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ABSTRACT. Let K be a field and let G be a multiplicative group. The group ring K|[G]
is an easily defined, rather attractive algebraic object. As the name implies, its study
is a meeting place for two essentially different algebraic disciplines. Indeed, group ring
results frequently require a blend of group theoretic and ring theoretic techniques. A
natural, but surprisingly elusive, group ring problem concerns the semiprimitivity of
K|[G]. Specificially, we wish to find necessary and sufficient conditions on the group
G for its group algebra to have Jacobson radical equal to zero. More generally, we
wish to determine the structure of the ideal JK[G]. In the case of infinite groups,
this problem has been studied with reasonable success during the past 45 years,
and our goal here is to survey what is known. In particular, we describe some of
the techniques used, discuss a number of the results which have been obtained, and
mention several tantalizing conjectures.

§1. INTRODUCTION

Consider the following construction of the polynomial ring in two variables, say
x and y, over a field K. To start with, form the set S = {2%° | a,b=0,1,2,...}
of monomials in x and y, and define multiplication in S by z%y’-z¢yd = pateyb+d,
In this way, we see that S becomes an associative semigroup with identity element
1 = 2%°. Next, let K[z,y] = K[S] be the K-vector space with basis consisting of
the elements of S. In other words, every element of K[z,y] is a formal finite sum
3 kq px®y® with coefficients k,, € K. Of course, the addition in K[z, y] is the usual
vector space addition, and multiplication in K[x,y] is defined distributively using
the multiplication in S. Since the associative law for multiplication in S clearly
carries over to K[S], it follows that K|z, y| is an associative K-algebra. Similarly,
we could construct the Laurent polynomial ring K[z, y, 2!, y~1] by taking S to be
the multiplicative group S = { 2%9° | a,b = 0,+1,+2, ...} and again forming K[S)].
Indeed, this is our first example of a group ring.
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More generally, let K be a field and let G be any multiplicative group. Then the
group algebra or group ring K[G] is a K-vector space with basis consisting of the
elements of G. Thus every element of K[G] is a formal finite sum

a:Zkgg

geG

with coefficients k, € K. Again, addition in K[G] is the obvious vector space
operation, and we define multiplication distributively using the given multiplication
of G. In this way, K[G] becomes an associative K-algebra, with structure highly
dependent on the nature of GG. Basic references for group algebras include the books
[MZ], [Pa], [P3], [P10], [Sel] and [Se2].

As is well known, group rings are important tools in both group theory and ring
theory. For example, they provide the correct framework to study and understand
the ordinary and modular character theory of finite groups. Furthermore, when G is
a polycyclic-by-finite group, then K[G] is a right and left Noetherian K-algebra and
hence it is a useful testing ground for the rich theory of noncommutative Noetherian
rings. In turn, the module theory of the latter group algebra can feed back into
group theory to yield information on the structure of abelian-by-polycyclic groups.
But, group rings are more than just useful tools. They are easily defined, rather
attractive algebraic objects which are worthy of being considered in their own right.
Their study is necessarily ring theoretic in nature, but the techniques and proofs
exhibit a strong group theoretic flavor. The goal of this paper is to survey the
progress made on a rather elusive group ring problem.

If R is an associative ring with 1, then a (right) R-module V is just a right
R-vector space. Thus V is an additive abelian group which admits right multi-
plication by R, and such that this scalar multiplication satisfies the usual axioms.
Of course, these rules are precisely equivalent to the existence of a natural ring
homomorphism 6y: R — End(V'), where End(V') is the ring of endomorphisms of
the additive abelian group V. We say that V # 0 is irreducible if V' has no proper
R-submodule. In other words, the irreducible R-modules are the natural analogs of
the 1-dimensional vector spaces over fields. For convenience, we let Irr(R) denote
the set of all such irreducible R-modules.

A ring R is said to be primitive if it has a faithful irreducible module. In other
words, R is primitive if there exists V' € Irr(R) with 6y a one-to-one map. Such
rings have a nice, rather natural structure; they are dense sets of linear transfor-
mations over division rings. Unfortunately, primitive rings are fairly scarce, so the
next best situation is to study the ring R by looking at all its irreducible modules.
But there is still a fundamental obstruction here, namely

JR= (] kerfy ={reR|Vr=0forall V €lr(R)}.
Velrr(R)
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This characteristic ideal is called the Jacobson radical of R, and we say that R is
semiprimitive precisely when J R = 0. Thus R is semiprimitive if and only if it is
a subdirect product of primitive rings. In particular, such rings are reasonably well
understood.

It is therefore of some interest and importance to determine those groups G
with semiprimitive group algebras K[G]. More generally, we would like to describe
the structure of the Jacobson radical J K[G] for any group G. In the case of finite
groups, the semiprimitivity problem has the following classical solution, dating from
the work of Maschke in 1898.

Theorem 1.1. [M] Let G be a finite group and let K be a field.
i. If char K =0, then K[G] is semiprimitive.
ii. If char K = p > 0, then K[G] is semiprimitive if and only if G has no
elements of order p.

The goal now is to extend this result, or some variant of it, to the case of infinite
groups, and in this survey, which is a revised and updated version of [P18] and
[P19], we will discuss the progress which has been made in this direction.

§2. FIELDS OF CHARACTERISTIC 0

It is not surprising that the early advances on the semiprimitivity problem for
infinite groups concerned fields of characteristic 0, and indeed the field C' of complex
numbers. The first significant result appeared in 1950, with a proof using analytic
methods, including the spectral norm and the auxiliary norm of C[G].

Theorem 2.1. [R] If C is the field of complex numbers, then every group algebra
C[G] is semiprimitive.

This result intrigued a number of ring theorists who rightly felt that it should
have an algebraic proof. Thus, for example, the semiprimitivity problem for fields
of characteristic 0 appeared in the Ram’s Head Inn problem list [K1] (see also [K2]),
and an algebraic argument for Theorem 2.1 was quickly discovered. It is instructive
to consider some of the ingredients of this new proof. Recall that an ideal I of any
ring R is said to be nil if all elements of I are nilpotent. Since every nil ideal of R
is contained in J R, a first step in proving that K[G] is semiprimitive might be to
show that it has no nonzero nil ideal. In this direction we have

Lemma 2.2. Let K be a subfield of the complex numbers which is closed under
complex conjugation. If G is any group, then K[G| has no nonzero nil ideal.

Proof. Define a map *: K[G] — K|[G] by

(%: krgg)* = zg: ]}ggfl
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where ~ indicates complex conjugation. It is easy to see that (af)* = (*a*,
o = a, and (o + ()" = o + 3*. Furthermore, if @ = 3 kyg, then the identity
coefficient of aa™ is equal to 3_, kgky = >y |kg|?. Hence aa* = 0 if and only if
a=0.

Let I be a nonzero ideal of K[G| and choose 0 # o € I. Then, by the above,
0B = aa* is a nonzero element of I, and 3 is easily seen to be *-symmetric. In
other words, any nonzero ideal of K[G] contains a nonzero *-symmetric element.
Next, we claim that 0 is the unique *-symmetric nilpotent element. Indeed, if 7 is
x-symmetric and nilpotent, then so is any power of v. Thus it suffices to assume
that v2 = 0. But then 0 = v2 = y4*, so 7 = 0 as required, and the result follows
immediately from the latter two observations. [

The second ingredient holds over any field. Note that if H is a subgroup of
G, then K[H] is naturally embedded in K[G]. Indeed, this is just the group ring
analog of the obvious polynomial ring inclusion K [z] C K[z, y]. Furthermore, since
K|[G] is a free right and left K[H]-module, using coset representatives for H in G
as a free basis, we have

Lemma 2.3. Let K be any field and let H be a subgroup of G.

i. If W is an irreducible K[H|-module, then there exists an irreducible K|G]-
module V' with W a submodule of Vi, the restriction of V to K[H].
ii. JK[G)NK[H] C JKI[H].

The remainder of the argument is of less interest. To start with, the Hilbert
Nullstellensatz asserts that if A is a finitely generated commutative algebra over a
field K, then J A is a nil ideal. Furthermore, recall that there is a trivial proof of
this result in case K is nondenumerable. Indeed, the same proof shows, without
the commutativity assumption, that if A is a countable dimensional algebra over
a nondenumerable field, then JA is nil. In particular, it follows from this and
Lemma 2.2 that if H is a countable group, then the complex group algebra C|[H]|
is semiprimitive. Finally, if G is any group and if o € JC|[G], then there exists a
finitely generated and hence countable subgroup H of G with « € C[H]. But then
Lemma 2.3(ii) yields

a € CIHNJCIG] € JO[H] =0,

and Theorem 2.1 is proved.

Much more important is the later work of Amitsur on the behavior of the radical
under field extensions. If A is a K-algebra and if F' is a field containing K, then
we denote the F-algebra F @ A by AF. Thus AF is the largest ring generated by
its commuting subrings F' and A, with the two copies of K identified.

Theorem 2.4. [Al] Let F DO K be fields and let A be a K -algebra.
i. J(AYN A C JA with equality when F/K is algebraic.



SEMIPRIMITIVITY OF GROUP ALGEBRAS 5

ii. If F/K is a finite separable extension, then J(AY) =F @k JA.
iti. If F is a nontrivial purely transcendental extension of K, then J(AF) =
F®g I for some nil ideal I of A.

Since K[G]!' = F @k K[G] = F|[G], the preceding result and Lemma 2.2 applied
to the field @ of rational numbers yield

Theorem 2.5. [A2] Let K be a field of characteristic 0 so that K contains the
rational numbers Q, and let G be an arbitrary group.
i. If K/Q is not algebraic, then K[G] is semiprimitive.
ii. If K/Q is algebraic, then JK[G] = K ®¢g JQ|G] and K[G] has no nonzero
nil ideal.

In particular, the semiprimitivity problem for algebraic extensions of () reduces
to @ itself. Presumably Q[G] is always semiprimitive, but unfortunately the above
result marks the extent of our knowledge. Indeed, there has been no significant
progress on the characteristic 0 problem since Theorem 2.5 appeared in 1959. We
remark that the semiprimitivity of Q[G] would follow quite easily if one knew that
finitely generated algebras necessarily have nil Jacobson radicals. However, as was
shown in [B], this is not always the case.

§3. FIELDS OF CHARACTERISTIC p > 0

Now let us turn to modular fields and assume for the remainder of this paper
that char K = p > 0. In view of Theorem 1.1, it is reasonable to suppose K|[G]|
is semiprimitive if and only if G is a p’-group, that is a group with no elements
of order p. One direction of this is most likely true, but as we will see, the other
direction is decidedly false. We begin with an interesting trace argument.

For any group G, let tr: K[G] — K be the map which reads off the identity
coefficient, so that tr(>_ kgg) = k1. Then tr is obviously a K-linear functional, and
it is easy to see that tr a3 = tr fa for all «, f € K[G]. Next, we note that if A is
any K-algebra and if aq,as,... ,as € A, then

(a1+a2+'--+as)pn :aﬁ)n —|—apn +...+a€" +
for some [ € [A, A], where the latter subspace is the span of all Lie products
[v,0] =76 — &y with 7,0 € A.
Lemma 3.1. If G is a p’'-group, then K[G] has no nonzero nil ideal.

Proof. Suppose a = )" kyg € K[G] is nilpotent, and choose n sufficiently large so
that o?” = 0. Then by the preceding formula,

0=a" = (k)" g" +0

geG
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for some 3 € [K G], K [G]] In particular, since tr annihilates all Lie products, we
have tr 3 = 0 and hence

0= Z(kg)p" trg?" .

geG

But G is a p’-group, so ¢?" = 1 if and only if g = 1, and therefore tr g?" = 0 for
all g # 1. It follows that 0 = (k;)P", and we conclude that if « is nilpotent, then
0=k =trao.

Finally, let I be a nil ideal of K[G] and let v = >"cyg € I. Then yz~! € I is
nilpotent for any = € G, so the above yields 0 = tryz~! = ¢,. Thus v = 0, and
hence I = 0, as required. [

Since any finitely generated field extension of GF(p) is separably generated, it
is a simple matter to translate the argument of Theorem 2.5 to this context. In
particular, Theorem 2.4 and Lemma 3.1 yield

Theorem 3.2. Let K be a field of characteristic p > 0, write Ko = GF(p), and let
G be a p'-group.

i. If K/Ky is not algebraic, then K|G] is semiprimitive.
ii. If K/Ky is algebraic, then JK[G] = K ®k, J Ko|G].

If G is a p'-group, then KI[G] is presumably always semiprimitive. But the
converse is certainly not true; there are numerous groups G having elements of
order p, but with JK[G] = 0. For example, we have

(1) p=2and G = (z,y | y oy =271,y = 1) is infinite dihedral.

(2) G = Z1Z, is the wreath product of the infinite cyclic group Z by the cyclic

group Z, of order p.

(3) G =Z,1Z is again a wreath product and has a normal infinite elementary

abelian p-subgroup.

(4) G = FSym, the countably infinite finitary symmetric group.

Note that (1), which appeared in [Wa], was the first such example, and (4) is a
result of [F]|. Furthermore, we know that the groups in (3) and (4) have primitive
group algebras. The real answer to the semiprimitivity problem is most likely

Conjecture 3.3. Let K be a field of characteristic p > 0 and let G be a group.
Then JK[G] # 0 if and only if G has an element of order p “well placed” in G.

Of course, before this can be proved, we must first determine what “well placed”
means. To do this, it is necessary to compute numerous examples. However, we can
get some idea of the possible meaning by considering a slightly different problem.
For any ring R, let NR denote the join of all its nilpotent ideals. Thus N'R is
a characteristic nil ideal called the nilpotent radical of R. For general rings, it is
neither nilpotent nor a radical, but we do have NR C JR.
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Next, if A and B are subgroups of a group G, then the finitary centralizer of B
in A is defined by

Da(B)={a€c A||B:Cp(a)| < 0}

In other words, D 4(B) consists of all elements of A which almost centralize B, and
consequently it is a subgroup of A normalized by Ng(A) N Ng(B). Corresponding
to this finitary centralizer is a finitary center, the f.c. or finite conjugate center of
G, given by

A(G) =Dg(G) ={z € G||G:Cg(z)] < 0 }.

Thus A(G) consists of all elements of G having only finitely many conjugates, and
it is easy to see that A = A(G) is a characteristic subgroup of G. Furthermore, we
let AT(G) be the set of torsion elements of A, that is the elements of finite order
in the group. Surprisingly, At = AT (G) is also a characteristic subgroup of G.
Indeed, A/A™ is a torsion free abelian group and A7 is the join of all finite normal
subgroups of G.

The following result is proved using a powerful coset counting argument known
as the A-method.

Theorem 3.4. [P1], [P2] Let D(G) denote the set of finite normal subgroups of G,
and let AT = AT(G) = (D | D € D(G)). If char K = p > 0, then
i. NK[|G] = JK[AT]-K[G].
iii. NK[G] # 0 if and only if AT contains an element of order p and hence if
and only if G has a finite normal subgroup of order divisible by p.

Note that (i) asserts that JK[A™] is contained in N'K[G] and generates it as
a right ideal. Furthermore, (iii) is an immediate consequence of parts (i) and (ii),
along with Theorem 1.1. Thus “well placed” for this radical means that the element
of order p is contained in AT (G) or equivalently in some finite normal subgroup of
G. We close this section with a simple, but quite useful, observation.

Lemma 3.5. [V] If H is a normal subgroup of G of finite index n, then
JK|[G|" C JK[H]-K[G] C JK|G].

Furthermore, if p does not divide n, then JK[H]-K[G] = JK|[G].

In particular, if JK[H] = 0 in the above, then JK|G] is nilpotent and Theo-
rem 3.4 can come into play. With this observation, it is now a simple exercise to

prove that K[G] is semiprimitive when G = Z{ Z,, or when p = 2 and G is infinite
dihedral.
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§4. SOLVABLE GROUPS AND LINEAR GROUPS

This brings us to the early 1970’s; it was time to compute some examples. We
looked for families of groups which were sufficiently diverse to give us meaningful
answers, yet simple enough to be dealt with effectively. Two obvious candidates
were the families of solvable groups and linear groups. As it turned out, the solvable
case yielded the most information and required the more interesting techniques.
Therefore we begin our exposition with these groups. We will ignore some earlier
special case considerations and just deal with the general problem.

First, recall that G is said to be an f.c. group if G = A(G), or equivalently if all
conjugacy classes of GG are finite. Next, let G be any group, let H be a subgroup of
G, and let I be a nonzero ideal of K[G]|. Then an intersection theorem is a result
which guarantees that I N K[H| # 0 under suitable assumptions on H, G/H, or I.
There are numerous results of this nature in the literature, and Zalesskii proved a
marvellous one for solvable groups. Specifically, he showed

Theorem 4.1. [Z1] If G is a solvable group, then G has a characteristic f.c. sub-
group 3(G) with the following property. If K is any field and if I is a nonzero ideal
of K[G], then IN K[3(G)] # 0.

This Zalesskit subgroup 3(G) is the f.c. center of a finitary analog of the Fitting
subgroup of a finite solvable group. Of course, if G is solvable and if JK[G] # 0,
then the preceding theorem implies that JK[G] N K[3(G)] # 0. Thus, the next
step in the solution of the semiprimitivity problem for these groups is to deal
with this intersection. For this, we require an interesting general result which is a
noncommutative analog of the argument used to prove Theorem 2.4(iii).

Lemma 4.2. [Wa] Let G be an arbitrary group, let H < G, and suppose that o €
JK[G| N K[H]. If x is any element of G of infinite order modulo H, then there
exists a positive integer n such that

aa®a® - a®" = 0.
Here, of course, a¥ = y~'ay for any y € G. Now, if = has infinite order modulo
H, then so does x* for any positive integer s. Thus, each such z gives rise to a
family of equations, with varying s and varying n = n(s). These Wallace equations
are rather unwieldy in general. Nevertheless, we were able to use them effectively
when H is a solvable f.c. group.

For any element § =Y b,g € K[G], let us write supp3 ={g€ G| b, #0}. In
particular, the support of § is a finite subset of G which is nonempty when 3 # 0.
Furthermore, let quot 3 denote the set of quotients xy~! with x,y € supp 3, and
for any prime p let p-quot 3 denote the set of nonidentity elements of quot 8 having
order a power of p. Finally, if L is any subgroup of G, we write

VL={zeG|a2" e L for somen#0}.
Obviously, v'L D L, but this root set need not be a subgroup of G.
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Proposition 4.3. [HP| Let G be an arbitrary group, let H be a normal solvable
f-c. subgroup of G, and let o € JK|G] N K[H|. Then

¢= |J VCa).

rEp-quot a

It remained to translate the latter set theoretic union into a more understandable
condition. To start with, notice that G = \/m is equivalent to G being a periodic
group, and therefore the preceding root set equation is related to the Burnside
problem. Fortunately, the Burnside problem is quite simple to deal with when G is
solvable, and paper [P4] handled this more general situation. Specifically, it showed
that if G = |J} v/L; is a finite union of root sets of subgroups and if G is finitely
generated and solvable, then some L; must have finite index in G. By combining
all these ingredients, we obtained

Theorem 4.4. [HP], [P4], [Z1] Let G be a solvable group and let K be a field of
characteristic p > 0. Then JK[G] # 0 if and only if 3(G) contains an element x
of order p which has only finitely many conjugates under the action of each finitely
generated subgroup of G.

Note that the latter condition on x is equivalent to the assertion that if = €
H C G with H finitely generated, then x € A*(H). In particular, if G is a finitely
generated group, then this condition reduces to the assumption that z € AT (G),
and of course this is precisely equivalent to the nonvanishing of N K[G]. In fact,
fairly soon afterwards, Zalesskii built upon the preceding, added an additional
intersection theorem of sorts, and proved

Theorem 4.5. [Z2] If G is a finitely generated solvable group and K is a field of
characteristic p > 0, then JK|G] = NK[G].

In particular, in the above situation, we not only know when K[G] is semiprimi-
tive, we actually know the complete structure of 7 K[G] by applying Theorem 3.4.
Most of these results have now been extended to groups which have a finite normal
series with f.c. factor groups. But these generalizations offer nothing new in the way
of ideas or techniques. Now let us move on to consider linear groups over a field F'.
Here there are actually three different problems according to whether char F' = 0,
char F' = p = char K, or char F' = ¢ > 0 with ¢ # char K. The first two cases were
completely settled in the 1970’s, but the third was only finished quite recently.

The linear groups in characteristic p actually turned out to be the most inter-
esting of the three possibilities. Here, the proof consisted of a complicated trace
argument, along with the solution of another variant of the Burnside problem for
linear groups. The answer is quite similar to that for solvable groups and requires
that we first define a particular characteristic f.c. subgroup £(G). This is done in
a fairly simple manner, so £(G) is by no means as important as 3(G).
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Theorem 4.6. [P5], [P6] Let G be an F-linear group and assume that char F' =
p = char K. Then JKI|G| # 0 if and only if L(G) has an element x of order p
which has only finitely many conjugates under the action of each finitely generated
subgroup of G.

Now let us assume that G is a finitely generated F-linear group. If char F' # p,
then it follows quite easily that G has a normal subgroup H of finite index which
is residually a finite g-group for some prime ¢ # p. Consequently, 7 K[H| = 0 and
Lemma 3.5 implies that 7 K[G] is nilpotent. On the other hand, if char F' = p, then
it follows from the preceding theorem and a certain amount of work that JK[G] is
at least a locally nilpotent ideal. In other words, we have

Corollary 4.7. [P7] If G is a finitely generated linear group and char K = p > 0,
then JK|G] = NK|G].

Thus a pattern began to emerge and we were led to

Conjecture 4.8. If G is any finitely generated group and if char K = p > 0, then
JKI[G) = NK|[G].

There was even some corroborating evidence which held for arbitrary groups.
Recall that the nilpotent radical is not a radical in general. Indeed, there exists
a finitely generated K-algebra A with N (A/NA) # 0. But this cannot happen
for group rings of finitely generated groups if the preceding conjecture is to hold.
Fortunately, we were able to show

Theorem 4.9. [P7] If G is any finitely generated group, then K[G] is a finitely
generated K-algebra and N (K[G]/NK|[G]) = 0. Furthermore, if H is a subgroup
of finite index in G, then JK[H| = NK[H] if and only if TK|G] = NK[G].

We remark that this result, Theorem 4.5, and Corollary 4.7 were all proved using
the following quite surprising radical-like property of the A™ operator.

Lemma 4.10. Let G be a finitely generated group and let H be a normal subgroup
of G. If HC AT (Q), then AT (G/H) = AT(G)/H.

It is easy to see that this lemma requires G to be finitely generated, and it does
not hold for the A operator or indeed for the operator Z, where Z(G) is the center
of GG. Unfortunately, this marks the extent of our knowledge of the semiprimitivity
question for finitely generated groups. There has been no significant progress made
on this problem since the above theorems appeared in 1973 and 1974.

§5. LocALLY FINITE GROUPS

The obvious next step is to deal with arbitrary groups G under the assump-
tion that we know the answer in the finitely generated case. For convenience, let
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F(G) denote the set of finitely generated subgroups of G. Then, motivated by
Theorems 4.4 and 4.6, we define a local version of the f.c. center by

AG)={z€G||H:Cy(z)| < oo for all H € F(G)}.

In other words,

MG)= () Dg(H)
HEF(G)

consists of all elements of G which have only finitely many conjugates under the
action of each finitely generated subgroup of G. If we also let AT = AT(G) be
the set of torsion elements of A = A(G), then the known structure of A and A™
translate to

Lemma 5.1. Let G be an arbitrary group.

i. A and AT are characteristic subgroups of G.
ii. A/AT is torsion free abelian, and AT is a locally finite group.
iii. If H<G with HC AT, then At (G/H) = AT(G)/H.

Of course, a group G is locally finite if every finitely generated subgroup is finite.
For such groups, it follows easily that A*(G) = G. Thus, the assertion of part (ii)
that A*(G) is locally finite cannot be further sharpened. Notice also that part (iii)
above asserts that the operator AT exhibits radical-like properties. This is clearly
a local version of Lemma 4.10.

Now suppose a € JK[G] and let H be any finitely generated subgroup of G with
suppa C H. Then a € JK[G]N K[H] C JK[H] and hence, if we happen to know
that JK[H] = NK[H], then we can use the structure of N'K[H], as described in
Theorem 3.4, to better understand «. Specifically, we obtain

Theorem 5.2. [P7] Let G be an arbitrary group and let K be a field of character-
isticp > 0. If TK[H] = NK[H] for all H € F(G), then

JK[G] = TK[A*(Q)]-K[G].

In particular, it follows from Theorem 4.5 and Corollary 4.7 that if G is either
locally solvable or locally linear, then JK[G] = JK[AT(G)]-K[G]. This is, in
fact, how the semiprimitivity problem for characteristic 0 linear groups was settled.
Namely, if G is such a group, then JK|[G] is generated by JK[A1(G)], and AT (G)
is a locally finite characteristic 0 linear group. Thus AT (G) is abelian-by-finite and,
with this, we can easily obtain a result quite similar to Theorem 4.6.

Notice also that if Conjecture 4.8 holds, then Theorem 5.2 reduces the semiprim-
itivity problem to the case of locally finite groups. In other words, this result splits
the general problem into two parts. Specifically, we must first study the finitely
generated case and show that JK[G] = NK|G] for such groups. Then we must
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settle the problem for locally finite groups. In particular, this means that the lo-
cally finite case is also of crucial importance, and the remainder of this survey will
be devoted to a discussion of this situation.

To start with, let us take another look at Theorems 4.4 and 4.6 in the context
of locally finite groups. In each case, we have a normal f.c. subgroup H of G and
an element x € H of order p. Since H is generated by its finite normal subgroups,
it follows that x is contained in such a subgroup M. In particular, M is a finite
subnormal subgroup of G of order divisible by p, and it began to appear that these
finite subnormal subgroups might be the key to the solution. But inclusion in the
Jacobson radical is a local property, so a local version of subnormality was really
more appropriate.

Let G be a locally finite group and let A be a finite subgroup of G. We say that
A is locally subnormal in G, and write A Isn G, if A is subnormal in B for all finite
subgroups B of G with A C B. For example, if G is locally nilpotent, then every
finite subgroup is locally subnormal. Basic properties are as follows.

Lemma 5.3. Let G be a locally finite group and let K be a field.
i. JKI[G] is a nil ideal.
ii. If A<<G, then JK[A] C JK|[G].
iii. If Alsn G, then JK[A] C JK[G].

Proof. We sketch the argument. For part (i), let o € JK[G] and choose a finite
subgroup H of G which contains the support of a. Then o € JK[G] N K[H] C
JK[H] by Lemma 2.3(ii), and JK[H] is nilpotent since H is finite. Thus « is
nilpotent, and J K[G] is indeed a nil ideal. For part (ii), it suffices to assume that
A <G, and to show that JK[A]-K[G] is a nil right ideal of K[G]. To this end, let
v € JK[A]-K|G] and write v = > 7 a;3; with o; € JK[A] and 3; € K[G]. Since
G/A is locally finite, there exists a finite subgroup B/A of G/A with supp3; C B
for all i. Then, by Lemma 3.5, v = .7 a;8; € JK[A]-K[B] C JK|B], and hence
we conclude from (i) that « is nilpotent. Part (iii) follows in a similar manner. O

If K is a field of characteristic p > 0, and if P is a locally finite p-group, then
it follows from part (iii) above that JK[P] is the augmentation ideal of K|[P],
namely the kernel of the natural homomorphism K[P] — K given by P +— 1. In
particular, if P = 0, (G) is the largest normal p-subgroup of G, then J K[P]-K|[G]
is the kernel of the natural homomorphism K[G] — K[G/P], and this kernel is
contained in JK[G] by (ii) above. In other words, we have

JK[G)/(TK[P]-K[G]) = TK[G/P],

and obviously Q,(G/P) = (1). Because of this, it usually suffices to assume that
0p(G) = (1).
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As we will see, if 0,(G) = (1), then the differences between locally subnormal
subgroups, finite subnormal subgroups, and finite subgroups of normal f.c. sub-
groups essentially disappear. Note that we are interested in the p-elements of such
a finite subgroup A, and hence our real concern is with Q7' (A), the characteristic
subgroup of A generated by its Sylow p-subgroups. In other words, we can usually
assume that A = Q' (A). In the following definition, len A denotes the composition
length of A, namely the common length of all composition series for A. Since A is
finite, len A is certainly finite.

Now for any locally finite group G and fixed prime p, let SP(G) be the charac-
teristic subgroup of G generated by all A lsn G with 4 = Q7' (A). Furthermore, for
each integer n > 1, let SE(G) be the subgroup of G generated by all A lsn G with
A =0V (A) and len A < n. Then we have

Theorem 5.4. [P8] Let G be a locally finite group with O,(G) = (1). Then SP(G)
is the ascending union of its characteristic f.c. subgroups SP(G).

Suppose, in the above situation, that A Isn G, A = @p/(A), and say len A = n.
Then A C SP(G), and the latter is a normal f.c. subgroup of G. In particular, since
SP (@) is generated by its finite normal subgroups, there exists such a subgroup B
with A C BaSE(G). But |B| < 00, so A<< B and therefore A<<G. Furthermore,
if we take B to be the normal closure of A in S2(G), then B = OF (B) and B<<G
with subnormal depth at most 2. Thus these several concepts all merge into one.

To handle groups having normal p-subgroups, it is natural to define T?(G) 2
0,(G) so that

T7(G)/0p(G) = SP(G/0,(G)).
Then T?(G) is a characteristic subgroup of G with a fairly nice structure which can
be read off from the preceding theorem. Furthermore, we have

Lemma 5.5. Let char K = p, and write T = T?(G) and P = O,(G).
i. JK[T)-K[G] € JK|G].
ii. JK[T|/(JK[P)-K[T]) = JKI[SP(G/P)] = UJIKIA], where the union is
over all Alsn G/P with A= O (A).
iii. JK[T] # 0 if and only if T # (1), or equivalently if and only if G has a
locally subnormal subgroup of order divisible by p.

For a number of reasons, we suspected that the set theoretic inclusion in (i) above
might always be an equality. For example, we knew that it held for G a locally finite
solvable group or an F-linear group with char F' = 0 or p. Furthermore, there was
some additional corroborating evidence which will be discussed in the next section.
With all of this, we were led to

Conjecture 5.6. If G is a locally finite group and K is a field of characteristic
p >0, then
JK[G] = JK[T?(G)]-K[G].
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§6. LOCALLY SOLVABLE GROUPS

Before we proceed further, it is worthwhile to see what the latter two conjectures
say about the semiprimitivity problem for group rings of arbitrary groups. To this
end, let G be any group and let K be a field of characteristic p > 0. If H is a finitely
generated subgroup of G, then according to Conjecture 4.8, 7K [H| = NK[H], and
therefore Theorem 5.2 yields JK[G] = JK[AT(G)]-K[G]. But AT(G) is locally
finite, so Conjecture 5.6 implies that JK[A1T(G)] = JK[TP(AT(G))]-K[AT(G)],
and hence we have

JK[G] = TK[T*(A"(G))]-K[G].

Furthermore, Lemma 5.5 contains an appropriate description of JK[T?(AT(G))].
In particular, it follows from the above and Lemma 5.5(iii) that JK[G] # 0 if and
only if T?(AT(G)) # (1), and hence if and only if G has an element x of order
p contained in a locally subnormal subgroup of A™(G). With this, we now know
what “well placed” should mean in Conjecture 3.3.

Of course, neither Conjecture 3.3 nor 4.8 has been proved, and we seem to be
quite far from the general solution. Nevertheless, significant progress has been made
in the case of locally finite groups, so we return to this situation now. Indeed, until
further notice, G will always denote a locally finite group and K will be a field of
characteristic p > 0. As we remarked, Conjecture 5.6 was shown in [P7] to hold for
solvable groups and F-linear groups with char ' = 0 or p. Furthermore, we have

Theorem 6.1. [P9] Let G be a locally finite group.
i. JK[T?(G)]-K[G] is a semiprime ideal of K[G|, and it is a prime ideal when
AT(G/0,(G)) = (1).
ii. If H is a subgroup of finite index in G, then JK[G] = JK|T?(G)|-K|G] if
and only if TK[H] = JK[TP(H)|-K[H].

Of course, an ideal I of a ring R is said to be semiprime if N(R/I) = 0, and
J R must necessarily have this property. Thus the above result at least partially
corroborates Conjecture 5.6. We remark that Theorem 6.1 was surprisingly difficult
to prove. It required intersection theorems from [DZ], and a significant amount of
group theory. Specifically, a generalized Fitting subgroup F*(G) was defined in [P9]
and shown to have the following minimax property.

Theorem 6.2. [P9], [P20] Let G = SP(G) with O,(G) finite, and set F' = F*(G).

i. G=Dg(F)={g€d | |F: Cr(g)| < 00}, and hence F is a characteristic
f-c. subgroup of G.

ii. Suppose G <GB where B is a finite group with |F : Cp(B)| < co. Then
GB is generated by its locally subnormal subgroups.

In other words, part (i) shows that F' is small enough to be almost central in G,
while part (ii) implies that it is big enough to control certain types of automorphisms
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of G. We remark that the definition of F* was changed to a more natural one in
[P20], and the reference to that paper in the preceding theorem refers to this new
formulation. Next, we state and prove the following elementary, but extemely
powerful consequence of Theorems 3.4 and 4.9.

Lemma 6.3. [P11] Let H <G with JK[H| =NK|[H]. If D =Dg(H), then
JK|G] = JK[D]-K[G].

Proof. Since D <« G, Lemma 5.3(ii) implies that JK[D]-K[G] C JK|[G]. For the
reverse inclusion, let a € JK|[G] and choose any subgroup B O H with |B/H| < oo
and a € K[B]. Then a € JK[G] N K[B] C JK[B], and JK[B] = NK[B] =
JK[AT(B)]-K[B] by Theorems 4.9 and 3.4(i). But |B: H| < co and B is periodic,
so AT(B) =Dp(H) = DN B, and hence o € JK[DNB]-K[B] C JK[DNB|-K|[G].
Since this holds for all such B, it follows easily that o € JK[D]-K[G]. O

The final result of this section deals with locally p-solvable groups. Its proof uses
A-methods applied to finite subgroups of G, a rather surprising idea, and makes
crucial use of Theorem 6.1(ii) and the preceding result applied to H = O,/ (G). In
addition, it requires Hall-Higman methods (see [HH]) and a number of observations
on p-solvable finitary linear groups.

Theorem 6.4. [P11] If G is a locally finite, locally p-solvable group and if K is a
field of characteristic p > 0, then

JK[G] = JK[T?(G))-K[G).

With this result, proved in 1979, we completed an intensive ten year attack
on the semiprimitivity problem in characteristic p > 0. At this point, it seemed
appropriate to move on to other tasks. The general locally finite case would surely
require a better understanding of the finite simple groups, and the classification
was not to be completed for several more years. But before we leave the 1970’s,
we should mention two special cases of Conjecture 5.6 which would serve as later
test problems. To start with, if G is infinite simple, then it follows easily that
T?(G) = (1). Furthermore, if |G|, < oo, that is if there is a bound on the orders of
the finite p-subgroups of G, then T?(G) is a finite normal subgroup of G. Thus we
were led to

Conjecture 6.5. Let G be a locally finite group.
i. If G is an infinite simple group, then JK|G] = 0.
ii. If |G|, < oo, then JK|[G] is nilpotent.

These were not considered at all during the decade of the 1980’s, but they were
solved in the affirmative in the early 1990’s using the known structure of infinite
simple groups. It turned out that the wait was necessary.
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§7. INFINITE SIMPLE GROUPS

Finally, we can begin our discussion of recent progress on semiprimitivity. Again
we assume that G is a locally finite group and that K is a field of characteristic
p > 0. If 7 is any set of primes, we say that g is a w-element if |g|, the order of g, has
all its prime factors in 7. For convenience, we let G, denote the set of m-elements
of G, so that 1 € G for all . If X is a finite subset of G# = G\ {1}, we say
that z € G is a w-insulator of X if 2 € G, and zX N G, = (. Furthermore, we
say that G is m-insulated if every finite subset of G# has a m-insulator. Note that,
if m = {p} consists of the single prime p, then we use p-element and p-insulated
instead of the more cumbersome { p }-element and { p }-insulated. The following is
proved by a simple trace argument.

Lemma 7.1. Let 7w be a set of primes containing p = char K. If G is m-insulated,
then K[G| is semiprimitive.

Surprisingly, this is all the group ring theory we need to settle Conjecture 6.5(i).
The remainder of the long argument is entirely group theoretic in nature and re-
quires a close look at the structure of locally finite simple groups. For our purposes,
it suffices to assume that all such groups are countably infinite.

Suppose, for example, that G = FAlt,, is the finitary alternating group on
the set of positive integers. If Alt,, denotes the subgroup of G moving points in
{1,2,... ,n} and fixing the rest, then G is the ascending union of the groups Alt,,
with n > 5, and hence G is an ascending union of finite simple groups. Unfortu-
nately, this property is not always true. More typical is the case where G is the
finitary special linear group FSL..(F') with F' a finite field. Here G consists of all
countably infinite square F-matrices

g 0
=0 7]
where g € SL,,(F') for some n and I is the identity matrix on the remaining rows
and columns. Notice that FSL.,(F') contains no nonidentity scalar matrix, so there
is no need to form the projective group. Now it is clear that G is the ascending
union of the finite subgroups G,, = SL,,(F') with n > 4, but this time the groups
G, are not simple. Instead, G,, has a normal subgroup M,,, corresponding to the
scalar matrices, and G, /M, = PSL, (F) is simple. Furthermore, the combined

map

Gn_1— G, — G, /M, = PSL,(F)

is easily seen to be an embedding. This is indicative of the following fundamental
result.

Lemma 7.2. [Ke] Let G be a locally finite, countably infinite simple group. Then
G has finite subgroups G; for i =0,1,2,... satisfying
1. GZ Q Gi+1 and G = Uloio Gi,
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ii. M; <«G; with G;/M; = S; a nontrivial simple group, and
iii. for all i < j, the composite map

Gi— G — G;/M; =S,
is an embedding.

In the above situation, we say that G is a limit of the approximating sequence
S0, 51, ... and we write G = lim;_,,, S;. Of course, G is not uniquely determined
by the simple groups .S;, but the approximating sequence does encode a surpris-
ing amount of information on the structure of GG. To start with, the Classification
Theorem (see [G]) asserts that the collection of finite simple groups is divided into
finitely many infinite families and finitely many exceptions, the sporadic groups.
Thus, since any subsequence of the triples (G;, M;, S;) also determines an approxi-
mating sequence for (¢, we can assume that all S; belong to the same infinite family.
Now most of these families have a prime power parameter and all of them have an
integer parameter n. Furthermore, it turns out that G is a linear group if and only
if the parameter n is uniformly bounded. The nonlinear case was settled first.

Theorem 7.3. [PZ] Let G be a locally finite simple group which is not a linear
group. Then G is p-insulated for any prime p, and consequently every group algebra
K|[G] is semiprimitive.

One aspect of the proof of this result deals with the maps G; — G; — 5,
which are by no means the obvious inclusions. Fortunately, this difficulty can
be overcome with a simple idea implemented in a fairly tedious manner. The
more interesting aspect of the argument really concerns the infinite groups FAlt .,
FSLoo(F), FSU (F), FSpoo (F'), and FQ . (F) where F is a finite field. Note that
the latter four groups correspond to those families of finite simple groups of Lie type
for which the integer parameter n can become unbounded. The finitary alternating
group had actually been considered by Formanek in 1972, and we sketch his clever
argument.

Lemma 7.4. [F] If G = FAlt, or FSym.,, then G is p-insulated for any prime p.

Proof. If X is a finite subset of G, then we can choose an even integer k so that

the elements of X C FSym,, move only points in the set {1,2,... ,k }. Now define
z=(1x...%)(2%...%) ... (k*...%)

where the *’s denote distinct points in {k+ 1,k +2,...} and where (j*...%) is a
cycle of length p?. Clearly z € FSymy is a p-element, and hence g € FAlt, if p is
odd. On the other hand, if p = 2, then z is the product of an even number of odd
cycles, so again z € FAlt, C G.
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Finally, let € X, and write z as a product of disjoint cycles which, by assump-
tion, involve only the first k& points. If (j1j2...7,) is such a nontrivial cycle in z,
then zz (acting on the right) contains the cycle

(Jrsk ..ok ok ook gy k.. %)

which is the juxtaposition of the corresponding cycles in z. Since the j; are distinct,
the latter displayed cycle has length p/* + p72 + .- 4+ p’~ and this is not a power of
p. Thus zx is not a p-element, so zX NG, = 0 and G is p-insulated. O

The corresponding proof for the infinite size matrix groups is much more com-
plicated. In some sense, these groups divide naturally into the four cases

Case 1: G = FSL(F) char F' # p
Case 2: G =FSU(F), FSpeo(F), FQu (F) char F' # p
Case 3: G = FSL(F) char FF =p
Case 4: G =FSU(F), FSpoo(F), FQu (F) char ' =p

and these are dealt with in turn. The difficulty increases as we go down the list
and reaches a crescendo when we hit the bottom.

Now on to the simple linear groups. Here, we have the following wonderful char-
acterization of such groups based on Lemma 7.2 and the Classification Theorem.

Theorem 7.5. [Bel, [Bo|, [HS], [T] Let G be a locally finite simple group. If G is
an infinite linear group, then G is a group of Lie type over a locally finite field F.

Of course, the field F is locally finite if char FF = ¢ > 0 and F is contained in
the algebraic closure of GF(q). It follows from the above characterization that G
contains a 1-parameter family of g-elements and, using this and the Zariski topology
on (G, we obtain

Theorem 7.6. [P14] Let G be a locally finite simple group. If G is an infinite linear
group over a locally finite field F' of characteristic ¢ > 0, then G is { p, q }-insulated
for any prime p. In particular, every group algebra K[G] is semiprimitive.

Thus Theorems 7.3 and 7.6 settle Conjecture 6.5(i) in the affirmative. Further-
more, with a little more work and a knowledge of the Schur multipliers of the groups
of Lie type, we can prove that if G is infinite simple, then any twisted group algebra
K*'[G] is semiprimitive. This is not merely of academic interest; the twisted result
is actually needed to proceed further.

§8. EXTENSION PROBLEMS

The second test problem, namely Conjecture 6.5(ii), turned out to be less impor-
tant. However it did motivate us to study certain extension problems which must
necessarily be part of the general solution. To start with, let G be a locally finite
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group, and let |G|, denote the supremum of the orders of its finite p-subgroups.
In view of the Sylow theorems, it is clear that |G|, < oo if and only if G satisfies
the ascending chain condition on finite p-subgroups and hence if and only if G has
no infinite p-subgroup. Of course, |G|, = 1 is equivalent to G being a p’-group.
Now if |G|, < oo, then we have a finite parameter to induct on, and by so doing,
Lemma 7.2 and Theorem 7.5 yield

Lemma 8.1. Let G be a locally finite group with |G|, < co. Then G has a finite
subnormal series
<1> =Gyg<G1q---<G, =G

with each quotient G; = G;/G;_1 either

1. ap'-group,
ii. a finite simple group, or
iii. an infinite simple group of Lie type.

In particular, for each subscript ¢, we know the solution to the semiprimitivity
problem for K[G;], and thus we should be able to find the solution for K[G] from
the preceding lemma provided we can handle the extension problem. To this end,
let N be a normal subgroup of the arbitrary group G. Then we know that G is
an extension of N by G/N, and therefore K[G] is an extension of K[N] by G/N.
As we will see below, this structure is best understood in the context of crossed
products.

Let R be any ring and let G be any group. Then a crossed product RxG of G
over R is an associative ring having a copy G of G as a left R-basis. In other words,
every element o of RxG is uniquely a finite sum o = ), 7,% with coefficients
r, € R and with support defined by suppa = {z € G | r, # 0}. Addition in R*G
is as expected, and multiplication is determined by the rules

(twisting) Ty =71(z,y)TY for all z,y € G,
where 7 is a map from G x G to the group of units U(R) of R, and
(action) rz = zr°9 forallr € R, x € G,

where o is a map from G to Aut(R). Note that 7 and o are not group homomor-
phisms in general. The relations they are assumed to satisfy are precisely equivalent
to the associativity of the ring, and we may also suppose that 1 = 1 is the identity
element of R+G. Obviously, any group algebra is a crossed product with trivial
twisting and action.

Now suppose K[G] is given with N <G and let S be a transversal for N in G.
Observe that the elements of S act on R = K[N] via conjugation by r® = s~ 1rs,

and that if s1,s, € S, then there exists s3 € S and u € N with s;s9 = us3. Since
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K[G] = @), K[N]s and since there is a natural one-to-one correspondence
between the elements of S and those of G/N, it is now clear that K[G] = Rx(G/N)
is a crossed product of G/N over R = K[N]. In fact, there is a more general
result here. Namely, if R+G is any crossed product and if N < G, then RxG =
(R+N)x(G/N) where R+N is the uniquely determined sub-crossed product of R+xG
consisting of those elements having support in N (see [P12]).

It would be nice if the extension aspects of the semiprimitivity problem followed
directly from crossed product considerations. However, this is not the case, as can
be seen from the following example.

Lemma 8.2. Let G be an arbitrary group containing an element of prime order p.
Then there exists a semiprimitive commutative algebra R over a field of character-
istic p and a crossed product RxG, such that RxG is not semiprime. In particular,
RxG is not semiprimitive.

Proof. Let H be the given subgroup of G of order p and let K be a field of char-
acteristic p. If 2 denotes the set of right cosets of H in G, then G permutes 2 by
right multiplication, and we let wy € £ correspond to the coset H. Consequently,
H=G,, ={9€G|wyg=uwp}

Now let R be the (complete) direct product [] ., K., where each K, is a copy
of K. Then R is a semiprimitive K-algebra, it is in fact von Neumann regular, and
the permutation action of G on (2 extends to an action of G on R. In this way we
obtain a homomorphism o: G — Aut(R) and we use o to form the skew group ring
RxG. In other words, R+G is a crossed product with parameter o, as above, and
with trivial twisting. One knows (see [P12]) that such a construction always leads
to an associative ring.

For each w € , let e, denote the idempotent of R which has a 1 for its w-
coordinate and zeros elsewhere. Then g~ 'e,g = ewg and eye,r = 0 if w # w'. In
particular, e, commutes with H, and if g € G\ H and r € R, then

€uwo (TG)ew, = rg(g_lewog)ewo = 1J€uwyg€uw, = 0.

It now follows easily that e, (R*G)ey, = e, RxH = K[H] since e,,R = K and
the twisting is trivial. In particular, since K has characteristic p and |H| = p, we
conclude that e, (R*G)e,, is not semiprime, and therefore neither is R+G. O

While crossed product methods are sometimes useful in studying semiprimitivity,
it turns out that twisted group algebras are absolutely crucial. Recall that a twisted
group algebra K'[G] is a crossed product K+G of G over K with trivial action.
In particular, K![G] is an associative K-algebra with K-basis G and with 7y =
T(x,y) @y for all z,y € G. Here :G x G — K \ {0} is the twisting function, and
associativity is equivalent to 7 being a 2-cocycle.

As we will see at the end of this section, twisted group algebras come into play
because they are homomorphic images of ordinary group algebras. For example, let



SEMIPRIMITIVITY OF GROUP ALGEBRAS 21

Z be a central subgroup of G and let I be an ideal of K[Z] with K[Z]/I = K. Then
I-K[G] < K[G] and it is easy to see that K[G]/(I-K[G]) is naturally isomorphic to
some twisted group algebra K*[G/Z] of G/Z.

Now, let us return to Conjecture 6.5(ii). Since the work on this problem actually
occurred before Theorem 7.6 was proved, it was necessary to use an earlier special
case of the latter result contained in [Z3]. By dealing with the extension problem,
we were then able to obtain the affirmative solution

Theorem 8.3. [P13] Let G be a locally finite group with |G|, < co. If char K =
p >0, then JKI[G] is nilpotent.

The proof of this result starts with a simple reduction which allows us to assume
that G has no finite normal subgroup of order divisible by p, and we are left with
the task of showing that JK[G] = 0. Some aspects of the latter semiprimitivity
argument will be discussed in the more general context of

Theorem 8.4. [P14] Let K[G] be the group algebra of a locally finite group G over
a field K of characteristic p > 0. Suppose that G has a finite subnormal series

Go<aGi1«---<1G, =G
with each quotient G;/G;_1 either
i. a locally p-solvable group,

ii. an infinite nonabelian simple group, or
iii. generated by its locally subnormal subgroups.

If TK|[Go] = 0, then K[G] is semiprimitive if and only if G has no locally subnormal
subgroup of order divisible by p.

A Dbrief outline of the proof of semiprimitivity here is as follows. First, we can
assume that K is algebraically closed and that n = 1. Indeed, by Lemma 6.3,
we can suppose that G has a normal subgroup N with |[N : Cn(g)| < oo for all
g € G, and such that G/N = H is a group satisfying condition (i), (ii) or (iii). In
particular, N is an f.c. group and therefore, by hypothesis, it must be a p’-group.
With this, case (i) now follows from Theorem 6.4, while case (iii) is an immediate
consequence of Theorem 3.4 and Lemma 3.5. Finally, let H be an infinite simple
group. Then, we may suppose that H is countably infinite and not a p’-group, and
that G has no nontrivial f.c. homomorphic images. In other words, the pair (G, N)
is what we call a p’-f.c. cover of H. Now if N is central in GG, then G is a central
cover of H and it follows from our previous comments that K[G] is a subdirect
product of various twisted group algebras K![H]. Thus, the twisted analogs of
Theorems 7.3 and 7.6 apply here and yield the result.

On the other hand, if N is not central in G, then we show that H = G/N is
contained in FGL(V), the finitary general linear group on V, where V is a vector
space over the Galois field GF(q) for some prime ¢ involved in the subgroup N.
Furthermore, with a good deal of effort, this implies that H cannot be a linear
group, and therefore the following key result of J. Hall applies.
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Theorem 8.5. [H1], [H2]|, [H3] Let G be a countably infinite, locally finite simple
group which is not a linear group, and suppose that G C FGL(V), where V is a
vector space over some field Fy.

i. If Fy has characteristic 0, then G = FAlt,.

ii. If char Fy = q > 0, then G is isomorphic to one of the stable finitary groups
FAlto,, FSLoo(F), FSU(F), FSpeo(F), or FQu (F), where F is some
locally finite field of characteristic q.

We remark that the uncountable groups have also been classified, but the appro-
priate analogs of FSL.,(F') are somewhat more complicated to describe. Finally,
we define a stronger version of p-insulation and we show that if H is strongly p-
insulated, then any p’-f.c. cover G of H is p-insulated and hence satisfies J K[G] = 0.
Thus all that remains is to prove that the stable groups H, as listed in Theo-
rem 8.5(ii), are strongly p-insulated, and this is achieved in [P14].

89. THE LOCAL SUBNORMAL CLOSURE

In some sense, the results associated with Conjecture 6.5 are all global in nature.
Namely, they involve global assumptions on the locally finite group G like being
simple or having a particular type of finite subnormal series. Obviously, the next
step is to move on to more local assumptions. However, by some strange quirk of
fate, this earlier work is not wasted. It turns out that the infinite simple groups and
the locally p-solvable groups (of Theorem 6.4) are the critical factors in the general
solution. We will consider this phenomenon in more detail in the next section.

For now, let H C X be finite groups. Since the set of subnormal subgroups of
X is closed under intersection, it follows that there is a unique smallest subnormal
subgroup S of X which contains H. This is called the subnormal closure of H in
X, and we denote it by S = HXI. If HS is the normal closure of H in S, then
H C HS S <a X, so the minimal nature of S implies that S = H®. In fact, S is
characterized by the two properties

i. HC S« X, and

ii. $=H"
since (ii) implies that H cannot be contained in a proper normal subgroup of S,
and hence it is not in a proper subnormal subgroup of S. In general, subnormal
closures do not exist for arbitrary subgroups of infinite groups.

Observe that if H C X C Y are all finite, then H C HYIN X << X. Thus the
minimal nature of HX! implies that HX! € HY1 n X C A and this inclusion
allows us to define a local subnormal closure for finite subgroups of locally finite
groups. Specifically, if H is a finite subgroup of the locally finite group G, then we
write

HIG — UH[X]
X
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where the union is over all finite subgroups X of G containing H. Note that, if G
is finite, then the inclusion HX! C HIY! immediately implies that the two possible
meanings for H(! are, in fact, the same. Some basic properties are as follows.

Lemma 9.1. Let H be a finite subgroup of G, and set S = H!C!.

i. S is a subgroup of G containing H.
ii. If Alsn S, then Alsn G.
iii. S = H® is the normal closure of H in S.

Obviously, part (ii) above allows us to reduce semiprimitivity questions from
K[G] to K9], and when we do this, the conclusion S = H* of (iii) comes into play.
Surprisingly, this latter fact turns out to be a rather crucial property. For example,
consider the following lovely observation of Wielandst.

Theorem 9.2. [W2], [W3] The only primitive, finitary permutation groups on an
infinite set Q are FSymgq and FAltq.

Then, by adding the hypothesis G = H®, we can quickly extend this result to
finitary permutation groups which are not even transitive. Indeed, we have

Lemma 9.3. Let G C Symq and suppose that G = HS for some finite subgroup
H. If H C FSymq, then G has a finite subnormal series

<1>:G0<l Gi<---aG, =G

with each factor G; = Gi/Gi—1 either an f.c. group or isomorphic to FAlty, for
some infinite set A;.

Proof. Since H C FSymgq < Symg, it follows that G = H® C FSymg. Now suppose
that H moves k points of €. Then H can act nontrivially on at most k orbits of G
and thus G = H® implies that G has at most k nontrivial orbits.

For simplicity, let us just consider the case where G is transitive on the infinite
set ©, and let I be a block of imprimitivity for G. If |I'| > k, then I" contains a
point fixed by H and hence I' = I'H. Furthermore, each conjugate H9 of H also
moves k points, so I' = THY. Thus I is stabilized by (HY | g € G) = HY = G, so
I" is an orbit of G and hence I' = €. In other words, all nontrivial blocks have size
< k and therefore we can choose one, say I', of maximal size.

Now if A denotes the set {I'g | g € G } of distinct translates of I', then it follows
that |A| = oo and that G acts in a primitive manner on A. In particular, if N is
the kernel of this action, then Theorem 9.2 implies that G/N = FSymy, or FAlt,.
Furthermore, N stabilizes all I'g and acts faithfully on the disjoint union 2 = [JT'g
with I'g € A. Thus, since N C G C FSymyg, it follows that N embeds in the direct
sum of the finite symmetric groups Symr, and therefore N is an f.c. group. [

Notice how nicely this fits in with the hypothesis of Theorem 8.4. Similar results
hold for finitary automorphism groups. To start with, we say that G acts in a
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finitary manner on the group V if |V : Cy(x)| < oo for all € G. Furthermore,
G acts in a strongly finitary manner if the action is finitary and if all G-stable
subgroups of V are normal in V. In particular, both of these concepts include the
usual notion of a finitary action of a group G on a vector space V over a finite field.
Notice that we do not assume, at this point, that G acts faithfully on V. Note
further that if G is strongly finitary on V' and if W is a G-stable subgroup of V,
then G acts in a strongly finitary manner on both W and V/W. Of course, G acts
irreducibly on V if and only if V' has no proper G-stable normal subgroup.

Lemma 9.4. Let G act in a strongly finitary manner on the group V, and assume
that G = HC is the normal closure of some finite subgroup H. Then V has a finite
chain

)=V CWC--CV, =V

of G-stable normal subgroups such that, for each i, either G acts irreducibly on
Vi = V;/Vi_1 or it acts trivially on this quotient.

Now suppose, in addition, that V is a locally finite f.c. group, and assume that
G acts irreducibly on the infinite quotient V; = V;/V;_;. If V; is nonabelian, then it
follows easily from the f.c. property that it is a semisimple group, namely isomorphic
to a (weak) direct product of finite nonabelian simple groups. Furthermore, G
permutes these direct factors transitively, and therefore Theorem 9.2 enables us
to describe G; = G/Cg(V;). On the other hand, if V; is abelian, then it is an
elementary abelian g-group for some prime ¢, and again we can describe Gj if the
representation is imprimitive. Fortunately, when the representation is primitive,
we can apply the following key result of Phillips.

Theorem 9.5. [Phl], [Ph2] Let G be a primitive, locally finite subgroup of FGL(V),
where V is an infinite dimensional vector space. Then G contains a normal infinite
simple subgroup D, such that G/D is solvable of derived length < 6.

As a consequence, we obtain

Lemma 9.6. Let G act faithfully and in a strongly finitary manner on the locally
finite f.c. group V. If G is the normal closure of a finite subgroup H, then G has a
finite subnormal series

<1>:G0<1G1<1"'<1Gm:G

with each quotient G; = G;/G;_1 either infinite simple or an f.c. group. Further-
more, each such infinite simple quotient is a finitary linear group over a finite field
GF(q) for some prime q involved in V.

In particular, by using Theorem 8.5(ii), we can obtain a precise automorphism
group analog of Lemma 9.3.
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§10. LocAL RESULTS

The recent series of local results began in [P16] where it was shown that if
G has no nonidentity locally subnormal subgroup, then JK[G] = 0. Obviously,
this was close to the precise necessary and sufficient conditions for semiprimitivity.
Indeed, all that was missing was the relationship between the orders of the locally
subnormal subgroups and the characteristic of the field. To proceed further, it was
again necessary to work in the more general context of twisted group algebras. In
particular, Theorem 6.4 had to be extended to this context, and then the methods
used to prove the preceding local result were generalized to yield

Theorem 10.1. [P16], [P17] Let G be a locally finite group and let K be a field
of characteristic p > 0. Then K[G] is semiprimitive if and only if G has no locally
subnormal subgroup of order divisible by p.

This is, of course, the semiprimitivity consequence of Conjecture 5.6. As we
mentioned in the last section, the earlier results on locally p-solvable groups and on
infinite simple groups, as encapsulated in Theorem 8.4, are crucial to the proof of
Theorem 10.1, and we give some indication below of this phenomenon. We begin
by discussing an ultraproduct argument suggested by the work of [H2] and [H3].

Let G; € G5 C --- be finite subgroups of G with G = Ufil G; and let N =
{1,2,...} be the set of natural numbers. Then we can choose an ultrafilter 7 on N/
containing the cofinite subsets, and we note that all members of F are infinite. Now
suppose that each G; acts as permutations (on the right) on a set {2; with kernel
Nj. Then the ultraproduct [[-G; acts on Q = [ Q; via ®; w; - ®; 95 = ®; w;g;.
Furthermore, we can define a homomorphism 6 : G — [[G; by 6(g9) = ®;6,(g)
where 0;(g) = g if ¢ € G; and 0;(g) = 1 otherwise. In this way, we obtain a
permutation action of G on 2 which satisfies

Lemma 10.2. Let G and Q) be as above.

i. If N is contained in the kernel of the action of G on §2, then there exists a
subsequence M C N such that N is the ascending union of the subgroups
N N N; with i € M.

ii. If g € G and if 0;(g) moves at most k points of Q; for each i, then g moves
at most k points of Q and hence is finitary on 2.

Proof. (i) Suppose € N and let S(z) = {¢ | 0;(z) acts nontrivially on €, }. For
each i € S(x) choose w; € Q; moved by 6;(x), and if i ¢ S(x) let w; € €; be
arbitrary. Then w = ®; w; € 2 and, since x € N, we have

where =z indicates that the two elements of the (complete) direct product agree on
a member of F. In other words, w; = w;#;(x) almost everywhere and consequently
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S(z) has measure 0, that is S(z) ¢ F. Furthermore, if X is any finite subset of IV,
then S(X) = |, x S(z) also has measure 0 and therefore the complement of S(X)
is contained in F and is infinite. Thus we can choose i € N\ S(X) sufficiently large
so that X C G;. But then 6;(X) = X acts trivially on Q; and hence X C N,. It
follows that every finite subset of N is contained in some N N N; and, since each
such N; is finite, the subsequence M is easily seen to exist.

(ii) Suppose for example that k& = 3 so that 6;(g) moves at most 3 points of
Q;. Then, for each i, we can choose a;,b;,c; € €);, not necessarily distinct, with
0;(g) fixing the remaining points. Now let a = ®; a;, b = ®; b; and ¢ = ®; ¢; be the
elements of 2 determined by these choices. We claim that these are the only possible
points moved by g. To this end, let w = ®; w; € Q and define A = {i | w; = a; },
B={i|lw=0b}C={i|lw =c¢},and D = {i | w; # a;,b;,¢; }. Then
AUBUCUD = N and hence at least one of these four sets must have measure
1. Now, if A € F, then w = ®; w; =5 ®;a; = a and similarly B € F yields
w=>band C € F yields w = ¢. Finally, if D € F, then since 0;(g) acts trivially on
Q; \ {a;,bi,¢; }, we have wg = ®; w;0;(9) =7 ®; w; = w and g fixes w. O

Now, what might the groups G; act on? To understand our choice, let us first
assume that G; = W is a finite group with no nonidentity solvable normal subgroup.
Let S = socW be the socle of W, so that S is generated by the minimal normal
subgroups of W. Since any two distinct minimal normal subgroups commute, it
follows that soc W is the direct product of certain of these subgroups. Furthermore,
any minimal normal subgroup is either an elementary abelian ¢-group for some
prime g, or it is semisimple, namely a direct product of nonabelian simple groups.
This proves (i) below and, of course, parts (ii) and (iii) are routine consequences.

Lemma 10.3. Let W be a finite group with no nonidentity solvable normal sub-
group and set S = socW.

i. §S= My x My Xx---x My is a finite direct product of the nonabelian simple
groups M;. Thus S is semisimple.
ii. Cw (S) = (1), so W acts faithfully as automorphisms on S.
iii. The groups M; are precisely the minimal normal subgroups of S. Thus W
permutes the set Q = { My, My, ... , My } by conjugation.
iv. If N is the kernel of the action of W on Q, then S = N® where the latter
is the fourth derived subgroup of N.

Proof. (iv) Note that N = (), Ny (M;), so N 2 S and N D ™ = S. Further-
more, since Cyy (S) = (1), it follows that N embeds in [[, Aut(}M;). But under this
embedding, S corresponds to [[, Inn(M;), so N/S embeds in [], Out(M;). Finally,
the precise version of the Schreier conjecture (see [G]), using the Classification of
Finite Simple Groups, implies that each outer automorphism group Out(M;) is
solvable of derived length < 4, and hence N C S, as required. [
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If W is an arbitrary finite group, we let sol W denote the unique largest normal
solvable subgroup of W. Then W = W/sol W has no nonidentity solvable normal
subgroup, so the above lemma applies to this group. In particular, if we define
rad W D solW by rad W/solW = soc W, then rad W is solvable-by-semisimple
and W permutes the set (W) of simple factors of rad W/sol W by conjugation.
For convenience, we call |Q(W)| the width of W.

Now let us turn to the proof of Theorem 10.1. In view of Lemma 9.1, it suffices
to assume that G = HE for some finite subgroup H of G. Furthermore, we may
suppose that G is countably infinite. In particular, we can write G = (J;2, G;
where the G; are finite subgroups of G satisfying H C G; C Gy C ---. Now,
as we indicated above, each G; acts as permutations on the set Q; = Q(G;) of
simple factors of rad G;/solG;. Indeed, if N; is the kernel of this action, then
Lemma 10.3(iv) implies that Ni(4) is a normal subgroup of rad G; and hence it is
solvable-by-semisimple. Furthermore, if we choose the ultrafilter 7 on N to contain
the cofinite subsets, then G acts as permutations on the ultraproduct Q = [] €,
and Lemma 10.2 comes into play. If NV denotes the kernel of G on €2, then we study
the structure of G by considering N and G = G/N C Symg in turn.

To start with, Lemma 10.2(i) implies that there exists a subsequence M of the
natural numbers V' = {1,2,...} such that L = N is the ascending union of its

finite subgroups LN N, i(4) with ¢ € M. Furthermore, note that (LN N, i(4)) aN, i(4) and
that Ni(4) is solvable-by-semisimple. Thus L N N Z-(4) is also solvable-by-semisimple,

and N = [ = Uiem (LN Ni(4)) is locally solvable-by-semisimple. There are now
two cases to consider according to whether the widths which occur here are bounded
or not. For the bounded case, we have

Lemma 10.4. Let L be the ascending union of the finite subgroups L1 C Ly C ---
and suppose that each L; is solvable-by-semisimple. If the widths of the various
subgroups L; are uniformly bounded, then L has a finite subnormal series

(1) =My My<---<a M, =L

with each factor M1 /M; either simple or locally solvable.

This follows easily by induction on the given upper bound for the widths. For
example, if all L; are solvable, which occurs when all widths are equal 0, then L
is certainly locally solvable. On the other hand, if each L; is a simple group, then
clearly the same is true of L.

Using this lemma and Theorem 8.4, we can easily settle the semiprimitivity
problem for N = L in the case of bounded widths. The unbounded case builds
upon this, but also requires some techniques from the proof of Theorem 7.3 to
construct a particular p-insulator. )

Finally, consider G = G/N C Symg, and notice that G = H®. Again, there are
two cases to deal with according to the nature of the action of H on the various
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Q;. Suppose first that H moves a bounded number of points in each ;. Then
Lemma 10.2(ii) implies that H C FSymgq and we conclude from Lemma 9.3 that G
has a finite subnormal series with factors which are either f.c. groups or isomorphic
to FAlt,,. In particular, the result again follows from Theorem 8.4.

The last case, where H moves arbitrarily large numbers of points in its various
actions, requires an entirely new approach based on the representation theory of
finite wreath products. Nevertheless, it should be clear from the above remarks
that Theorem 8.4 does indeed play a crucial role in this proof.

§11. THE CONJECTURE

Approximately 20 years after it was posed, Conjecture 5.6 was finally solved in
the affirmative. Specifically, we have

Theorem 11.1. [P20] If G is a locally finite group and K is a field of characteristic
p >0, then
JK[G] = JK[T?(G)]-K|G]

where TP(G)/0,(G) = SP(G/O,(Q)) is the subgroup of G = G/0,(G) generated by
those locally subnormal subgroups A with A = QP (A).

In particular, in view of Lemma 5.5(ii), this yields a precise description of J K[G].
As usual, the proof of the above result requires that we work in the more general
context of twisted group algebras. Obviously, Theorem 10.1 is needed here, and
several new ideas also come into play. To start with, we mention another application
of the subnormal closure in finite groups.

Let K|[G] be given, and recall that if &« = ) a,x € K[G], then the support of «
is the finite subset of G given by suppa = {z € G | a, # 0}. In addition, we call
H = (supp «) the supporting subgroup of c. Clearly H is the smallest subgroup of
G with a € K[H] and, since G is locally finite, H is finite. We say that § € K[G]
is a truncation of o if § =Y a,x, where 3" indicates a partial sum of the terms
of . Thus supp 8 C supp «, and the coefficients of o and of § agree on the smaller
set. Of course, (3 is a proper truncation if 8 # 0 or a.

Note that, if D is any subgroup of G, then there is a natural K[D]-bimodule
projection map 7p: K[G| — K|[D] given by

7TDZ§ AzpT — E azT.

z€G z€D

Thus 7p is the linear extension of the map G — D U {0} which is the identity on
D and zero on G\ D. Clearly, mp(«) is a truncation of a.

Now let I < K[G]. We say that 0 # « is a minimal element of I if o € I but no
proper truncation of « is contained in I. It is easy to see that [ is the linear span
of its minimal elements, and that I is the right (or left) ideal generated by those
minimal elements having 1 in their support.
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Lemma 11.2. Suppose JK[G]| # 0 and let a be a minimal element of this ideal
having 1 in its support. Then there exists a finite subgroup H of G containing the
supporting subgroup (supp «) such that

i. H= (suppa)™ and H = Q" (H).
ii. « is a minimal element of JK[H].
iii. If N is any subgroup of G normalized by H and if TK[N] = NK|[N], then
H C Dg(N).
iv. If N is any subgroup of G normalized by H which satisfies both O,(N) = (1)
and JK[N] = JK[SP(N)]-K[N], then H C SP(NH) and H C D¢g(F*),
where F* =TF*(N).

Proof. Let (B1,03s,..., 0k be the finitely many proper truncations of . By defini-
tion, no f; is contained in JK[G], and hence the right ideals 3; K[G] are not nil.
In other words, we can choose elements v; € K[G] with (;; not nilpotent. Now
G is locally finite, so there exists a finite subgroup L C G which contains (supp «)
and the supports of all ;. In particular, 3; ¢ JK|[L] since J K[L] is nilpotent.
Now let H = (suppa)” be the subnormal closure of (suppea) in L. Then
H = (suppa) and o € JK[G] N K[H] C JK[H]. Furthermore, since H << L,
Lemma 5.3(ii) implies that JK[H| C JK[L]. Thus, since §; ¢ JK[L], we have
B; ¢ JK|[H] and therefore (ii) is proved. Note that JK[H] = JK[Q? (H)|-K[H]
by Lemma 3.5, s0 mg gy (@) € JK[0P (H)] € JK[H]. Moreover, 1 € suppa,
SO T () () is & nonzero truncation of a contained in JK[H], and consequently
Tow (1) (@) must equal a. In other words, (suppa) C O (H) < H and, since H =

(supp ) | it follows that H = QP (H).

For part (iii), suppose that N is any subgroup of G normalized by H with
JK[N] = NK[N]. If X = NH, then N is a normal subgroup of X of finite index, so
Theorem 4.9 implies that JK[X] = NK[X]. In particular, by Theorem 3.4(i), we
have JK[X] = JK[D]-K[X] where D = A(X). Now a € JK[GNK[X] C JK[X]
and therefore mp(«) is a nonzero truncation of o contained in JK[D] C JKI[X].
Thus 7p(a) € TK[X]|NK[H] C JK[H], so the minimal nature of « implies that
7p(a) = a. In other words, (suppa) C D < X and therefore H = (suppa) C D.
But N C X, so the definition of D implies that [N : Cn(h)| < oo for all h € H,
and consequently H C Dg(N), as required.

Finally, suppose H normalizes a group N which satisfies both O,(N) = (1) and
JK[N] = JK[SP(N)]-K[N]. If X = NH then Theorem 6.1(ii) easily implies that
JK[X] = JK|[S]-K[X] where S = SP(X). Again, a € JK|G] N K[X] C JK[X]
and therefore mg(a) is a nonzero truncation of « contained in JK[S] C JK[X].
Thus 7s(a) € JK[X]NK[H] C JK[H], and the minimal nature of o implies that
7s(a) = a. In other words, (suppa) C S < X, and consequently H = (suppa) C
S = SP(NH). Furthermore, since N<NH, we have F* = F*(N) C F*(NH). Thus,
since O,(NH) is finite, Theorem 6.2(i) applied to the group SP(NH) shows that
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H acts in a finitary manner on F*(NH) and hence also on F*. [

Now let us consider some aspects of the proof of Theorem 11.1. Of course, we can
assume that 0, (G) = (1), and the goal is to show that 7K[G] C JK[SP(G)|-K[G].
In view of our previous comments, it therefore suffices to show that all minimal
elements of JK[G] having 1 in their support are contained in JKI[SP(G)]-K[G].
To this end, let a be such an element and let H 2 (supp «) be given by Lemma 11.2.
Furthermore, let L = H(%! be the local subnormal closure of H in G. Note that o €
JK[L] and, by Lemma 9.1(ii), it suffices to prove that JK[L] = JK[SP(L)]-K[L].

Let V = F*(SP(L)) and note that V is an f.c. group by Theorem 6.2(i) since
0,(L) € 0,(G) = (1). Indeed, since H normalizes V and JK[V] = NK[V],
Lemma 11.2(iii) implies that H C Dz (V)< L. But L = HY, so L = Dz (V) and
therefore L O V acts in a strongly finitary manner on V. In particular, if we let
C = CL(V), then it follows from Lemma 9.6 that L has a finite subnormal series

C=Ly<xLi<---<L,,=1L

with each quotient L; = L; /L;_1 either an infinite simple finitary linear group or
an f.c. group.

Furthermore, since SP(C') C SP(L) centralizes V, it follows easily that SP(C) is
contained in F(SP(L)), the Fitting subgroup of SP(L). But the latter group is a
p'-group since O, (L) = (1), and certainly SP(C) is generated by p-elements. Thus
SP(C) = (1) and Theorem 10.1 implies that 0 = JK|[C] = JKI[SP(C)]-K[C]. In
other words, we need only climb the chain C = Log< Ly <---<L,, = L and show
that the condition JK[L;] = JK[SP(L;)]-K|[L,] lifts from L; 1 to L;. Of course,
0,(L;) = (1) and therefore Theorem 6.1(ii) easily handles the case where L; is an
f.c. group. Thus all that remains is to settle this particular extension problem when
L; is infinite simple.

Let us completely change notation and just consider the latter extension problem.
By applying Lemma 11.2(iv) and the local subnormal closure, we are quickly faced
with the following group theoretic structure. For a fixed prime p, we say that
(G,C,H) is a critical triple if

1. C <G and G/C is an infinite simple group.
2. H = QP (H) is a finite subgroup of G with G = HS.
3. HCSP(CH), 0,(G) = (1) and G = D¢ (F(Q)).
Then, with a good deal of work, and by using Theorems 5.4 and 9.5, we obtain

Lemma 11.3. If (G,C,H) is a critical triple for the prime p, then there exists
a subgroup G < G having the following numerous properties. To start with, G has
finite index in G© | the 6th derived subgroup of G. Furthermore, if C = C NG,
then G/C = G/C is infinite simple and either (1) C is a nilpotent p’-group, or (2)
G/C = FAltz for some infinite set Z, and G has normal subgroups DCXCLC
C C G satisfying

i L= @pl(é’), so that C/L is a p'-group.
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ii. D is a finite abelian p’ -group which is central in 7' (G).

iti. L is an f.c. group, and L/X s an abelian p-group.

iv. There exist finite normal subgroups X; of C, for alli € T, with ( )9 = X'ig
where ig is the image of i € T under the permutation Cg € FAltz.

v. DC X; C X and X/D is the (weak) direct product [], eI(X /D).

vi. X;/D C ¥’ ((CL/D(XZ/D)) for all distinct i,5 € L.

This is unfortunately as far as the group theory goes. We must now deal di-
rectly with the groups G as described above, compute J K[G] and verify that the
conclusion of Theorem 11.1 is satisfied here. To do this, it suffices to determine
JK|G], since the extension from G to G is easy to handle. Now if case (1) holds
and C is a nilpotent p’-group, then JK|[G] = 0 by Theorem 8.4 and the result
follows quite simply. On the other hand, if case (2) holds, then the only option is
to compute JK [G] by brute force. The ad hoc argument here is fairly long and
painful. It does, however, use some interesting crossed product techniques along
with the following lemma which allows Theorem 10.1 to again come into play.

Lemma 11.4. Let Q be an infinite set and let G be a subgroup of the finitary
symmetric group FSymg. If the stabilizer Ga = {g € G | Ag = A} of every
finite subset A C Q has only infinite orbits on the complementary set Q\ A, then
G has no nonidentity locally subnormal subgroups. In particular, this applies when
G 2 FAltg, x FAltg, x --- x FAltg,, where Q@ = Q1 UQo U --- U Qy is a disjoint
union of infinite sets.

§12. BURNSIDE GROUPS

To proceed further, we must obviously return to the case of finitely generated
groups. Indeed, the next candidates for study should most likely be the finitely
generated p-groups, that is the groups associated with the Burnside problem. A
natural question here is whether JK[G| can equal the augmentation ideal AK[G]
of K[G], namely the kernel of the natural epimorphism K[G|] — K[G/G] = K. If
Conjecture 4.8 is to hold, then we must have

Conjecture 12.1. Let G be a finitely generated p-group and let char K = p > 0.
Then JK[G] = AKIG] if and only if G is finite.

This is easily seen to be equivalent to the assertion that JK[G] = AK|[G] if and
only if G is a locally finite p-group with p = char K. So far, the only real evidence
here of any generality is the following lovely argument of Lichtman.

Lemma 12.2. [L] Let G be an infinite finitely generated p-group and let K be a
field of characteristic p > 0. If TK[G] = AK|G], then G has an infinite residually
finite homomorphic image and, in particular, G # G'.

Proof. Let H be the intersection of all normal subgroups of G of finite index. Then
G/H is a residually finite homomorphic image of G, and the goal is to show that
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this factor group is infinite. Suppose, by way of contradiction, that |G : H| < occ.
Since G is finitely generated, it follows that H = (hy, ho,... ,h,) is also finitely
generated, and consequently I = AK[H] = Y. ,(1—h;)K[H] is a finitely generated
right ideal of K[H| and hence a finitely generated right K[H]-module. Furthermore,
I # 0 since otherwise we would have H = (1) and |G| < oo. Nakayama’s lemma
now implies that I- 7 K[H] is properly contained in I.

By assumption, JK[G] = AK|[G], and consequently

JK[H] 2 JK[G] N K[H] = AK[G] N K[H] = AK[H].

It follows that JK[H] = AK[H| = I and, by our previous remarks, I properly
contains I-JK[H] = I?. Now consider the homomorphism ~: K[H] — K[H]/I?.

Since K[H] = K + I and I? = 0, it is clear that this image is a commutative
K-algebra properly larger than K. Thus since m is spanned over K by H,
we see that H is a nontrivial abelian homomorphic image of H and consequently
H # H'. In other words, H/H' is a nonidentity finitely generated abelian p-group,
so 1 < |H/H'| < oo and H’ is a normal subgroup of G of finite index properly

contained in H. This, of course, contradicts the definition of H. [

A slight generalization of the above argument shows that every maximal sub-
group of G is normal of index p. Note that JK[G] = AKIG] if and only if K[G]
has precisely one irreducible module, namely the principal module. Thus Conjec-
ture 12.1 can be paraphrased as asserting that if G is an infinite finitely generated
p-group, then K[G] has a nonprincipal module. For example, if G is a Tarski mon-
ster of period p, as constructed in [O], then certainly G = G’ and the preceding
lemma implies that a nonprincipal irreducible module exists in this case.

On the other hand, many of the remaining Burnside counterexamples are resid-
ually finite. One such is the Gupta-Sidki group which is described in [GuS] and
[S1] as a certain subgroup of the automorphism group of a 1-rooted regular tree of
degree p. For this group, we nevertheless have

Theorem 12.3. [S2] Let G be a Gupta-Sidki p-group and let char K = p. Then
K|[G] has a nonprincipal irreducible module.

Actually, this result is stated in [S2] only for p = 3 and for K = GF(3), but
it does hold in the above generality with the same proof. Using this as a starting
point, it was then shown in [PT] that K[G] has infinitely many nonisomorphic
irreducible modules when the field K is sufficiently large.

Finally, the Golod groups G are described in [Go] and [GoS] as finitely generated
subgroups of the group of units of a Golod-Shafarevitch algebra A = K @ N, where
N is an infinite dimensional nil ideal. Furthermore, ﬂzozo N* =0, so these groups
are residually finite. Now there is a natural epimorphism ~: K[G] — A which maps
AKIG] onto N. In particular, if ~ is an isomorphism, then AK[G] is nil and we
have a counterexample to Conjecture 12.1. Fortunately, it was shown in [Si] that
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~ is not an isomorphism, at least when the construction parameters satisfy certain
fairly natural conditions.

This is essentially all that is known about the semiprimitivity problem for Burn-
side groups. Obviously, much remains to be done.
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