Exercise 1. Suppose that \(n \) and \(m \) are integers with \(n > m > 0 \). Let \(M^m \) and \(N^n \) denote compact, connected manifolds without boundary of dimensions \(m \) and \(n \) respectively. Prove that they are not homotopy equivalent.

Exercise 2. Give an example of a pair of path connected spaces \(X_1, X_2 \) such that \(\pi_1(X_1) \cong \pi_1(X_2) \neq 1 \), but \(H_*(X_1, \mathbb{Z}) \neq H_*(X_2, \mathbb{Z}) \).

Exercise 3. Let \(M = \mathbb{C}P^n \) denote complex projective space of (real) dimension \(2n \).

(a) Prove that \(M \) is a compact, connected \(2n \)-dimensional manifold.

(b) Show in detail that \(M \) can be given a cell complex structure with one cell in every even dimension \(i = 0, 2, 4, \ldots, 2n \).

(c) Calculate the cohomology ring \(H^*(M, \mathbb{Z}) \).

(d) Find a closed \((2n - 2k)\)-form \(\eta_S \) representing the Poincaré dual of the submanifold \(S := \mathbb{C}P^k \subset \mathbb{C}P^n \) in \(H^{2n-2k}_{DR}(M) \).

Exercise 4. Let \(M = \mathbb{R}P^n \) denote real projective space of (real) dimension \(n \).

(a) Prove that \(M \) is a compact, connected \(n \)-dimensional manifold.

(b) Show in detail that \(M \) can be given a cell complex structure with one cell in every even dimension \(i = 0, 1, 2, \ldots, n \).

(c) Calculate the cohomology ring \(H^*(M, \mathbb{Z}/2) \)

(d) Calculate the cohomology ring \(H^*(M, \mathbb{Z}) \).

Exercise 5. Let \(M \) denote a connected, non-orientable, compact 3–manifold without boundary. Prove that its fundamental group must be an infinite group.

Exercise 6. Let \(X \) be a finite cell complex and \(SX \) its suspension, i.e.

\[
SX := X \times \mathbb{I}/\sim
\]

where \((x, 0) \sim (x', 0) \) and \((x, 1) \sim (x', 1) \) for \(x, x' \in X \). Prove that that the reduced cohomology \(\tilde{H}^*(SX, \mathbb{Z}) \) has no non-trivial cup products.
Exercise 7. Let $S^{2n-1} \subset C^n$ and $\rho = e^{2\pi i/p}$ (p an odd prime). Let Z/p act on S^{2n-1} by $x \mapsto \rho x$.

(a) Show that this action is free.

(b) Calculate $H_*(S^{2n-1}/Z/p, Z)$.

(c) Calculate $H_*(S^{2n-1}/Z/p, Z/p)$.

Exercise 8. Let X be a path–connected finite CW complex and let S^1 denote the unit circle. Show that $[X, S^1]$, the set of all homotopy classes of maps $f : X \to S^1$, has a natural group structure induced from the product on S^1. Prove that there is an isomorphism of groups $[X, S^1] \cong H^1(X, Z)$.

Exercise 9. Calculate $H_*(RP^3 \times (S^5/Z/3) \times S^2, Z)$.

Exercise 10. Using cup products show that if $m > n$ there is no map $RP^m \to RP^n$ inducing a non trivial map $H^1(RP^n, Z/2) \to H^1(RP^m, Z/2)$. Derive the Borsuk Ulam Theorem as a consequence.

Exercise 11. Show that RP^3 and $RP^2 \vee S^3$ are not homotopy equivalent.