Every Triangle is Isosceles!?

Let \(ABC \) be a triangle; we will prove that \(AB = AC \). Let \(O \) be the point where the perpendicular bisector of \(BC \) and the angle bisector at \(A \) intersect, \(D \) be the midpoint of \(BC \), and \(R \) and \(Q \) be the feet of the perpendiculars from \(O \) to \(AB \) and \(AC \) respectively (see figure).

The right triangles \(ODB \) and \(ODC \) are congruent since \(OD = OD \) and \(DB = DC \). Hence \(OB = OC \). Also the right triangles \(AOR \) and \(AOQ \) are congruent since \(\angle RAO = \angle QAO \) (\(AO \) is the angle bisector) and \(\angle AOR = \angle AOQ \) (the angles of a triangle sum to 180 degrees) and \(AO \) is a common side. Hence \(OR = OQ \). The right triangles \(BOR \) and \(COQ \) are congruent since we have proved \(OB = OC \) and \(OR = OQ \). Hence \(RB = QC \). Now \(AR = AQ \) (as \(AOR \) and \(AOQ \) are congruent) and \(RB = QC \) (as \(BOR \) and \(COQ \) are congruent) so \(AB = AR + RB = AQ + QC = AC \) as claimed.