Taylor’s Formula

(The Extended Mean Value Theorem)

October 19, 2000

§1 When \(f \) is a function and \(k \geq 0 \) is an integer the notation \(f^{(k)} \) denotes \(k \)th derivative of \(f \). Thus

\[
f^{(0)}(x) = f(x), \quad f^{(1)}(x) = f'(x), \quad f^{(2)}(x) = f''(x),
\]

and so on. Given a number \(a \) in the domain of \(f \) and an integer \(n \geq 0 \), the polynomial

\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!}
\]

is called the degree \(n \) Taylor polynomial of \(f \) centered at \(a \). The Taylor polynomial \(P_n(x) \) is the unique polynomial of degree \(n \) which has the same derivatives as \(f \) at \(a \) up to order \(n \):

\[
P_n^{(k)}(a) = f^{(k)}(a) \quad \text{for } k = 0, 1, 2, \ldots, n.
\]

§2 The letter \(\sum \) is the Greek \(S \) (for sum) and is pronounced \(\text{sigma} \) so the notation used in \((\#)\) is called \textbf{sigma notation}. It is a handy notation but if you don’t like it you can indicate the summation with dots:

\[
\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \cdots + a_{n-1} + a_n.
\]

Hence the first few Taylor polynomials are

\[
P_0(x) = f(a),
\]

\[
P_1(x) = f(a) + f'(a)(x-a),
\]

\[
P_2(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2},
\]

\[
P_3(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2} + \frac{f'''(a)(x-a)^3}{6}.
\]

§3 The Taylor polynomial \(P_n(x) \) for \(f(x) \) centered at \(a \) is the polynomial of degree \(n \) which best approximates \(f(x) \) for \(x \) near \(a \). The precise statement is
Taylor’s Theorem. Suppose that f is $n+1$ times differentiable and that $f^{(n+1)}$ is continuous. Let a be a point in the domain of f. Then

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x-a)^n} = 0. \quad (∗)$$

§ 4 In order to use Taylor’s formula approximate a function f we pick a point a where the value of f and of its derivatives is known exactly. Then the Taylor polynomial $P_n(x)$ can be evaluated exactly for any x. We then need to “estimate the error” $f(x) - P_n(x)$, i.e. to find an inequality

$$|f(x) - P_n(x)| \leq M|x - a|^{n+1}$$

which tells us how small the error $f(x) - P_n(x)$ is, i.e. how close $P_n(x)$ is to $f(x)$. A value for M is usually found via

§ 5 The Extended Mean Value Theorem. Suppose that f is $n+1$ times differentiable and that $f^{(n+1)}$ is continuous on an interval, let a and b be two numbers in that interval, and let $P(x)$ be the Taylor polynomial of f centered at a. Let b be a point in the domain of f. Then for each b there is a number c_{n+1} between a and b such that

$$f(b) - P_n(b) = \frac{f^{(n+1)}(c_{n+1})(b-a)^{n+1}}{(n+1)!}.$$

§ 6 Note that the formula for the error $f(b) - P_n(b)$ is the same as the next term in the series (∗) except that the $n + 1$st derivative $f^{(n+1)}$ is evaluated at the unknown point c_{n+1} instead of a. The Extended Mean Value Theorem is proved in problem 74 on page 174 of the text. Equation (∗) is an immediate consequence.

§ 7 Exercise. Evaluate $\sum_{k=3}^{5} \frac{1}{k}$.

§ 8 Exercise. Let $f(x) = \sqrt{x}$. Find the polynomial $P(x)$ of degree three such that $P^{(k)}(4) = f^{(k)}(4)$ for $k = 0, 1, 2, 3$.

§ 9 Exercise. Let $f(x) = x^{1/3}$. Find the polynomial $P(x)$ of degree two which best approximates $f(x)$ near $x = 8$.

§ 10 Exercise. Let $f(x)$ and $P(x)$ be as in § 9. Evaluate $P(10)$ and use the Extended Mean Value Theorem to prove that

$$|10^{1/3} - P(10)| \leq \frac{10}{6 \cdot 27 \cdot 32}.$$

Hint: The function $g(x) = x^{-8/3}$ is decreasing so $g(10) < g(8)$.

§ 11 Exercise. Find a polynomial $P(x)$ of degree three such that

$$\lim_{x \to 0} \frac{\sin(x) - P(x)}{x^3} = 0.$$
Use the Extended Mean Value Theorem to show that

\[|\sin(x) - P(x)| \leq \frac{|x|^4}{24}. \]