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Abstract. In this paper we briefly discuss some recent results on the semiprimitivity
problem for group algebras. For the most part, we stress those topics which do not
appear in the fairly complete survey [P17]. In particular, we consider the controller
of an ideal, examples associated with the controller subgroup of the Jacobson radical,
and a new, but rather elementary, observation on Kaplansky’s problem.

§1. The Controller of an Ideal

Let K[G] denote the group algebra of the multiplicative group G over the field K.
Our goal is to determine when K[G] is semiprimitive and, more generally, to describe
its Jacobson radical JK[G]. Obviously, we would expect the latter description to
be sufficiently precise to allows us to immediately decide whether or not the radical
is zero. In particular, we need some sort of mechanism for describing an arbitrary
two-sided ideal of a group algebra.

We first recall some standard notation. If α =
∑

x∈G axx ∈ K[G], then the
support of α is given by the finite set supp α = {x ∈ G | ax 6= 0 }. Furthermore,
if H is any subgroup of G, then there is a natural K[H ]-bimodule projection map
πH : K[G] → K[H ] ⊆ K[G] given by πH :

∑
x∈G axx 7→

∑
x∈H axx. Thus πH is the

K-linear extension of the map G → H∪{ 0 } which is the identity on H and zero on
G \ H . In particular, πH(α) is a “truncation” of α, and if A and B are subgroups
of G, then πA(πB(α)) = πA∩B(α).

Now let I /K[G] and let H / G. Then H controls I if I = (I ∩K[H ])·K[G], that
is, if K[H ] contains generators for I . As we will see below, the set of controlling
subgroups of I forms an upwards cone. Note that, since πH is a K[H ]-bimodule
map, it follows that πH(I) / K[H ].

Lemma 1.1. [P9] Let I be a two-sided ideal of K[G].

i. H / G controls I if and only if πH (I) ⊆ I. Indeed, when this occurs, then

I ∩ K[H ] = πH(I) so I = πH(I)·K[G].
ii. There exists a unique normal subgroup C(I), the controller of I, such that

H / G controls I if and only if H ⊇ C(I).

Proof. (i) If T is a right transversal for H in G, then it is easy to see that α ∈ K[G]
can be written as the finite sum α =

∑
t∈T πH(αt−1)t. Consequently,

(I ∩ K[H ])·K[G] ⊆ I ⊆ πH(I)·K[G].
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In particular, if πH(I) ⊆ I , then it is clear that πH(I) = I ∩ K[H ], so equality
occurs above and H controls I . On the other hand, if H controls I , then

I = (I ∩ K[H ])·K[G] = ⊕
∑

t∈T

(I ∩ K[H ])t,

and it follows that πH(I) = I ∩ K[H ] ⊆ I .
(ii) Now let H denote the set of all normal subgroups H of G which control I ,

and define C =
⋂

H∈H
H . We show by induction on | supp α| that if α ∈ I , then

πC(α) ∈ I . To this end, let α ∈ I and assume that the result holds for all elements
of I of smaller support size. If there exists H ∈ H with | supp πH(α)| < | suppα|,
then πH(α) ∈ I by (i) above, so induction implies that πC(α) = πC(πH (α)) ∈ I
since H ⊇ C. On the other hand, if | supp πH(α)| = | supp α| for all such H , then
supp α ⊆

⋂
H∈H

H = C and hence πC(α) = α ∈ I . We conclude therefore that
πC(I) ⊆ I , so C controls I by (i) again, and consequently C is the unique minimal
member of H. �

Thus, at the very least, our goal should be to understand the controller subgroup
C of the Jacobson radical JK[G]. Furthermore, we hope that this characteristic
subgroup C of G is sufficiently small so that we can precisely describe the intersec-
tion ideal JK[G] ∩ K[C] / K[C].

As an example, define the nilpotent radical NR of any ring R to be the join of
all its nilpotent ideals. Obviously, NR is a characteristic nil ideal of R and hence
it is contained in JR. As will be apparent, the structure of NK[G] is reasonably
well understood. Indeed, if charK = 0, then NK[G] = 0, so it suffices to assume
that charK = p > 0. Note that if H is any group, then we use Hp to denote
the subgroup of H generated by all its p-elements. In particular, if H is finite,
then Hp = Op′

(H). The following result is proved using a powerful coset counting
argument known as the ∆-method.

Theorem 1.2. [P1], [P2] Let Dp(G) denote the set of all finite normal subgroups

of G generated by their p-elements, and let ∆p = ∆p(G) = 〈D | D ∈ Dp(G)〉. If

charK = p > 0, then

i. ∆p = ∆p(G) is the controller of NK[G], and NK[G] = JK[∆p]·K[G].
ii. JK[∆p] =

⋃
D∈Dp(G) JK[D].

iii. NK[G] 6= 0 if and only if there exists 1 6= D ∈ Dp(G) and hence if and only

if 1 6= ∆p(G).
iv. NK[G] is nilpotent if and only if ∆(G)p is finite.

Note that (i) asserts that JK[∆p] is contained in NK[G] and that it generates
NK[G] as a right ideal. Furthermore, (iii) is an immediate consequence of parts (i)
and (ii), along with the converse of Maschke’s theorem. Obviously, the goal of the
semiprimitivity problem should be to obtain a similar result for JK[G].

§2. Locally Finite Groups

Since it appears (see [A]) that all group algebras are semiprimitive in charac-
teristic 0, we will assume throughout that charK = p > 0. In some sense, paper
[P6] split the semiprimitivity problem into two parts, namely the locally finite and
the finitely generated cases (see Theorem 5.3). We begin with the first situation,
and assume until further notice that G is a locally finite group. Observe that if
α ∈ K[G], then the inclusion α ∈ JK[G] is “local” in the following sense.
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Lemma 2.1. Suppose G is a locally finite group.

i. Let α ∈ K[G] and let A = 〈supp α〉 be its supporting subgroup. Then α ∈
JK[G] if and only if α ∈ JK[B] for all finite subgroups B with A ⊆ B ⊆ G.

ii. If N // G, then JK[N ] ⊆ JK[G].

In view of these two facts, we are naturally led to define the concept of a locally

subnormal subgroup. Specifically, if A is a finite subgroup of G, then we write
A lsn G provided A // B for all finite subgroups B of G with A ⊆ B ⊆ G. The
previous lemma now clearly yields

Lemma 2.2. If A lsn G, then JK[A] ⊆ JK[G]. In particular, if 1 6= A = Ap,

then JK[G] 6= 0.

Thus, we obtain a fairly simple criterion which guarantees that JK[G] 6= 0, and
as it turns out, the converse is also true. Indeed, we have

Theorem 2.3. [P14], [P15] Let K[G] be the group algebra of the locally finite group

G over a field K of characteristic p > 0. Then JK[G] 6= 0 if and only if G has a

nonidentity locally subnormal subgroup A generated by p-elements.

The proof of this result is decidedly nontrivial. To start with, it depends upon
a good deal of preliminary material and ultimately upon the Classification of the
Finite Simple Groups as described in [G]. The basic ingredients include:

(1) ∆ methods and the structure of NK[G].
(2) The semiprimitivity results in [P10] on locally finite, locally solvable groups.
(3) An argument of Formanek [F] on the finitary symmetric group FSym∞.
(4) Kegel’s lemma [Ke] which describes any locally finite simple group as a limit

of an approximating sequence of finite simple groups.
(5) Work with Zalesskĭı [PZ] on the semiprimitivity problem for locally finite,

nonlinear, infinite simple groups.
(6) The characterization in [Be], [Bo], [HS] and [T] of locally finite, infinite

simple, linear groups as groups of Lie type over locally finite fields.
(7) The work in [P12] on the semiprimitivity problem for locally finite, infinite

simple, linear groups.
(8) Wielandt’s result in [W1] and [W2] that the only primitive, infinite, finitary

permutation groups are FSym∞ and FAlt∞ in their natural action.
(9) J. Hall’s major results in [H1], [H2] and [H3] which show that the only non-

linear, locally finite, simple finitary linear groups are the infinite-dimensional
classical groups.

(10) The work in [P11] and [P13] on the semiprimitivity of K[G] for certain
p′-f.c. covers of infinite simple, locally finite groups.

(11) An ultraproduct argument which requires the precise affirmative solution
of the Schreier conjecture on the outer automorphism groups of the finite
simple groups.

Note that an f.c. group is a group all of whose conjugacy classes are finite. In
the context of locally finite groups, this is the same as being locally normal, that
is, generated by finite normal subgroups. Now, when proving results about finite
groups, one can frequently reduce the problem to a study of the composition factors
and hence to the cases of solvable groups and nonabelian simple groups. On the
other hand, this phenomenon rarely occurs when the groups being considered are
infinite. Thus, it is quite surprising here that the proof of Theorem 2.3 eventually
reduces to the locally solvable and the infinite simple cases.
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§3. The Jacobson Radical

We continue with the assumption that G is locally finite. As is well known,
every subgroup of a finite nilpotent group is subnormal. Hence if P is a locally
finite p-group, then all its finite subgroups are locally subnormal. Furthermore, by
the transitivity of subnormality, it follows that every finite subgroup of Op(G) is
locally subnormal in G. When Op(G) = 1, the main result on JK[G] is

Theorem 3.1. [P16] Let K[G] be the group algebra of a locally finite group G over

a field K of characteristic p > 0. Let Sp(G) denote the set of all locally subnormal

subgroups A of G with A = Ap and define Sp(G) = 〈A | A ∈ Sp(G)〉. If Op(G) = 1,
then we have

i. Sp = Sp(G) is the controller of JK[G] and JK[G] = JK[Sp]·K[G].
ii. JK[Sp] =

⋃
A∈Sp(G) JK[A].

iii. JK[G] 6= 0 if and only if there exists 1 6= A ∈ Sp(G) and hence if and only

if Sp(G) 6= 1.

Obviously, this is the analog of Theorem 1.2 we had hoped for. The proof here
is again quite complicated. For example, it uses Theorem 2.3 and many of the
preliminary ingredients in the proof of that result. In addition, it requires:

(1) An argument of Dyment and Zalesskĭı in [DZ].
(2) The main result of [P8] which asserts that JK[Sp(G)]·K[G] is a semiprime

ideal of K[G] when Op(G) = 1.
(3) Work in [P7] on the structure of the characteristic subgroup Sp(G) (see

Theorem 4.1).
(4) The result of Phillips in [Ph1] and [Ph2] which characterizes locally finite,

primitive, finitary linear groups as solvable extensions of simple groups.
(5) Twisted group ring and crossed product techniques.

In other words, the proof of Theorem 3.1 essentially uses every result ever obtained
on the semiprimitivity problem for group rings of locally finite groups.

The last part of the proof is rather technical, and is concerned with the follow-
ing lifting problem. Suppose that Op(G) = 1, C / G, G/C is infinite simple and
JK[C] = JK[Sp(C)]·K[C]. Then the goal is to show that JK[G] also satisfies
the conclusion of the theorem. Now it turns out that if G/C 6∼= FAlt∞, then G/C
cannot act in an imprimitive fashion as automorphisms on a locally normal group.
With this, and a certain amount of group theory, the problem reduces to the earlier
results, contained in [P13], on p′-f.c. covers of simple groups. On the other hand,
the finitary alternating group case requires much more serious considerations and
is a rather painful task. Indeed, after a good deal of group theoretic work, combin-
ing all the imprimitive representations of G/C on the locally normal composition
factors of G, we obtain the following subcritical structure.

i. G has normal subgroups D ⊆ X ⊆ L ⊆ C with G/C = FAltI for some
infinite set I.

ii. L = Cp, so that C/L is a p′-group.
iii. D is a finite abelian p′-group which is central in Gp.
iv. L is an f.c. group, and L/X is an abelian p-group.
v. There exist finite normal subgroups Xi of C, for all i ∈ I, with (Xi)

g = Xig

where ig is the image of i ∈ I under the permutation Cg ∈ FAltI .
vi. D ⊆ Xi ⊆ X and X/D is the (weak) direct product

∏
i∈I

(Xi/D).
vii. Xj/D ⊆ (CL/D(Xi/D))p for all distinct i, j ∈ I.
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Unfortunately, this is as far as the group theory can go on its own. Since Sp(G) = L
here, we must prove that JK[G] = JK[L]·K[G], and this is done by brute force
using crossed product techniques.

Finally, very little additional work is needed to handle groups with Op(G) 6= 1.
Indeed, the following is a fairly obvious generalization of the main result.

Corollary 3.2. [P16] Let K[G] be the group algebra of a locally finite group G
over a field K of characteristic p > 0. Let P = Op(G) and let T p = Tp(G) ⊇ P
be defined by T p/P = Sp(G/P ). If I is the kernel of the natural epimorphism

K[T p] → K[T p/P ] = K[Sp(G/P )], then

i. T p = Tp(G) is the controller of JK[G], and JK[G] = JK[T p]·K[G].
ii. JK[T p] ⊇ I and JK[T p]/I = JK[Sp(G/P )].
iii. JK[G] 6= 0 if and only if there exists a nonidentity locally subnormal sub-

group A of G with A = Ap.

Of course, since Op(G/P ) = 1 in the above, JK[Sp(G/P )] can be satisfactorily
described using Theorem 3.1(ii).

§4. The Structure of Sp(G)

We now take a closer look at Sp(G), again assuming that G is locally finite.
Recall that Sp(G) denotes the set of all locally subnormal subgroups A of G with
A = Ap, and that Sp(G) = 〈A | A ∈ Sp(G)〉. Furthermore, for any such A as
above, let len A denote the composition length of A, namely the common length of
all composition series for the group. Since A is finite, len A is certainly finite.

Theorem 4.1. [P7] Let G be a locally finite group with Op(G) = 1 and, for any

integer n ≥ 1, let

Sp
n(G) = 〈A | A ∈ Sp(G) and len A ≤ n〉.

Then Sp(G) is the ascending union of its characteristic f.c. subgroups Sp
n(G).

Now suppose, in the above situation, that A lsn G, A = Ap, and say len A = n.
Then A ⊆ Sp

n(G), and the latter is a normal f.c. subgroup of G. In particular, since
Sp

n(G) is generated by its finite normal subgroups, there exists such a subgroup B
with A ⊆ B / Sp

n(G). But |B| < ∞, so A // B and therefore A // G. Furthermore,
if we take B to be the normal closure of A in Sp

n(G), then B = Bp and B //G with
subnormal depth at most 2. As a consequence, these several concepts all merge
into one. In particular, it follows from Corollary 3.2 that JK[G] 6= 0 if and only
if either Op(G) 6= 1 or G has a finite nonidentity subgroup A = Ap of subnormal
depth ≤ 2. Thus we obtain a somewhat simpler criterion for the semiprimitivity of
K[G], and clearly

JK[Sp(G)] =

∞⋃

n=1

JK[Sp
n(G)].

At this point, it is appropriate to consider some examples associated with the
preceding results. For instance, we might ask whether Theorem 4.1 is best possible
or whether Sp(G) is necessarily always an f.c. group. In addition, it is clear that
Tp(G) ⊇ Sp(G), and it is natural to ask whether these subgroups can be different.
The answers here are all contained in
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Lemma 4.2. Let p be a fixed prime.

i. There exists a p-group P and an element x ∈ P such that the normal closure

〈x〉P is not an f.c. group.

ii. There is a group G with Op(G) = 1 and with Sp(G) not an f.c. group.

iii. There exists a group G with Tp(G) strictly larger than Sp(G).

Proof. (i) Set P = A o 〈x〉, where A is an abelian p-group and x is an element
of order p2 which acts on A with [A, x, x] infinite. For example, we could take P
to be the wreath product P = B o 〈x〉 with B an infinite abelian p-group. Finally
observe that Q = 〈x〉P = 〈x, [A, x]〉 and note that Q is not an f.c. group since
[Q, x] ⊇ [A, x, x] is infinite.

(ii) Now let P be a transitive p-subgroup of FSym∞. For example, we could
take P to be the infinite wreath product P = . . . (((Zp o Zp) o Zp) o Zp) . . . of cyclic
groups Zp of order p. Furthermore, let X be a finite nonabelian simple group of
order divisible by p and define G to be the permutation wreath product G = X oP .
We claim that G is a locally finite group with Op(G) = 1, G = Sp(G) and with G
not an f.c. group.

To start with, G is the semidirect product G = Y oP where Y is the (weak) direct
product Y =

∏∞

i=1 Xi of countably many copies Xi of X . Thus Y is a semisimple
normal subgroup of G which is the kernel of the conjugation permutation action of
G on the set X = {Xi | i = 1, 2, . . .}. Since Op(G) ∩ Y = 1, it follows that Op(G)
acts trivially on X , so Op(G) ⊆ Y and hence Op(G) = 1.

Next, it is clear that Sp(G) ⊇ Y . Furthermore, let Q be any finite subgroup of
P and let Z be the direct product of the finitely many Xis which are moved by Q.
We claim that A = ZQ is a locally subnormal subgroup of G. To this end, let B be
any finite subgroup of G which contains A. Since Q centralizes the Xi factors of Y
not in Z, it is clear that A / Y Q. Furthermore, since G/Y ∼= P is a locally finite
p-group, it follows that Y Q/Y // Y B/Y and hence Y Q // Y B. In other words, we
have shown that A // Y B and hence A // B, as required. Thus Q ⊆ Sp(G) and,
since Q ⊆ P is arbitrary, we have Sp(G) = G.

Finally, note that P has no nontrivial finite normal subgroups. Indeed, if N 6= 1
were such a subgroup, then N moves only finitely many points Ω 6= ∅ under the
permutation action of P ⊆ FSym∞. Furthermore, since N / P , P must act on Ω,
and this contradicts the fact that P is transitive on the infinite set { 1, 2, 3, . . .}.
Thus, no such N exists and, in particular, P cannot be an f.c. group. Hence, since
G ⊇ P , we conclude that G is also not an f.c. group.

(iii) We continue with the notation of part (ii). In addition, we let D be an
infinite abelian p-group, and we set H = D o G = E o G where E is the (weak)
direct product E =

∏
g∈G Dg of copies Dg of D indexed by the elements of G. Since

Op(G) = 1, it is clear that E = Op(H). Furthermore, since H/Op(H) ∼= G and
G = Sp(G), it follows that H = Tp(H).

It remains to show that H 6= Sp(H) and indeed we show that Sp(H) ⊆ Op(H) =
E. Suppose, by way of contradiction, that this is not the case. Then there must
exist a locally subnormal subgroup A of H which is not a p-group. Since H/EY ∼= P
is a p-group and A is not a p-group, it follows that A∩EY is not a p-group. Thus,
without loss of generality, we may assume that A ⊆ EY and A 6⊆ E. Note that
A lsn EY and hence EA/E is a locally subnormal subgroup of the semisimple group
EY/E ∼= Y . Consequently, EA/E ∼= A/(E ∩ A) is a finite semisimple group.

Set B = E∩A and note that B /EA since E is abelian. Thus, since A lsn EA, it
follows that (A/B) lsn (EA/B). But A/B = A/(E∩A) is semisimple, so its normal
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closure in EA/B is also semisimple and hence disjoint from the normal p-subgroup
E/B. It follows that A/B centralizes E/B and hence that [E, A] = [E, A/B] ⊆ B
is finite. But E =

∏
g∈G Dg and A/B 6= 1 permutes the factors Dg in a nontrivial

manner. Thus, [E, A/B] must project onto one of the Dgs, and consequently, this
commutator group is infinite, a contradiction. We conclude therefore that all locally
subnormal subgroups of H are p-groups, so Sp(H) ⊆ Op(H) 6= H = Tp(H). �

In particular, the assumption that Op(G) = 1 is required in Theorem 4.1 and
even with this, Sp(G) need not be an f.c. group. Furthermore, the group Tp(G)
cannot be replaced by Sp(G) in Corollary 3.2.

§5. Finitely Generated Groups

As usual, we suppose that K is a field of characteristic p > 0, but now we consider
the semiprimitivity problem for finitely generated groups. The guess here is

Conjecture 5.1. If G is a finitely generated group, then JK[G] = NK[G].

This would be a wonderful result for two reasons. First, in view of Theorem 1.2,
we would have an adequate description of JK[G] for such groups. But more im-
portantly, since an arbitrary group has its finitely generated subgroups as a local
system, we could use this result to describe JK[G] in general. Specifically, let G
be an arbitrary group and let Λ+(G) be generated by all those finite subgroups A
of G whose normal closure AH is finite for every finitely generated subgroup H of
G. Then, we have

Lemma 5.2. [P6] Let G be an arbitrary group.

i. Λ+(G) is a locally finite characteristic subgroup of G.

ii. If N / G with N ⊆ Λ+(G), then Λ+(G/N) = Λ+(G)/N .

Part (ii) above indicates that Λ+ is a “radical” for groups, somewhat of a surprise.
Note that, if G is locally finite, then Λ+(G) = G. Thus part (i) above is best
possible in that Λ+(G) can be any locally finite group. In any case, because of
Corollary 3.2, we know the precise structure of JK[Λ+(G)] and, by using that
result and Theorem 1.2, we can now prove

Theorem 5.3. [P6], [P16] Let K[G] be the group algebra of an arbitrary group G
over a field K of characteristic p > 0. Assume that, for each finitely generated

subgroup H of G, we have JK[H ] = NK[H ]. Then

i. JK[G] = JK[L+]·K[G] where L+ = Λ+(G).
ii. The controller of JK[G] is T p = Tp(L+) and JK[G] = JK[T p]·K[G].
iii. JK[G] 6= 0 if and only if T p 6= 1.

Thus it remains to prove Conjecture 5.1, but unfortunately this seems to be a
rather hopeless task at the moment. Nevertheless, we do know that the conjecture
holds when G is a solvable group (see [HP], [P3], [Z1] and [Z2]), and also when G
is a linear group (see [P4], [P5] and [P6]). Furthermore, we have

Theorem 5.4. [P6] If G is a finitely generated group, then NK[G] is a semiprime

ideal of K[G]. In other words, N (K[G]/NK[G]) = 0.

In particular, N behaves like a “radical” when applied to group algebras of
finitely generated groups. On the other hand, the following example of Bergman
shows that his behavior is really atypical.
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Lemma 5.5. There exists a finitely generated K-algebra R with N (R/NR) 6= 0.

Proof. Let F = K〈x, y〉 be the free K-algebra in the variables x and y, and let
I ⊆ F be the K-linear span of all monomials of the form . . . xyix . . . xyix . . . for
any integer i = 0, 1, 2, . . . . Then I is clearly an ideal of F and we set R = F/I .
Note that if x̄ and ȳ denote the images of x and y in R, then R has as a K-basis
all monomials in x̄ and ȳ not of the above form.

Now, for any integer i ≥ 0, we have Rx̄ȳix̄Rx̄ȳix̄R = 0, so Rx̄ȳix̄R is an ideal
of R of square 0 and hence Rx̄ȳix̄R ⊆ NR. Consequently, we have

Rx̄Rx̄R =

∞∑

i=0

Rx̄ȳix̄R ⊆ NR,

so (Rx̄R)2 ⊆ NR and x̃ = x̄ + NR ∈ N (R/NR). Finally, note that x̄ /∈ NR
since (x̄ȳ)(x̄ȳ2)(x̄ȳ3) · · · (x̄ȳn) 6= 0 for any integer n ≥ 1, and hence x̃ is a nonzero
element of R/NR, as required. �

§6. Burnside Groups

Again, let K be a field of characteristic p > 0 and let G be a finitely generated
group. If AK[G] denotes the augmentation ideal of K[G], namely the kernel of
the natural homomorphism K[G] → K[G/G] ∼= K, then AK[G] is a maximal right
ideal of K[G] and hence it contains the Jacobson radical JK[G]. In [K1] and [K2],
Kaplansky posed a number of interesting ring theoretic problems, including some
on group algebras. One of the latter concerned the general semiprimitivity problem
and one concerned the following special case.

Conjecture 6.1. If charK = p > 0 and G is a finitely generated group, then

JK[G] = AK[G] if and only if G is a finite p-group.

We note that the equality JK[G] = AK[G] really means that K[G] has precisely
one irreducible representation, namely the principal representation ρ : K[G] → K
with ρ(G) = 1. Of course, if G is a finite p-group, then it is easy to see that
JK[G] = AK[G]. Thus the real concern here is with the converse direction, and
this is actually a consequence of Conjecture 5.1. To start with, we list a number of
elementary properties associated with the augmentation ideal. For convenience, if I
is any right ideal of K[G], we write G(I) = { g ∈ G | g − 1 ∈ I }. Clearly, G(I) = G
if and only if I ⊇ AK[G].

Lemma 6.2. Let K[G] be an arbitrary group algebra and write A = AK[G].

i. If I is a right ideal of K[G], then G(I) is a subgroup of G.

ii. If G = 〈x1, x2, . . . , xn〉 is finitely generated, then A =
∑n

i=1(xi − 1)K[G] is

a finitely generated right ideal.

iii. A has a nonzero right or left annihilator if and only if G is finite.

iv. G(A2) ⊇ G′ = [G, G], the commutator subgroup of G.

Proof. (i) If x, y ∈ G(I), then yx−1−1 = [(y−1)− (x−1)]x−1 ∈ I , so yx−1 ∈ G(I).
(ii) Note that I =

∑n
i=1(xi − 1)K[G] is a right ideal of K[G] contained in A. On

the other hand, since G(I) is a group, it follows that G(I) ⊇ 〈x1, x2, . . . , xn〉 = G,
and consequently I ⊇ A.

(iii) Say 0 6= α ∈ K[G] with αA = 0. Then α(g − 1) = 0 for all g ∈ G, so α = αg
and supp α = (supp α)g. Since supp α is closed under right multiplication by G, it
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follows that G = supp α is finite. On the other hand, if G is finite, then β =
∑

g∈G g
annihilates A on both sides.

(iv) If x, y ∈ G, then

xyx−1y−1 − 1 = (xy − yx)x−1y−1

= [(x − 1)(y − 1) − (y − 1)(x − 1)]x−1y−1

is contained in A2, and consequently G(A2) contains all commutators. �

Now suppose that G is a finitely generated group with A = AK[G] = JK[G].
If we assume the validity of Conjecture 5.1, then A = NK[G] and, since A is a
finitely generated ideal by Lemma 6.2(ii), this implies that A is nilpotent. Thus A
has a nonzero right and left annihilator, so G is finite by the previous lemma, and it
follows easily (see Theorem 6.3(i)) that G is a p-group. In other words, the solution
to Kaplansky’s problem is an immediate consequence of Conjecture 5.1.

The following result lists essentially all we know of a general nature about Con-
jecture 6.1. For the most part, it is based on the work of Lichtman in [L].

Theorem 6.3. Let G be a finitely generated group and let charK = p > 0. If

JK[G] = AK[G], then

i. G is a p-group.

ii. [L] If G 6= 1, then G 6= G′.

iii. [L] If G is an infinite group, then G has an infinite, residually finite homo-

morphic image.

iv. Any maximal subgroup of G is normal of index p.
v. If H is a subgroup of G of infinite index, then there exists a chain of sub-

groups G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ H with Gi+1 / Gi and |Gi/Gi+1| = p.

Proof. If L is a subgroup of G, then K[G] = K[L]⊕U , where U is the kernel of the
projection map πL. Thus, we have a K[L]-bimodule decomposition of K[G], and it
follows easily that JK[G] ∩ K[L] ⊆ JK[L]. In particular, since JK[G] = AK[G],
we conclude that JK[L] = AK[L].

(i) Let x ∈ G and set X = 〈x〉. Then, by the above, JK[X ] = AK[X ], and it
follows that x must have finite order. But then JK[X ] = AK[X ] is nilpotent so,
for some integer n ≥ 1, we have 0 = (x − 1)pn

= xpn

− 1, and G is a p-group.
(ii), (iv) Let H be a proper subgroup of G, let A = AK[G] = JK[G] and set B =

AK[H ]·K[G]. Then V = A/B is a nonzero finitely generated right K[G]-module, by
Lemma 6.2(ii), and hence Nakayama’s lemma implies that V ) V ·JK[G] = V ·A.
In other words, A ) B + A2. Now G(B) ⊇ H and G(A2) ⊇ G′, by Lemma 6.2(iv).
Thus G(B + A2) ⊇ HG′, by Lemma 6.2(i), and since this right ideal is properly
smaller than A = AK[G], it follows that HG′ ⊆ G(B + A2) ( G.

If G 6= 1, we can take H = 1 and deduce that G′ ( G. This yields (ii). On
the other hand, if H is a maximal subgroup of G, then since H ⊆ HG′ ( G, we
conclude that H ⊇ G′. Thus H / G and then clearly, |G/H | = p.

(iii) Suppose now that G is infinite and let L denote the intersection of all normal
subgroups of G of finite index. Then G/L is a residually finite homomorphic image
of G and it remains to show that this factor group is infinite. To this end, suppose
that |G : L| < ∞. Then L is also finitely generated and L 6= 1. Part (ii) now implies
that L ) L′, and thus L′ is a normal subgroup of finite index in G properly smaller
than L. Since this contradicts the definition of L, we conclude that |G/L| = ∞, as
required.
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(v) Finally, let |G : H | = ∞. We prove by induction on n that there exists a
suitable chain of subgroups G = G0 ⊇ G1 ⊇ · · · ⊇ Gn ⊇ H with |Gi/Gi+1| = p.
To this end, assume that we have found the group Gn. Then |G : Gn| = pn < ∞,
so Gn is finitely generated and Gn ) H . Therefore, we can let Gn+1 be a maximal
subgroup of Gn which contains H . By (iii) above, we know that Gn+1 / Gn with
factor group cyclic of order p. Thus Gn+1 exists, and the result follows. �

It is not surprising that maximal subgroups come into play here. Indeed, if
K = GF(p) and if every maximal subgroup of the wreath product Zp oG is normal,
then JK[G] = AK[G]. To see this, note that Zp o G = V o G where V , written
additively, is isomorphic to the right regular K[G]-module. In particular, if W is
any irreducible K[G]-module, then W ∼= V/M for some maximal submodule M ,
and then it is clear that MG is a maximal subgroup of V G. But if all maximal
subgroups are assumed to be normal, then [V, G] ⊆ V ∩MG = M and hence G acts
trivially on V/M ∼= W . In other words, W can only be the principal module.

Obviously, finitely generated, infinite p-groups are related to the Burnside prob-
lem. If G is a Tarski monster, as constructed by Ol’shanskĭı in [O], then G is simple,
so (ii) implies that JK[G] 6= AK[G]. If G has bounded period, as first constructed
by Novikov and Adjan in [NA1], [NA2] and [NA3], then the affirmative solution
of the restricted Burnside problem by Zelmanov in [Ze1] and [Ze2] implies that G
cannot have an infinite, residually finite, homomorphic image. Thus, (iii) implies
that JK[G] 6= AK[G]. On the other hand, the groups constructed by Golod in
[Go] and [GoS] and by Gupta and Sidki in [GuS] and [S1] are infinite, residually
finite, p-groups, so parts (ii) and (iii) cannot help here. Furthermore, there are
unfortunately no known results on the maximal subgroups of such groups, so we do
not know whether parts (iv) or (v) will help either.

Now if G is a Golod group defined over the field K, then G is a subgroup of
the unit group of a K-algebra R, and there is an epimorphism θ : K[G] → R with
θ(AK[G]) an infinite dimensional nil ideal. Fortunately, Siderov [Si] has shown
that θ is not an isomorphism at least when the construction parameters satisfy
certain natural conditions. Furthermore, Sidki [S2] introduced a ring theoretic
variant of the recursive methods used to construct the Gupta-Sidki groups, and he
showed that these groups have at least one nonprincipal irreducible respresentation
in characteristic p. Indeed, starting with this result, it was shown in [PT] that
if K is sufficiently large, then the Gupta-Sidki groups must have infinitely many
nonisomorphic irreducible representations.

Certainly, an affirmative solution to Kaplansky’s problem would be a major step
in the general semiprimitivity problem. Obviously, it will prove to be a decidedly
nontrivial task. Riley [R] has suggested that there might be an approach here via
pro-p groups. But, even with this idea, there are still fundamental difficulties which
must be overcome.
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[Z1] A. E. Zalesskĭı, On the semisimplicity of a modular group algebra of a solvable group, Soviet

Math. 14 (1973), 101–105.
[Z2] , The Jacobson radical of the group algebra of a solvable group is locally nilpotent,

Izv. Akad. Nauk SSSR, Ser. Mat. 38 (1974), 983–994. (Russian)
[Ze1] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent,

Izv. Akad. Nauk SSSR, Ser. Mat. 54 (1990), 42–59. (Russian)
[Ze2] , Solution of the restricted Burnside problem for 2-groups, Mat. Sb. 182 (1991),

568–592. (Russian)

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: passman@math.wisc.edu


