition, it requires
a number of preliminary observations on finitary linear groups.

Theorem 6.4. [dP79a] If G is a locally finite, locally p-solvable group and if K is
a field of characteristic p > 0, then

JK[G] = JK[Sp(G)] ·K[G].

With this result, proved in 1979, we completed an intensive ten year attack
on the semiprimitivity problem in characteristic p > 0. At this point, it seemed
appropriate to move on to other tasks. The general locally finite case would surely
require a better understanding of the finite simple groups, and the classification
was not to be completed for several more years. But before we leave the 1970s,
we should mention two special cases of Conjecture 5.6 which would serve as later
test problems. To start with, if G is infinite simple, then it follows easily that
Sp(G) = 〈1〉. Furthermore, if |G|p <∞, that is if there is a bound on the orders of
the finite p-subgroups of G, then Sp(G) is a finite normal subgroup of G. Thus we
are led to

Conjecture 6.5. Let G be a locally finite group.
i. If G is infinite simple group, then JK[G] = 0.
ii. If |G|p <∞, then JK[G] is nilpotent.

These were not considered at all during the decade of the 1980s, but they were
solved in the affirmative quite recently using the known structure of infinite simple
groups. It turned out that the wait was necessary.

§7. Infinite Simple Groups

Finally, we can discuss some recent progress on semiprimitivity. Again we assume
that G is a locally finite group and that K is a field of characteristic p > 0. If π
is any set of primes, we say that g is a π-element if |g|, the order of g, has all its
prime factors in π. For convenience, we let Gπ denote the set of π-elements of G,
so that 1 ∈ Gπ for all π. If X is a finite subset of G# = G \ 1, we say that z ∈ G
is a π-insulator of X if z ∈ Gπ and zX ∩ Gπ = ∅. Furthermore, we say that G is
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π-insulated if every finite subset of G# has a π-insulator. Note that, if π = { p }
consists of the single prime p, then we use p-element and p-insulated instead of the
more cumbersome { p }-element and { p }-insulated. The following is proved by a
simple trace argument.

Lemma 7.1. Let π be a set of primes containing p = charK. If G is π-insulated,
then K[G] is semiprimitive.

Surprisingly, this is all the group ring theory we need to settle Conjecture 6.5(i).
The remainder of the long argument is entirely group theoretic in nature and re-
quires a close look at the structure of locally finite simple groups. For our purposes,
it suffices to assume that all such groups are countably infinite.

Suppose, for example, that G = Alt∞ is the alternating group on the set of
positive integers. If Altn denotes the subgroup of G moving points in { 1, 2, . . . , n }
and fixing the rest, then G is the ascending union of the groups Altn with n ≥ 5,
and hence G is an ascending union of finite simple groups. Unfortunately, this
property is not always true. More typical is the case where G is the finitary special
linear group FSL∞(F ) with F a finite field. Here G consists of all countably infinite
square F -matrices

g =
[
ḡ 0
0 I

]
where ḡ ∈ SLn(F ) for some n and I is the identity matrix on the remaining rows
and columns. Notice that FSL∞(F ) contains no nonidentity scalar matrix, so there
is no need to form the projective group. Now it is clear that G is the ascending
union of the finite subgroups Gn ∼= SLn(F ) with n ≥ 4, but this time the groups
Gn are not simple. Instead, Gn has a normal subgroup Mn, corresponding to the
scalar matrices, and Gn/Mn

∼= PSLn(F ) is simple. Furthermore, the combined
map

Gn−1 → Gn → Gn/Mn
∼= PSLn(F )

is easily seen to be an embedding. This is a precursor of the following fundamental
result.

Lemma 7.2. [oK67] Let G be a locally finite, countably infinite simple group. Then
G has finite subgroups Gi for i = 0, 1, 2, . . . satisfying

i. Gi ⊆ Gi+1 and G =
⋃∞

0 Gi,
ii. Mi / Gi with Gi/Mi = Si a nontrivial simple group, and
iii. for all i < j, the composite map

Gi → Gj → Gj/Mj = Sj

is an embedding.
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In the above situation, we say that G is a limit of the approximating sequence
S0, S1, . . . and we write G = limi→∞ Si. Of course, G is not uniquely determined
by the simple groups Si, but the approximating sequence does encode a surprising
amount of information on the structure of G. To start with, the Classification The-
orem (see [dG82]) asserts that the collection of finite simple groups is divided into
finitely many infinite families and finitely many exceptions, the sporadic groups.
Thus, since any subsequence of the triples (Gi,Mi, Si) also determines an approxi-
mating sequence for G, we can assume that all Si belong to the same infinite family.
Now most of these families have a prime power parameter and all have an integer
parameter n. Furthermore, it turns out that G is a linear group if and only if the
parameter n is bounded throughout the sequence. The nonlinear case was settled
first.

Theorem 7.3. [dPZ93] Let G be a locally finite simple group which is not a linear
group. Then G is p-insulated for any prime p. In particular, every group algebra
K[G] is semiprimitive.

One aspect of the proof of this result deals with the maps Gi → Gj → Sj
which are by no means the obvious inclusions. Fortunately, this difficulty can
be overcome with a simple idea implemented in a fairly tedious manner. The
more interesting aspect of the argument really concerns the infinite groups Alt∞,
FSL∞(F ), FSU∞(F ), FSp∞(F ), and FΩ∞(F ) where F is a finite field. Note that
the latter four groups correspond to the families of Lie type for which the integer
parameter n can become unbounded. The first group had actually been considered
in 1972, and we sketch the clever proof.

Lemma 7.4. [eF72a] If G = Alt∞ or Sym∞, then G is p-insulated for any prime
p.

Proof. If X is a finite subset of G#, then we can choose an even integer k so that
the elements of X ⊆ Sym∞ move only points in the set { 1, 2, . . . , k }. Now define

z = (1 ∗ . . . ∗)(2 ∗ . . . ∗) . . . (k ∗ . . . ∗)

where the ∗’s denote distinct points in { k + 1, k + 2, . . . } and where (j ∗ . . . ∗) is a
cycle of length pj . Clearly z ∈ Sym∞ is a p-element, and hence g ∈ Alt∞ if p is
odd. On the other hand, if p = 2, then z is the product of an even number of odd
cycles, so again z ∈ Alt∞ ⊆ G.

Finally, let x ∈ X, and write x as a product of disjoint cycles which, by assump-
tion, involve only the first k points. If (j1j2 . . . jr) is such a nontrivial cycle in x,
then zx (acting on the right) contains the cycle

(j1 ∗ . . . ∗ j2 ∗ . . . ∗ . . . jr ∗ . . . ∗)
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which is the juxtaposition of the corresponding cycles in z. Since the ji are distinct,
the latter displayed cycle has length pj1 + pj2 + · · ·+ pjr and this is not a power of
p. Thus zx is not a p-element, so zX ∩Gp = ∅ and G is p-insulated. �

The corresponding proof for the infinite size matrix groups is much more com-
plicated. In some sense, these groups divide naturally into the four cases

Case 1: G = FSL∞(F ) charF 6= p
Case 2: G = FSU∞(F ), FSp∞(F ), FΩ∞(F ) charF 6= p
Case 3: G = FSL∞(F ) charF = p
Case 4: G = FSU∞(F ), FSp∞(F ), FΩ∞(F ) charF = p

and these are dealt with in turn. The difficulty increases as we go down the list
and reaches a crescendo when we hit the bottom.

Now on to the simple linear groups. Here, we have a wonderful characterization
of such groups based on the Classification Theorem.

Theorem 7.5. [HS84,sT83] Let G be a locally finite simple group. If G is an
infinite linear group, then G is a group of Lie type over a locally finite field F .

Of course, the field F is locally finite if charF = q > 0 and F is contained
between GF(q) and its algebraic closure. It follows from the above characterization
that G contains a 1-parameter family of q-elements and, using this and the Zariski
topology on G, we obtain

Theorem 7.6. [dP94a] Let G be a locally finite simple group. If G is an infinite
linear group over a locally finite field F of characteristic q > 0, then G is { p, q }-
insulated for any prime p. In particular, every group algebra K[G] is semiprimitive.

Thus Theorems 7.3 and 7.6 settle Conjecture 6.5(i) in the affirmative. Further-
more, with a little more work and a knowledge of the Schur multipliers of the groups
of Lie type, we can prove that if G is infinite simple, then any twisted group algebra
Kt[G] is semiprimitive. This is not merely of academic interest; the twisted result
is actually required in the next section.

§8. Groups with Bounded p-Part

Finally, we consider Conjecture 6.5(ii). Again G is a locally finite group, and
we let |G|p denote the supremum of the orders of its finite p-subgroups. In view
of the Sylow theorems, it is clear that |G|p < ∞ if and only if G satisfies the
ascending chain condition on finite p-subgroups and hence if and only if G has no
infinite p-subgroup. Of course, |G|p = 1 is equivalent to G being a p′-group. Now if
|G|p <∞, then we have a finite parameter to induct on, and therefore Lemma 7.2
and Theorem 7.5 yield
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Lemma 8.1. Let G be a locally finite group with |G|p < ∞. Then G has a finite
subnormal series

〈1〉 = G0 / G1 / · · · / Gn = G

with each quotient Gi/Gi−1 either
i. a p′-group, or
ii. a finite simple group, or

iii. an infinite simple group of Lie type.

In other words, G has a finite subnormal series with factors for which we know
the solution to the semiprimitivity problem. This is, of course, true now. But, at
the time this work was going on, Theorem 7.6 had not yet been proved. Thus, it
was necessary to use an earlier special case of that result, from [aZ92a], to obtain

Theorem 8.2. [dP93a] Let G be a locally finite group with |G|p <∞. If charK =
p > 0, then JK[G] is nilpotent.

The proof of this result starts with a simple reduction which allows us to assume
that G has no finite normal subgroup of order divisible by p, and we are left with
the task of showing that JK[G] = 0. Some aspects of the latter semiprimitivity
argument will be discussed in the more general context of

Theorem 8.3. [dP95a] Let K[G] be the group algebra of a locally finite group G
over a field K of characteristic p > 0. Suppose that G has a finite subnormal series

〈1〉 = G0 / G1 / · · · / Gn = G

with each quotient Gi/Gi−1 either
i. a p′-group, or
ii. a nonabelian simple group, or

iii. generated by its locally subnormal subgroups.
Then K[G] is semiprimitive if and only if G has no locally subnormal subgroup of
order divisible by p.

A brief outline of the proof of semiprimitivity here is as follows. First, we can
assume that K is algebraically closed. Then we proceed by induction on the number
of factors of the subnormal series for G which are infinite simple but not p′-groups.
It turns out that, using Lemma 6.3, we can quickly reduce to the case of just one
such factor. Indeed, it suffices to assume that G has a normal subgroup N with
G/N = H an infinite simple group containing an element of order p, and with
|N : CN (g)| <∞ for all g ∈ G. Furthermore, N is a p′-group and we can suppose
that G has no nontrivial f.c. homomorphic image. In other words, the pair (G,N)
is what we call a p′-f.c. cover of H. Now if N is central in G, then G is a central
cover of H and K[G] is a subdirect product of various twisted group algebras Kt[H].
Thus, the twisted analogs of Theorems 7.3 and 7.6 apply here and yield the result.
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On the other hand, if N is not central in G, then we show that H = G/N is a
finitary linear group over the Galois field GF(q) for some a prime q involved in the
subgroup N . It follows that H cannot be a linear group, so the results of [jH88],
[jH95a] and [jH95b] imply that H is isomorphic to one of the stable finitary groups
Alt∞, FSL∞(F ), FSU∞(F ), FSp∞(F ), or FΩ∞(F ) for some locally finite field F
of characteristic q.

Finally, we define a stronger version of p-insulation and we show that if H is
strongly p-insulated, then any p′-f.c. cover G of H is p-insulated and hence satisfies
JK[G] = 0. Thus all that remains is to prove that the stable groups H, as listed
above, are strongly p-insulated. Indeed, since N is a p′-group, we have q 6= p, and
thus we need only consider the stable groups in characteristic q 6= p. This turns out
to be a great simplification but, for the sake of completeness, paper [dP95a] shows
that the stable groups in characteristic p are also strongly p-insulated. The latter
fact requires a rather long and unpleasant argument.

This brings us to the present, and obviously there is still much to be done on
the semiprimitivity problem. Fortunately, there is good reason to believe that the
locally finite case can be settled in the not too distant future. For example, a close
look at the proof of Theorem 6.4 shows that it actually contains an outline for a
general argument. But there are still fundamental problems, mostly concerning
finite groups, which have to be resolved before this task can be completed.
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