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ABSTRACT

The classification problem for recursive functions is
the problem of assigning ordinals to recursive functions as a
measure of their complexity. In this paper we consider three
approaches to this problem: the ordinal recursion hierarchy,
the extended Grzegorczyk hierarchy, and the Kleene subrecursive
hierarchy. We obtain characterizations of the nested n-fold
recursive functions in terms of each of these hierarchies. In
the last éection of the paper we show some of the problems that
arise when we try to generalize these hierarchies. A characteriza-
tion of the nested n-fold recursive functions in terms of computational

complexity on a Turing machine is also given in the paper.
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INTRODUCTION

We are here concerned with what has been called "the
classification problem for recursive functions"; the ultimate
objective is to find a way of assigning ordinal numbers to recursive:
functions as a measure of their complexity. Three different approaches

to this problem are considered in this paper. They are:

I. The ordinal recursior hierarchy. Let R be a well ordering of

the natural numbers with order type |R|. Let U(R) be the set of
unnested R-recursive functions. To each recursive function f we

may assign the smallest ordinal IRI such that f € U(R).

II. The extended Grzegorczyk hierarchy. TFor each Church-Kleene

ordinal notation a define (inductively) the singulary function

Wa by

—~
[
~
=
)
o
Il
\
=
—~~
]
~
Il
N
e

(1) if a =2°, W (x) = We(1), i.e., W (0) =1 and

W, (1) = (W (%)) ;

(iii) if a = 3.5% where g 1is a godel number for g, then

W, ()

Il

wq(X)(X)'

In other words, we start with o* ; iterate the preceding function at

Successor ordinal notations, and diagonalize at limit ordinal notations.




Let E_ = E(W ) , the set of functions elementary recursive in Wa.
a a

Let }a| be the ordinal for which a 1is a notation. To each

recursive function f we may assign the smallest ordinal ]a[ such

that f € Ea-

III. The Kleene subrecursive hierarchy. Fix an indexing (i.e., godel

numbering) for P(V), the set of functions primitive recursive in the
binary function V. For each ordinal ndtation a define the binary

function Va by

, (1) 4if a =1, Va(XJY) =X +Yy;

(ii) if a ='2b, V (x,f) = f(x,,...,%x_) where f is an index for
a’ "= 1 r =
the function f € P(V.) and x represents the r-tuple
b

(x,,...,%x_) via pairing functions;
1 r :

(iii) if a = 3-5g where ¢ 1is a godel number for g, then
Va(X,W) = Vq(u>(x,v) where w represents the pair (u,v)
via pairing functions.

Let Pa = P(Va), the set of functions primitive recursive in Va°
Roughly speaking, this hierarchy is formed by startiﬁg with the
Primitive recursive functions; at successor ordinal notations we
add a universal function for the previous class and close under
Primitive recursive operations, and at limit ordinal notations we
add the ternary function which takes the "union" of the functioné

defined along the fundamental sequence and close under primitive



recursive operations. Now, to each recursive function f we may
assign the smallest ordinal ]al such that f € Pa'

Unfortunately, all three hierarchies collapse at w.

Theorem 1. For every recursive function f there is an (elementary

recursive) well ordering R such that

(1) [R] = w

(2) £ e U(R) .

Theorem 2. TFor every recursive function f there is an ordinal
notation a such that
(1) Ja] = w

(2) feE, .

Theorem 3. For every recursive function f there is an ordinal
notation a such that
(l) ]al =W

(2) fep, .

These three theorems are proved in the text in the section
entitled "Pathology". Kleene sought to avoid theorem 3 by restricting
attention to ordinal notations formed‘using only primitive recursive
fundamental sequences, but Feferman showed that, even with this

restriction, the hierarchy collapses at wg.




The answer seems to be to restrict attention to "standard"

well orderings and "standard" ordinal notations. Good definitions

of these concepts are not known, but for small ordinals we can give
well orderings and notations which seem like they ought to be standard.
In the text this is done and the following characterizations of Nn’

the class of nested n-fold recursive functions, are given:

n

Theorem 4. For a standard well ordering Qn of order type w” 5

Nn+l - U(Qh)'

Theorem 5. Where a and b range over standard notations for the

. w
ordinals <w ,

(1) if |a] < |b] , then E, = E_ .
(2) if Ja] < |b| , then E_ # E -

(3) N, = f/Ea (la] < ™) .

Theorem_é. Where a and b range over standard notations for the

. w
ordinals <w ,

(1) if Ja] < |b|, then "Pa < P -

2 if < .

(2) ir |a| |b| , then P, # Y
i n-1 '

(3) N,oo= LjPa (la] <w ™ 7)

It is hoped that an adequate definition for the concept of

stendardness can be found so that theorems like the following can be

proved (G denotes the set of general recursive functions):



A. Where R and R'

(1) if |R] < [R'],
(2) if [R']
(3) ¢ = Ju®) .

and b

B. Where a range
(1) if J|a] < |p|, then
(2) if |a] < |v|, then
(3) ¢ = Uz .

C Where a and b range
(1) i Ja| < |p|, then P,
(2) if Ja| < ||, then B,

then U(R) <

is sufficiently larger than

E
a

E"P

range over the standard well orderings,

U(R").

IR, U(R) # U(R").

over standard ordinal notations,

Ea, = Eb :

# E_ -

over standard ordinal notations,

b

# Pb;‘ .



THE ORDINAL RECURSION HIERARCHY

The variables R, R', Rl’ R2°" will range over primitive recur-
sive well-orderings of the natural numbers (non-negative integers).
Without loss of generality assume that O 1is always taken to be the
least element in such a well-ordering. x Ry will be written instead
of R(x,y) and will mean that x is (strictly) smaller than y in the
well-ordering R. |R] will denote the order type of R.

<§,y>, CqW, CpW, will be the usual pairing functions; i.e.

\ x+7) (x+y+1
<x,y} — ( y)éx NA ) +x
e = W - aw) :
N g(w) - c W 5
where g(w) = largest m such that Eigiil = w. Then

cl<x,¥> = x
Co <X; Y> = Vv ’
c v, 02@ = w

The letter ¢ 1ig used because clw is the first coordinate of w. The

Palring functions give us a one-one onto correspondence between pairs of

n -
atural numbers and natural numbers. In general, a correspondence between




n-tuples of natural numbers and natural numbers is established by

iteration:
<Xi> = X ’
<Xl""’xn’xn+l> = <<Xl’°"’xn>’ Xﬂ+l>

-

e

C<O;j—)w) = 0 >
§ c(l,l,w) = w ’
§
. c(l,i,w) = w for 1 #1 5
L
§ c(n+l,i,w) = c(n,i,clw) for i =1,...,n ,
. c(n+l,n+l,w) = c.w
%; b b 2 )
. c(ntl,i,w) = O for i = O,n+l,n+2,... .

Thus for n = 1,2,... and i =1,...,n,

S i

c(n,1,<xl,...,xn>) = X
. and
{b(n,l,w), c(n,?,w),...,c(n,n,w))r = w .
For well-orderings Rl and R2 the well-ordering Rl X R2
is defined as follows: u (RlXRg) v 1f and only if either cou R2 Cov

or 02u = 02v and clu Rl clv. Hence

(10%e) RYP®y) (¥157, )




~ holds if and only if either X, R2 y, or both X, = Yo and Xl Rl ¥y

Clearly then, RlXR2 is primitive recursive in Rl and R2 and
IRJ_XRQI - ‘RlHRgI

Now we will give a natural definition of R¥ so that

]R*I = w,Rl. Note that the ordinal numbers less than w[R] are
.precisely the ordinal numbers of the form

waé + ... wﬁb + ..
where

0 < ... B<... <a<R
and

0 < a < w,eet; 0<DL< W00
For such a polynomial let the natural numbers 8y400,0,... correspond
to the ordinals «,...,B,... respectively in the well-ordering R,‘

Let P; denote the ith prime (po = 2). Then the product

_b
- Py eee) = 1

corresponds to the polynomial in the well ordering R¥. The -1
appears so that O will be the first element in R¥. R¥ may be
defined as follows:

u R¥ v

holds if and only if there exists an i < utv+2  such that for all

J < utv+2 both



j Ri implies (u+l)j = (v+1)j

(u+l)i < (v+l)i .

Here (x)i denotes the exponent of p; in the prime power decompoéi—
tién of x. The bounds on the quantifiers are sufficiently large:

if Py divides either wu+l or v+l, then i < utv+2. R¥ is defined
from R via primitive recursive functions and bounded quantification
and hence is primitive recursive in R. R¥ clearly has the desired

order type.

Take < to be the usual ordering of the integers. Now

define <n for n =1,2,3,... by

< = < X<
n+l n

and Qh for n =20,1,2,... by

Clearly then, l<n] = w for n=1,2,3... and ]Qh] w?

for n=0,1,2,... .

is the reverse lexicographical ordering on n-tuples;

r-lex

i.e. oo e i i <
i.e (xl, ,Xn) <f-lex (yl, _ ,yn) holds if and only if x <y, or
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both x, = v, and Xn-l < Yyl ©r ... or Xn =V, Xn-l = MEERERY

(yl,...,yn) if and

= ; . e <
X5 = Vps and X, <y, Thus (xl, ’Xn) . lex

only if <Xl,...,xn> <n <yl,...,yn>. In the reverse lexicographical
ordering, the ntl-tuple (xo,xl,...,xn) should be thought of as
representing the ordinal wnxn+...+ WXy +Xy o .

Finally define

Il

[Rix;y] x if xRy ;

0O otherwise .

Il

Note that [R:x;y] is primitive recursive in R.

I. The feollowing scheme is the schema of composition

(m=0,1,2,... 3 n=1,2,0..):
£(x 500 esx 5y 50 05y,) = hlxseex,e(y,.0y))

If f, g, and h satisfy this equation, we say that f is obtained

from g and h Dby composition.

II. TIet XyseeerX, be a non-empty list of distinect variables and
let 51”"’5m. be a non-empty list such that each gi is either
an Xj or a constant. Then the ntm-tuple xl,...,xn:gl,,.,,gm

is called an explicit transformation. For each explicit transforma-

tion, the following schema is a schema of explicit transformation:

fxeex ) = gle,. 08 ) -
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f(xl)'“;XH) = g(gl’”.’gm) .

If f and g satisfy this equation, we say that f is obtained from

g by an explicit transformation.

ITII. Let A be a term built up from previously given functions

IRRREE] - , variables x REFE Y and constants. The following schema

l)

is an explicit definition:

f(xl""’xn) = A

If f,gl,...,gm satisfy this equation, we say that f is obtained

from gl,...,gm by explicit definition.

IV. The following schema is the schema of primitive recursion:

£(x,0) = g(x)

f(x,y+41) = n(x,f(xy)) .

If f, g, and h satisfy these equations, we say that f is obtained

from g and h by primitive recursion.

V. The following schema is the schema of limited recursion:

£(x,0) = g(x)

f(X)Y'*'l) h(x,y,f(x,y)) .

f(x;y) < j(X)y)
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If ’f, g, h, and J satisfy these conditions, we say that f is
obtained from g, h, and J Dby limited recursion.  The above sehema
is non-effective in the sense that there is no effective procedure
whereby, given g, h, and J, we can decide if there is an f
satisfying the above conditions. However, we may replace the above

schema by the following:

F(x,0) = G(x)
F(X7y+l> = H(X)Y;F(X)y))
where G(x) = eg(x)(1=(g(x)*3(x,0)))
and H(X;y)z) - h(x,y,Z)(la(h(x,y,z)&j(x,y+l))) .

Then  F(x,y) < j(x,y), and if the function f obtained from g and
h by primitive recursion satisfies f(x,y) < j(x,y), then f =TF.
Here =+ 1is proper subtraction: x:y =x-y if y <x; =x2y =0

otherwise.

VI. The following schema is the schema of unnested R-recursion:

£(x,0) = g(x)

f(x,y) = nhlxy f(xt(xy))) if y #0;
t(x,0) = 0

t(x,y) R ¥ if y#£ 0 .

If f, g, h, and t satisfy these conditions, we say that f is

obtained from g, h, and t by unnested R-recursion. As before the
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schema is non-effective. It may be replaced by the following effective

schema:

f(x,0)

g(x)

h(x,y,f(x,[R:t(x,y),¥])) if vy # O.

f(X:Y>

VII. The following schema is the schema of R-annihilation:

m(0) = O
m(y) = 1+m(t(y)) fer y #0 ;
t(0) = 0

t(y) Ry for y#0

If m and t satisfy these conditions, we say m is obtained from
t by R-annihilation. This is a special case of unnested R-recursion;
as before, the schema may be replaced by an effective schema. If
t%(y) is the n®™  iteration of t(y), then m(y) is the smallest

n such that t%(y) = 0. Thus m(y) is a number large enough to

"annihilate t(y) by iteration"; hence the terminology.

VIII. The following schema is the schema of R-annihilation with a

parameter:
m(x,0) = 0
m(x,y) = l+m(x,t)x,y)) for y # 0O;
t(x,0) = 0
t(x,y) R y for y# O.



1k

If m and 1t satisfy these conditions, we say that m is obtained
from t by R-annihilation with a parameter. This schema is also a
special case of unnested R-recursion and may be replaced by an effec-

tive schema.

IX. The following schema is a schema of nested R-recursion:

£(x,0) = g(x)

f(X:y)

A for y#0 .

Here A is a term built up from the variables x and y, constants,
given functions gl,...,gr, and f. Furthermore, every occurrence
of f in A is of the form £(B,[R:C;y]). This schema is effective;

the corresponding non-effective schema is the following:

£(x,0) = g(x)
f(x,y) = A for y # O;
C R y for y # O.

Here A' is a term built up from the variables x and y, constant,
given functions gl,..,,gr, and f. C ranges over all terms such
 that f(B,C) appears in A'. As usual, we say that f is obbained

from g,gl,...,gr by nested R-recursion.

X. The following schema is a schema of nested n-fold recursion:
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f(x,o,..'.,O) = g<x)
f(x,yl,...,yn) = A for (yl,...,yn) # (0,...,0).
(Cl’“.’cn> <I‘—leX(yl’.“’yn)

for (yl,o,o,yn) # (0,...,0).

Here A 1is a term bullt up from the variables x,yl,...,y_Il constants,
previously given functions gl,...,gt, and f. (Cl’°"’cn) ranges
over all n-tuples such that f<B’Cl’°"’Cn> apﬁears in A. This is
a non-effective schema; as before, it may be replaced by an effective

schema. As usual, we say that f is obtained from g, OERREPY - by

T
nested n-fold recursion.

Note that the schema of explicit definition is equivalent to
the two schemas of composition and explicit transformation in the
sense that a class of functions is closed under explicit definitions
if and only if it is closed under composition and explicit transforma-

tions.

E, the class of elementary functions, is the smallest class

of functions containing addition and exponentiation as initial
functions and closed under explicit definitions and limited recursion.

(This definition of E is used by Grzegorczyk on page 18 of [ 4].)

P, fhe class of primitive recursive functions, is the smallest

class containing addition as an initial function and closed under

explicit definitions and primitive recursion.
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U(R), the class of unnested R-recursive functions, is the

smallest class containing addition as an initial function and closed
under explicit definitions, primitive recursion, and unnested

R-recursion.

Remark: The functions in U(R) are all recursive, even if R 1is
not a recursive relation. To see this, simply consider the Godel-
Kleene-Herbrand definition of the class of recursive functions (via -
equations); the equations in the schema of unnested R-recursion
determine f wuniquely and hence do not lead outside of the class

of recursive functions.

A(R) is the smallest class containing addition as an
initial function and closed under explicit definitions, primitive-

recursion, and R-annihilation.

AP(R) is the smallest class containing éddition as an
initial function and closed under explicit definitions, primitive

recursion, and R-annihilation with a parameter.

N(R), the class of nested R-recursive functions, is the

smallest class containing addition and clesed under explicit

definitions, primitive recursion, and nested R-recursion.

Nn’ the class of nested n-fold recursive functions, is the

smallest class containing addition and predecessor as initial functions
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and closed under explicit definitions and nested n-fold recursion.
(Predecessor is included as an initial function so that primitive
recursion will be a special case of nested n-fold recursion.)

The relativized notions, E(fl,a..,fr), P(fl,..,,fr),
U(R:fl,.,.,fr), A(R:fl,..,,fr), AP(R:fl,g.o,fr), N(R:fl,,,.,fr),

f as

and Nh(fl’°'°’fr) may be defined by simply adding f,...,f

initial functions in the above definitions.

Definition: R' is embeddable in R if there is a primitive recursive
R'-R order isomorphism of the natural numbers into the natural numbers;
i.e., a primitive recursive function e such that for all yi and yé,
if yi R’ yé, then e(yé) R e(yé). We also assume without loss of

generality that e(0) = 0. Note that if R' 1is embeddable in R,

then IR'I < ]R . We will use variables vy, yys yé,.;a to range over
the natural numbers viewed as elements of a set well ordered by R,

variables y', yi, yé,n.. to range over the natural numbers viewed

as elements of a set well ordered by R'.

Theorem 1. TIf R' is embeddable in R, then N(R') €N(R) and

- U(R') < U(R).

Proof: Special Case: Assume there is a function e' in TU(R) such

that e'(e(y')) =y" for all y' and e(e'(y)) =y' if e'(y) # O.

We will prove that N(R') < N(R); the proof that U(R') C U(R) is a
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special case of the former argument. We must show that N(R) is closed
under nested R'-recursion. Hence let f' be obtained from functions

g 8008, of N(R) by nested R'-recursion; i.e.

£'(x,0) = g(x)

I

£f'(x,y') = A for y' # 0;

where C R' y' if y' #0 and C appears in a term f'(B,C) which
appears in A. The idea of the proof is to use e and e' to effect
a change of variables, perform the recursion in R, and then change

variables back. Hence define f by

f(x,y) = ' (x,e'(y)) -

Then

' (xy') = flx,e(y')) .

Let Al result from A by replacing y' by e'(y). Then

f(x,y) = £'(xe'(y)) = A if e'(y) # 0

Il

g(x) if e'(y) = oO.

‘ Let A2 result from Al by replacing each term of form f£'(B,C) by

£(B,e(C)(12(12e"(y)))). Then

£x,5) = A,  if e'(y) #0;

= glx) if e'(y) =o0.
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Since C R' &¢'(y) dimplies e(C) Ry, this is a nested R-recursion.
Hence f € N(R). Hence f'e N(R).

Now let us consider the general case. Let I be the set
of all numbers of form (e(y’),y'> . L is a primitive recursive
set; 1l.e. L has a primitive recursive characteristic function.

Now define the well ordering R" as follows:

1) The elements of L precede the elements not in L.
2) The element <e(yi),yi)> precedes the element

<e(Yé)JYé)> if yi R' yé (or equivalently, if
e(y]) R e(y3))-

3) The elements not in I are ordered among themselves by < .

Then R" 1is a primitive recursive well ordering of the natural numbers
with order type |R'| + w.

| By the special case, N(R') ¢ N(R"). We must show that
N(R") < N(R); i.e., we must show that N(R) is closed under nested
R'-recursion. To this end choose g, SERREE) -9 from N(R) and let

T be obtained from them by nested R"-recursion; i.e.

f(X)()) = g(x)
f(x,y') = A for y" % 0;
and CR'y" if y" #0 and C appears in a term £(B,C) which

appears in A. Define fl by
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£ (6y") = £(xy")  if ¥ eI
= 0 ir y"' £ L.
Let Al result from A by replacing y' by vy and each term
f(B,C) by h(B,[R:cl(C),y]). Here c; is the pairing function:
i.e., cl(< aﬂa)) = a. Then
h(X)O) = g(x)
hix,y) = Al for y % 0

is a schema of nested R-recursion. Furthermore, by induction on . y",
£f(x,y") = hixc (3")) for y' e L.

Hence f, € U(R).

Now let L(x) ©be the characteristic function of IL; i.e.

L(x) = 1 for x € L

]
&)

for x ¢ L.

Construct A2 from A by replacing each term f£(B,C) by

£(B,C.(1=n(C)))(1=1(C)) + fl(C)'L(C) .




is a schema of nested <-recursion. By the corollary to theorem 7
below, N(R) is closed under nested <-recursion. Hence f € N(R)
a5 was to be shown. The proof that U(R ) ¢ U(R) is a special case

of the above argument. This completes the proof of theorem 1.

Corollary: N(R,) ¢ N(R) X R;) and U(R;) CU(R, X Ry) for i=1,2.

N(R) ¢ N(R*) and U(R) C U(R¥).
Theorem 2. N = N(< ).

Proof: This follows from the fact that the n - place pairing functious
éive an order isomorphism between n-tuples of natural numbers under
the reverse lexicographical ordering and the natural numbers under the
ordering <n' Hence a nested n-fold recursion can be converted into

a <ﬂ-recursion and conversely.

L1

Theorem 3. AP(R) = U(R)
Proof: Must show that AP(R) is closed under unnested R-recursion.
Let f Dbe obtained from functions g, h, and t of AP(R) by

urnested R-recursion; i.e.,

£(x,0) = g(x)
f(x,y) = h(xy,f(x,t(x,5))) for y # 0;

t(x,0) = 0, t(xy) R ¥ for y # O.
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We must show that f € AP(R). Obtain m from t by R-annihilation
with a parameter. Then

m(x,0) = O

m(x,y) = 1+ m(x,t(%,¥)) for y # O.

Then m € Ap(R). Define F Dby

F(X)y;O) = g(X>

F(X:Y)n+l) = h(X)y)F<X7t(X:y):n)) .

Then F is obtained by primitive recursion and so F € AP(R). But

by induction on ¥ (in well ordering R),

P(x,y) = Flxy,n(xy))

Hence f € Ap(R) ac was to be shown. This completes the proof of

theorem 3.

Remark: The importance of theorem 3 is that it shows that the power

of well orderings lies in how slowly previouslyAdefined descending

sequences descend.

Theorem 4. U(<n) = P for n = 1,2,35e+ =

Proof: By theorem 3 it is enough to show that Ap(<n) = P. Hence

it suffices to show that P is closed under <n—annihilation with
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a parameter. To this end, choose +t € P and let m be obtained

from t by <n-annihilation with a parameter; 1i.e.,

m(x,0) = O
m(X)Y) = 1+ m(X:t(X)Y)) for ¥y % 0;
t(x,0) = 0, t(x,y)<ny for y # O.

We must show that m € P.

Any ordinal <& < W may be written as a polynomial
a = w "a +oees ot owEg + ey
define the i-tail of Q@ to be the ordinal given

For i=0,1,...,n,

by the polynomial
e+ ..+ wha, .

The concept of i-tail may be mirrored in the natural numbers; i.e.,

in the well ordering <n the ordinal « 1is represented by the

natural number y = <?O’al""’an-£> . We may define the i-%ail

of y to be the natural number <(),O,...,O,ai,...,an_l ) -

Now define the kth iteration of *t:

t(0;x,7) = ¥

t(k+l§XJy) = t(XJt(k;X;Y))

Then

n(x,y) = wk(t(k;x,y) = 0) .




2k

The sedquence

t(O5X)Y)) t(l5x)y)J t(gfx)Y))°°°) t(m<x)Y)§XJY)

is a descending sequence in the well ordering <n; the sequence
formed by taking i-tails of the members of this sequence is non-
'ascending.

For each 1 =0,1,...,n we define a function M, = Mi(j,x,y)
having the following property: if Mi(j,x,y) = k then either there

are at least J+1 distinct di-tails in the sequence

t(05XJY); t(l5x;Y); t(25X:Y);°°-; t(kEX)Y)

or else t(k;x,y) = O. This is done as follows:
My(drx,y) = ]
Mi+l(0,x,y) = 0
Mi+l(j+l,x,y) = Mi(c(n,i,y)+l,x,y) +

+ Mi+l(j:X)t<Mi(C(n;i)Y)+l§XJy))) o

Recall that c(n,i, <yi,...,ykl>) = ¥ Then the first term on the
right side of the last equation insures that the beginning of the
sequence has at least c(n,i,y)+1 distinct i-tails and hence at least
2 distinct i+l-tails. The second term insures that the rest of the

sequence is long enough for J+l1 distinct di+l-tails. Hence the whole

sequence has at least Jj+2 = (j+l)+1 distinet i+l-tails.
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Clearly each Mi is primitive recursive. Now
m(X)Y) = uk S Mn(X)Y)l)(t<k§X)Y) = O) .

Hence m € P. This completes the proof of theorem L,
Theorem 5. If < X R is embeddable in R, then A(R) = AP(R) = U(R).

Proof. AP(R) = U(R) is theorem 3. A(R) C AP(R) is obvious. Hence,
all that needs be shown is that A(R) is closed under R-annihilation

with a parameter. Choose t € A(R) and let m De obtained from t

by R-annihilation with a parameter; i.e.,

m(x,0) = O
m(x,y) = l+m(x)t(X;y)) for ¥y 7é 03
t(X)O) = 0, t(X)Y) Ry for y 7& 0.

We must show that m € A(R). We do this by tucking in the parameter.

Define t' by

t'( {x,0%) (0,07 = 0
£ ( <X;y /) = \\xyt(x)y) > .

1

Then t'(w) <XR w if w # O. Define m' from t' by - <XR-
annihilation; 1i.e.,

m'(0) = O

1+ m' (" (w)) if w %<O,

m' (w)

|
|
i
|
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m' ({0,yy) = m(0,y)

' ({ 2,y ))

m(x,y) + 1 if x 7é 0.

Hence m € A( <XR).

We now show that A(< X R)<ZA(R). Since < X R is
embeddable in R, it follows by the argument of theorem 1 that < X R-
annihilation can be replaced by unnested R-recursion without a

parameter in t; ie., a schema of form

£(x,0) = g(x)
£f(x,y) = hixy,f(x,t(y)) for y # 0;
£(0) = 0, tly) Ry for y # O.

By the argument of theorem 3 this can be replaced by R-annihilation.
Hence A(< X R) < A(R).

Hence m € A(R) as was to be shown. This completes the

proof of theorem 5.

Corollary. A(Qh) = u(q. ) .

Proof. For n =0, A<Qh) = U(Qn) = P. Hence assume n > 0. We

: n
must show that < X Q is embeddable in Q. ]th = w . Consider

the map ¢ defined by

e(k,0) = wxt+ k
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n
where k< w and < w” . Then if the pairs (k,a) are given the

reverse lexicographical ordering this gives an order isomorphism from

n

the pairs (k,) where k < w and a< w’  onto the initial segment
n

determined by W . We mirror this map in the natural numbers; i.e.,

let ©(x) be the ordinal corresponding to x in the well ordering

Qh. Define e by

o(e((kx)) = elko(x))

Then < 1is a primitive recursive < X Qn - Qn order isomorphism.
Hence < X Qh is embeddable in Qh' This completes the proof of

the corollary.

Lemma. U(R) is closed under the schema

£(x,0) = &(x)
f(x,y) = n(xy,f(r(xy),t(xy))) fory #0;
t(x,0) = 0, t(x,y)R¥ for y # O.
Proof. Define F by
F(x,y,0) = g(x)
F(x,t,n+41) = h(x,y,f(r(x,y),t(x,y),n))

This is a primitive recursive schema.' Define m from t Dy
R-annihilation with a parameter. Then by induction on y in the

well ordering R
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f(x;y) = F(X)y)m(x;y))'

This completes the proof of the lemma.

Theorem é. N(R) & U(R*) .

Proof. We must show that U(R¥) is closed under nested R-recursion.
To this end choose g, gl;...,gr from U(R¥) and let f be obtained

from them by nested R-recursion; i.e.,

£(x,0) g(x)

A for y # O

f(X;Y)

where every f-term {.e., term whose initial symbol is f) of A is
of the form f(B,R:C,y). We must show that f € U(R¥).

Let us consider the computation of f(a,b) for particular
numbers a and b where b # O. We first construct a variable free
term Al from A by replacing x and y by a and b respectively.

We construct An+ from An as follows: we examine the right-most

1
f-term of A . Let it be f(B,[R:C,d]) where d is a constant.

B and C contain no occurrences of f and therefore may be evaluated.
If [R:C,d] = 0, we construct An+l
by g(B); if [R:C,d] # O, we construct A,

from A Dby replacing f(B,[R:C,d])
1 from An by replacing
f(B,[R:C}d]) by the result of substituting in A +the values of B

and [R:C,d] for x and y respectively. We get a sequence of terms

satisfying Al = A2 = ... . Some Am. will contain no occurrence of f; -
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the value of that A  is f(a,b). The idea of the proof is to assign
an ordinal <|R¥| +to each term Ai in such a way that the associated
sequence of ordinals is decreasing. We arithmetize the computation via
godel numbers, mirror the assignment of ordinals in R¥, and are thus
able to define f by an unnested R¥-recursion.

We call a term a variable free term if it contains no

numerical variables, an evaluable term if it is variable free and

contains no occurrences of f, a reducible term if it is variable

free and not evaluable (i.e. has at least one occurrence of f).
For each reducible term D, let D+ be the term which results from
D by applying the reduction described in the previous paragraph;
ie., A; is A,

For every natural number k, let (k) be the ordinal <|R]|
corresponding to k in the well ordering R. Let g be the number
of occurrences of f in A. To each variable free f-term f(B,[R:C,b])

|R]

where b is a constant assign a non-zero ordinal O < W as follows:

a = w’q where v =0v([R:C,b]) if C is evaluable;

o (P) if € 1is reducible.

To each variable free term D assign an ord(D) as follows: Let
Fl""’Fs be all the occurrences of f-terms in D in order from
left to right; i.e., Fs is the rightmost f-term of D. (If the

same f-term appears twice in A it appears twice in the list.) Let

Qi""’as be the assigned ordinals. Then
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%E(D) = al#""#as

Here # denotes coordinate wise addition; i.€.,

(oo v olay + o B Pay+ ) = e

+ wB(dl+d2) +oaes

. . . -+
. Claim: If D is reducible, then ord(D") < ord(D)-.

Let '°"Fji"°' be the f-terms of D+ in order; here
j=1;...,8 end 1% l,...,tj. (The terms Fji for 1 = 1,.oc,tj
of D+ are those which arise from the‘terM"Fj' of " D.) Let 'Cjk be the

ordinal assigned to Fji' Recall that D+ results from D by

replacing F which is of the form £(B,[R:C,b]) by a term U,

if [R:C,b] =0 and U results from A Dby

where U is g(B)

replacing x and ¥y Dby B and [R:C,b] respectively if [R:C,bl # O.

I

1, F. is F.,

If F. does not contain F_, then %,
J s J J1 J

Case 1.

and O., = Q..
J1 J

T

If Fj properly contains Fo then tj =1, and Fjl results

Case 2.

from Fj by replacing F_, by U. Fj is of the form f(Bl,[R:Cl,d]);

is evaluable, then 02

v(d)
w Z ajl.

F., 1is of the form f(BZ,[R:CE,d]). If Cy

1s‘ Cl and ajl = aj. Iif Cl is reducible, then aj

Case 3. The remaining case is j = s so that Fj is FS. Either

[R:C,b] # O, in which case tj = 0, or else [R:C,b] # O, in which

case tj =q and Fsl""’qu are the f-terms of the term resulting

from A by replacing x and ¥y DY B and [R:C,b] respectively.
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In this latter case each F_, is of the form f(Bi,[R:Ci,[R:C,b]]).

If Ci is evaluable,

A 0
(04 = <
si ©d @
where A = D([R:Ci[R:C,b]]) and v = vo([R:C,bl)
Iir Ci is reducible, then asi = . Hence, since at least one FSi
. , L _
is evaluable, we have asl#°"#asq <wg = as° Hence,
+
= oo < oo = . hi

ord(D") Oil# #asq Oi# #as ord(D). This completes the

proof of the claim.

Now for each term D, let "D" be its godel number. Let red

be the primitive recursive function satisfying

3 o+
red("D") = "D if D 1is reducible;

="p" otherwise.
Let ord be the primitive recursive function which mirrors ord; 1i.e.
D*(Ol‘d(inD" )) — Ol‘d( .”D” )

where v*(k) is the ordinal corresponding to k in the well ordering
R¥. TLet sub be the primitive recursive function such that sub(a,b)
is the godel number of the term which results from A by replacing x
and y by a and b respectively. Let Vél be the function, primitive

, such that

- recursive in g, SEEREFI-H

val("D") = D if D is evaluable;

= 0 otherwise.
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Define m so that

Il

m("D",y) 0 if D is evaluable;

]

1 +m(red€ﬁf%[R*iord(red("D")))Y])

if D is reducible.

By the lemma immediately preceding this theorem, m € U(R¥). Let
m(w) = m(w,ord(W)). Then m("D") is the number of reductions required

to make D evaluable. Let red(n;w) be the n™ iteration of red(w);

i.e.,
red(O;w) = w
red(n+l;w) = red(red(n;w)) .
Then
£(x,0) = g(x)
f(x,y) = val(red(m(sub(x,y));sub(x,y)))) if y # O.

This completes the proof of theorem 6.

Theorem 7. N(< ) C;U(Qh) - for n=0,1,2,...

n+l’ —
Proof. The idea is the same as in theorem 6; only the method of

assigning ordinals is changed.

Let f be obtained by nested <n+l—recursion from

2 gl:"')gr; i.e.,

£(x,0) g(x)

f(x,y) A for y # O;
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where every f-term of A is of the form f(B,[<n+l:C,y]). As before
let g be the number of occurrences of f in A. ILet h be a

primitive recursive function such that
2, /. . . .
0< qh(i) < n(y) for i < j .

Such an h may be given by h(0) =1, h(k+l) = qgh(x) + 1.

Define functions @l and P mapping the initial segment
n+l W'
determined by w into the initial segment determined by w as

follows: For a< wn+l write O = wB + b where B < w' and b < w.
Then
_ B
(@) = Fn()
s = w h( .

The important facts are that

(%) o () < @a) and

($$) . op(@)(a-1) + 0, (0)a < o,(a)

for y< o< wn+l .

For each natural number k let wv(k) be the ordinal number

+
<wn * corresponding to k in the well ordering <m+l°

To each f-term f(B,[<n+l:C,b]) where b is a constant

assign a non-zero ordinal & as follows:
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a = o (o(l<,,:¢,0])) if C is evaluable;

= 9,(0v(b)) if € is reducible.

n
To each variable free term D, assign an ordinal ordl(D) <

as follows: let Fl’“’"’Fs be the f-terms of D in order. Let

a

5.0.,0  be the assigned ordinals. Then
1 ]

ordl(D) = Oi#’7°#as .
Claim: TIf D is reducible, ordl(D+) < ord (D)

be the f-terms of D' (§ = 1,...,85° i = Lyveesty)
and let «.. be the ordinal assigned to F... (The terms F., for
Ji JT Ji
i=1,.0.,t. of D' are those which arise from the term Fj of D.)
Recall that D+ results from D Dby replacing FS which is of form
f(B,[<n+l:C,b]) where C is evaluable by U where U is g(B) if

[< b] =0 and U results from A by replacing x and y by

0
n+l" 7’
B and [<

1 :CoP]  respectively if {<n+l:C,b] # 0.

Case 1. If F., does not contain F , then +t. =1, F, is F.,
J S J Jl J

and C.. = O,
Ji dJ

Case 2. If Fj properly contains FS, then tj =1 and Fjl results

from Fj by replacing F_, by TU. Fj is of the form f(Bl,[<n+l:Cl,d]);

: < . Y
F.. is of the form f(BE,[.n+l,02,d}). If ¢

31 is evaluable, then 62

1

. — . J > 3 = { >
is Cl and aj ajl Iif Cl is reducible, then Oﬁ ¢é(u(d)) > ajl

vy ($).
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Case 3. The remaining case is j =s so that F, is FS. Either
: = i i = < : i

[<n+l ¢,b] = 0 in which case 1t 0 or else [ o+l ¢,b] #0 in

which case tS =q and Fs""’qu are the f-terms of the term

resulting from A by replacing x and ¥ by B and [<n+l:C,b]

respectively. In this latter case, each Fsi is of the form

f(Bi,[<n+l:Ci[<n+l:c,b]]). f ¢, is evaluable,

N @, ([<41:C3[<041:CP11) -

If Ci is reducible,

a .
s1

9,([<_,1:C,01)

At most g of the Ci are evaluable, and since at least one Ci is

evaluable, at most g-1 of the Ci are reducible. Hence,by ($$)

ves < .
oCsi# #asq Ozs
Hence
+
ordl(D) = all#"'#asq < al#...#as = ordl(D)
This completes the proof of the claim.

The rest of the proof proceeds exactly as in theorem 6.

Corollary: N(R) and U(R) are closed under nested 1-fold recursion

(i.e. nested <-recursion).

Proof. Let f De obtained from functions g,gl,...,gr by nested
<-recursion. Then T € N(<;g,gl,...,gr). By relativizing the previous
theorem, f € U(<;g,gl,...,gr). By relativizing theorem L,

f e P(g,gl,...,gr). "But N(R) and U(R) are closed under the



36

primitive recursive operations. This completes the proof of the

corollary.

Definition. Let

£(x,0) = g(x)

f(x,y) = A for y #£ 0
be a schema of nested R-recursion. The schema is called essentially
unnested if every f-term of A is of the form f(B,[R:C,y]) where

neither B nor C contains an occurrence of f.
Theorem 8. U(R) is closed under essentially unnested R-recursion.

Proof. Let f be obtained from functions g,gl,...,gr of
£(x,0) = g(x)
£(x,y)

We must show that f € U(R).

Il

A for y # O.

We say that a term D is essentially unnested if no

occurrence of f din D is within the scope of some other occurrence
of f; for example, A is essentially unnested. For any variable
free, reducible, essentially unnested term D, define D>< as follows:
let Fl""’Fs be the f-terms of D. Each Fi has the form
f(Bi,[R:Ci,bi]) where b, is a constant. Iet U, De g(Bi) if
[R:Ci,bi] =0; let U, result from A by replacing x and ¥y

by B, and [R:C;,b;] respectively if [R:C,,b,] #0. Then D°
results from D by simultaneously replacing each Fi by Ui'

As before define wv(k) to be the ordinal corresponding to

the natural number %k in the well ordering R.
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e free, essentially ynnested term D,

Now for every variabl

assign an ordinal ord,(D) < |R| Dby
ordE(D) = max(D(R:Cl,bl)+l,...,D(R:CS,bS)+l) .

e +1 is added SO that ordQ(D) -0 if D 1is evaluable and

ordg(D) # o if D is reducible.

Claims: If D is reducible and essentially unnested, then DX is

‘stenbiallywunpés%ed and QEQQ(DX) < ordg(D)°

The claim follows 1mmediately from the definitions. The rest of the

proof proceeds a8 sn theorenm 6.

Theorem 9. U(R¥) < NOR) -

proof. It suffices to show that Ap(*) c W<R);  i-e€e) that  N(OR)
Choose T € N(<R)

is closed under R*—annihilation with a parameter.

R*—annihilation with a

and suppose M is obtained from t by
parameter; i.€o
m(x,0) = ©
M(x,y) = 1 F m(x,t(x,y)). for v # 05
t(x,0) = 05 t(x,y) R¥ y for ¥ # O
m-e N(<OR)-

We must show that
w o jteration of t(x,y); 1-e

et t(k;x,y) be the

£(0;x,y) = ¥

H(k+1;%,Y) = £(x,t(k3%,5)) -
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Then m(x,y) = upk(t(k;x,y)=10). . Hence, our problem is to find a

function of N(<XR) which bounds m(x,y).

Recall that |R¥| = wlRi, Thus an ordinal o < |R¥| may
be written as a polynomial:
O = ... + wﬁb + oo
where |[R| > ... >B> ... and O0<b<w For ordinals < |R¥|

and 7y < ]R] we may write

B

(%) A = oo + Wb+ e+ de + e

where R> ... B<y <3 ... and O0<b,d<w and O0<c<w

The y-tail of & 1s the ordinal given by the polynomial
ces + wBb +we .

Further define
_E(Oﬂ,’)') = B

a+ 1

Q(O!,’)’)

Let v*(y) be the ordinal corresponding to the natural number y in
the well ordering R¥. Let v(u) be the ordinal corresponding to
the natural number wu in the well ordering R. We let 1t mirror ¢

in the ordinals; i.e.

tlksx,0%(y)) = ox(t(k;x,y))

Let S be the following sequence or ordinals:
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3(053{:@)7 E(l;XFCX)) 3(253{:0‘))”"; E(k;x,O&)o

Let S(y) be the sequence which results from 8 by taking y-tails.
Then S is strictly descending (so long as it is nom-zerc) and s(y)
is non-ascending.

We will define a function M(x,0,J,y) such that if
M(x,0,3,7) = k = 1 + the length of § then either (1) there are
J+1 disbtinct elements of S(y); i.e., in the non-ascending sequence
S(y) strict inequality occurs J times; or else (2) t(k;x,a) = 0.

M can be given by

M(X,Ol,j,O) = J
M(X)O@O:?’) = 0
M(Xyayj"'l)?') = M{X;O‘;_C;(O‘:?’): E(O@?’ )}

+ _I_/-[{x; t(M{X;a,’Q(O‘;)’)a 13_(0597)}.;:’{;0‘);357} .

Since the O-tail of o 1is « itself, the sequence s(0) is the
same as §; hence strictiy descending as long as it is nozn-zero.
Therefore the first equation above is sufficient. To produce O+l =1
distinet 7y-tail, one need only take the sequence S to be of length
0+1 = 1. Hence the second equation above suffices. The last equation
says the following: to get Jj+1 distinct y-tails we first get d+2
distinct ®-tails. (See (%*)) For each change in the O-tail, either
the coefficient of w6 decreages or the ©O-tail changes. But the
coefficient of wa in a is d = 9(0,7) - 1; d can be forced at

most d times and then the y-tail must change. Hence the first
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term on the right in the last equation insures at least one change
in the 7y-tail. The second term merely instructs us to produce J
more changes in the y-tail of the result.

Let M = M(x,y,j,u) mirror M = M(x,0,3,7)5 1e€e;
M<X;Y:j}u) = M(XﬂJ*(Y))j)U(U—)) .

gimilarly let B and ¢ mirror B and C:

l

B(y,u) B(v*(y), v(u))

1l

c(y,u) clo*(y), o(u)) -

{learly B and C are primitive recursive in R (and hence primitive

recursive. Furthermore

M(X;y;j;o) = J
M(X)Y)O)U-> = 0
M(X;Y:j"'lyu) = M{X)Y>C(Y)u):B(Y>U~)} +

+ M{x, t(M{X)Y}C(y)U-) JB(YJU-)};}j )U-} °

Tf we write M(%,¥; <§,u> ) = M(x,¥y,J,u) and make appropriate
changes in the above equations we have an instance of nested <XR-
recursion (the variable J is a recursion variable in <; the variable
u is a recursion variable in R.). Thus M € U(<R) -

et B = p(a) be the largest exponent appearing in the

=

polynomial for C. Let b = p(a) be the coefficient of w .

Reasoning as before, there can be at most b+l distinct Pp-tails in
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the sequence S. Hence if k M(x,a,gfl,a), (1) must fail; hence

(2) must hold, i.e., t(k;x,0) = 0. Now let b = b(y) mirror

b =Db(a); i.e.,

o(v*(y)) = olbly)) -

Let B = B(y) mirror B = B(a); i.e.,
B(v*(y)) = vo(B(y)) -

Then

n(x,y) = nk < M(x,3,0(y)+1,B(¥)) (m(;x,y) = 0)
Hence m ¢ N(<X®R) as was to be shown. This completes the proof of
theorem 9.

Corollary. u(q ) < N(<

SRS n+l) for n :Ao,l,z,.oo .

Theorem 10. If <XR is embeddable in R, then N(R) = U(R¥).

Proof. Thecrems 1, 6, and 9.

Theorem 11. Nn+l = N(<n+l> = U(Qn) = A(Qh) n=0,1,2,c00

Proof. Theorems 2 and 7 and the corollaries to theorems 5 and 9.

Theorem 12. If < is embeddable in R, then U(R) % N(RX<)o
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Proof. We will in fact sketch the construction of a function F in
N(RX<) which enumerates U(R); i.e., for every function f € U(R)
there is a number w such that for all X peeesX, (f is n-ary)
F(w, <Xl,°“,xn) ) = £(xy,...,x ) . Tt will then follow by the
usual diagonalization argument that F ¢ U(R).

Since < 1is embeddable in R, primitive recursion can be
replaced by unnested R-recursion via the techniques of theorem 1.
Hence U(R) may be defined as the smallest class of functions con-
taining a certain set of (primitive recursive) functions as initial
functions (i.e., addition and those required to make the translations
of theorem 1) and closéd under unnested R-recursion, composition,
and explicit transformations.

Now notice that there is éxactly one schema of unnested
R-recursion, but there are infinitely many schemata of composition
(one for each pair (n,m) where m # O; namely the schema which
composes an n+l-ary function with an m-ary function to get an
min-ary function) and there are infinitely many schemata of explicit
transformation (i.e., one for each explicit transformation).

We number these schemata in such a way that the following

two conditions are satisfied:

(1) Threre are primitive recursive functions C and C such that
1 2

if 2z 1is the number of the composition schema which composes an

n+l-ary function with an m-ary function, then
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Cl(Z} <Xl;oao,xn, yl)nco)ym >’u) = Qxl,n-o:}xn)‘u>

and

CZ(Z’ <Xl""’xn’ yl}"“)ym)) = <yl)“‘)ym> o

(2) There is a primitive recursive function E such that if =z
is the number of the explicit transformation Xl,,.,,xnzgl,.,.,gm,

then
E(z, <3<l,...,xn>) = <§1"“’5m7 .

At this point it is easy to write down the definition of

F; we leave the details to the reader.

O
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THE EXTENDED GRZEGORCZYK HIERARCHY

For each 1limit ordinal ordinal Qme , we define a function
aln] so that the sequence «[0], of1], af2],... is a strictly in-
creasing sequence of ordinals with limit <. To do this write

k+1 w . .
a=w (B+l) where Kk > O and B< w . (This can easily be done
by writing «a as a polynomial in ® and factoring out the highest

common power of wo) Then set <aln] = wk+lB + mkn .

The W TFunctions:

For each Q<ww define a function Wa as follows:

Wo(x) = 2*
Wy, (x) = (1), i-e.
Wa%l(o) = L Wo%l(x+l) - wa(wd%l(x>)5
Wa(x) = Wa[x](x) for @ a limit ordinal.
In other words, Wa%l is obtained from Wd by iteration; and, 1f <

is a limit ordinal, Wa is obtained by diagonalization. We gshall use

the notation Wg(y) quite frequently; note, for example, that
Wy (1) = Wy (o)
For each o<w”  define Ea as the smallest class of functions

containing addition and Wa as initial functions and closed under
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explicit definitions and bounded recursion. Equivalently, E_ = E(W_),

a

the class of functions which are elementary recursive in W’a°

The Extended Grzegorczyk Theorem:

(1)

(2)

If a<p, then E, &F
If a<pB, then Ea;éEB .
N = UEa(oKwn) .

n

The proof consists of ten lemmas. For B < w”  define the

maximum coefficient of B, in symbols, maxcoeff(B), as follows:

write

B = wnbn'+ eoo + wbl + by;  then maxcoeff(B) = max{bo,bl,,,,,bn}.

Lemma 1:  Propertics of the W Functions

(3)

(%)

Proof

x < Wa(x) .
W (x) < W (%) it o= oy and B< ot (n=0,1,2,...)
a = Noup ’ s s R R

Wa is strictly increasing.

for x > maxcoeff(B) and B<a, WB(X) < Wa(x) .

of (1). By induction on «.

- . X
Case 1. O = 0. C(lear, since x < 2.
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Case 2. Assume (1) for «; will prove it for o+l by induction on
x. If x=0, Wd%l(x) - 1> 0. Suppose X< Wd%l(x). Then

< . i i ot i <W .
x+l < Wa%l(x) By induction hypothesis on &, WO%I(X) Wa(wo%l(x))

Hence, x+1 < wOHl(x) < wa(waﬂ(x)) = wa+l(x+1).

Case 3. O is a limit ordinal. Then by induction hypothesis'on C,
(1) holds for o[x]. Hence, X < Wa[X](X) = Wa(x)o This completes

the proof of (1).
Proof of (2). By induction of B. We assume Wa is increasing.
Cage 1. B = 0. Clear.

Case 2. Assume (2) for B. If x = 0, then Wa(x) =1= WO%B+1(X)°

If x # 0, then by (1), x <W (x—l)° Hence,

o+B+1
(%) < Woz(woc+6+l(x'l)) < wa+6(woc+13+1(x'l)) = Won+6+1<x)
Case 3. B is a limit ordinal. Since B < wn+l, a + Blx] = (o#p)lxl.
Hence, by induction hypothesis, Wa(x) < w%a[x](x) = w<a+5>[x](x)
= wa+8(x).

Thig completes the proof of (2) under the assumption that Wa is .

increasing.
Proof of (3). By induction on G

Case 1. o= 0. Clear.

oc+b(x*
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Case 2. Will prove (3) for a+l. By (1), W_ .(x) < WOé<WOA+l(X>)

O+l
= Wa+l(x+l), Hence, (3) follows by iteration.
. . . . n+l,
Case 3. & 1s a limit ordinal. Write O = w (a'+1). Take
x <y. Then olx] = Pt 4 s = wiwa' + x); oyl = o Wy =

= o (wt + x) + 0Ny - %), By induction hypothesis, Wa[x] is
increasing. Hence by (2), Wa(x) = Wa{x](x) < Wa[y](x)u By induction
hypothesis, Wa[y] is increasing. Hence, Wa[y](x) < Wa[y](y) = Wa{y)u

Hence, Wa(x) < Wa(y),

This completes the proof of (3) and also of (2).

Proof of (4). By induction on «.

Case 2. Assume (4) for «; will prove it for oO#l. Then, Wﬁ(x) < Wa(x).,

By (2) (with n = 0), Wa(x) < Woz+l(x}° Hence, WB(X) < Wa_!_l(x)u
Case 3. ¢ 1is a lim_it ordinal with PB < . Write
B = wr'”bn +“o+wk'+lbk+l + wkbk#, cetwb, + by -
a = w'a $+° . °+;)k+lak+l (where a1 >0) ;
ax] = w a + “+u)k+l(ak+l - 1)+ W

Since B <, either B <o[0] < a[x] or B =0[0], in which case

B<alx] since x> maxcoeff(B) > b Thus, by induction hypothesis,

=
ws(x) < wa[xj(x) = wa(x)o
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This completes the proof of (4) and hence of lemma 1.

Roughly speaking, Wa(x) is strictly increasing in x
for fixed «Q, and under certain cornditions is non-decreasing in
O for fixed x. In the sequel we use these properties without
explicitly referring to them.

Our next aim is the Bounding Lemma. It says that every function

f e Nn is bounded by some Wa with o< w'. (A constant must be thrown
in to compensate for large values of f for small arguments.) In order

to carry through the proof, we generalize slightly the councepts of

term and nested n-fold recursion.

Definition of term (tc be used in a definition by nested n-fold

recursion): Take the following primitive symbols:

(

[N
~—~

constants (i.e., numerals) 0,1,2,... .

ii or each =1,2,3,... , & list o -ary function
(ii) f r k =1,2,3, list of k functi

(k))

(letters) ..., g

(iii) variables x, Yyseees¥y (ranging over the natural numbers).

(iv) the nt+l-ary function (letter) f and the n-ary function

(letters) R SPE RPN

(v) (notations for) addition, multiplication, and the functions

IO,Il,Ig,ooo defined by

I, (%)

Il
-
e
L]
qu

I
=

[P
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For simplicity we will use the same notation for a function
letter and a function assigned as a value of that function letter.
More generally, we shall not use distinct notations for a term (a
linguistic object) and the value of that term (a number). The dis-

criminating reader will keep the distinction in mind.

Terms are defined inductively:
(T1) a constant or a variable is a term.

(12) if h is an m-ary function letter and A A~ are

l,ooa,

terms, then h(A

l,u,.,Am) is a term.

(T3) if B, ClseeesCy 15C ~ are terms, then

k
.
21‘ fi(B’Ci’°°°’Cn~l)°Ii(Cn)
i=0

is a term (for each natural number k).

(T4) only those things are terms as required by (T1)-(T3).

Now we define inductively the depth and length cof a term.

(DL1) 4if k is a constant, depth(k) = 0; length(k) = k.

(p12) if =z is a variable, depth(z) = length(z) = O.

(DL3) 4if h is an m-ary function letter and Al,ooo,Am- are
terms, then
depth(h(Al,,.o,Am)) = 1+ max{depth(Al),,,,,depth(Am)} ;

length(h(Al,n,o,Am)) = 1 +m+ max{length(Al),;o«,length(Am)}.
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(pLk) if B, Ciseee5C _1,C ~ are terms, then

k
k
depth Zi, fi(B,Cl,...,Cn_l)'Ii(Cn) = depth(f(B,cl,..,,cn_l,cn));

q =

O

length

[>T

fi(B,Cl,...,Cn_l)-Ii(Cn) = length(f(B,Cl,oo.,Cn_l,Cn)).
0

Il

i

A schema of nested n-fold recursion (n = 1,2,3,...) is a

set of conditions

f(x,0,...,0) = A"
f(x;le"’:yn) = A for (le°°°)yn) # (O)"'JO);
and for every term of form f(B’Cl"°°’Cn) which appears in A

(ClJ°°'JCn) <r—lex(yl""’yn) for (Yi;:)'yn) % (0,...,0).

Here x 1is the only variable appearing in A° and f does. not

appear in A°, Recall that <r is the reverse lexicographical

-lex

ordering on n-tuples.

Lemma 2: Explicit Definition Bounding Lemms

Let A Dbe a term. Let D = depth(A), L = length(A). Suppose s,

a, and & satisfy

S
oo < coe
h(ul, ,um) < wa(ul + o+ a)
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for every function h appearing in A. Let ZyseeesZ, be all the

variables appearing in A. Then

s+L
A < wg ( +°“+Zr+a) .

“1
Proof. By induction on the structure of A.

Cagse 1. A is a constant k. Then D =0, L =k, and the lemma

follows from

k < wg(o) .

This last inequality is an obvious consequence of property 1 by

induction on k.

L = 0. The lemma follows

Case 2. A is a variable x. Then D

from x < X.

Case 3. A is h(A

I

\ _
A ). Let D depth(Ai), Li—length(Ai)a

1o
Let K = maX{DlS+Ll’°°°’DmS+Lm}° Let J range over D, s+L.

(i =1,...,m). Then, by induction hypothesis,

A < .. ,+wg( 7 etz t2) 4. 4a)
< WE((wHL) Wo(zy e v otz ta))
< W (24 otz _ta))
< WS 2tz )

_ s+m+1+K
= W, (zl+,o,+zr+a) .
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(The transition from the second line to third line above follows from
(m+1)-x < WI(;HJ‘(X)° This is easily proved by induction on m and the

fact that Wo(x) = 2%,) But

K

INA

(max{Dl,,,,,Dm})~s + maX{Ll,a..,Lm}

(D-1)+s + L - (m+1).

Therefore
s+m+1+K < Ds+ L.
Therefore
s+L
A < Wg (zl+..°+zr+a)°
k
Case 4. A is i§ fi(B,Cl,.,,,Cn_l)vli(cﬂ). Then for i = 1,...,k
D = depth(A) = depth(£(B,Cq,-..,C, 15C )
> depth(fi(B,Cl,.o.,Cn_l))
and
L = length(A) = length(f(B,Cl,aan,Cn_l,C%))

> length(f, (B,C,000,C 1)) -
Thus by induction hypothesis and case 3,

. s+L
fi(B,Cl,,,.,cn_l) < wg (z +°°.+Zr+a)

1

for 1 =1,..0,ko

But for some i = 1,...,Kk,

°

A < fi(B,cl,.,,,cn_l)
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Hence

s+L
A < wg (zl+...+zr+a) .

This completes the procf of lemma 2.

Lemma 3: 1-fold Recursion Bounding Lemma

Tet
f(x,0) = A%

f(x,y+1) = A

be a nested 1-fold recursion. Suppose O and a satisfy
g(ul,o..,um) < Wa(ul+..,+um+a)
. . . 0

for every function g, other than f, occurring in A or A . Then

f(x,y) < Wa+2(x+y+K)

where K = DO4L0+D+L+a+7; D = depth(Ab), 1° = lengtn(a®),

D = depth(4), L = length(A).

Proof. Define f, (k = 0,1,2,...) by

fk(x) = f(x,k) .

The idea of the proof is this. fk is obtained from fo,oon,fk_l,
(and other functions) by explicit definition. We will use lemma 2
and inducticn on k to prove lemma 3.

For k =0,1,2,... let Ak result from A Dby replacing

y by k and every term of form f(B,C) occurring in A by




5k

k
£
24 fi(B)°Ii(C) .
i=0
Then
o
fo(x) = A
fk_+l(X> = A
Let L, = 1ength(Ak), Define H by
(o) = p° +1°
H(k+1) = D-H(k) + L, -
Note that depth(Ak) — depth(A) = D. Then by lemma 2 and induction
on k
H(k) (.
Now

H(k)

But Lj <L+

- DX(D%:1°) + ol 4 DAL

1 2+“°°+DLK—1 + Lk .

< (L+2)J+l° Hence by the tinomial theorem,

Now note the following:

H(k) < (00+10+1) (p+142) 5+
< (DO+LO+D+L+3)k+2 = (K-a-u)k+2 ’
b+w+C
ow+c < 2 = Wo(b+w+c)

p o+ c < 220 = Wylbwie) < W%(b+w+c) .
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Hence

x+a+Hy) < x+a-+ (Kra-H)y+2 < Wg(x+y+Kr2) .

Thus

£(y) < W) (xra)

< W 0, Gere)

= W, (x+a+H(y))

< wa+l(wg(x+y+1<:-2)

< W (W (W (x+y+K-2)))

Q1 "ol o2

= 7
Ma%g(x+y+K) .

This completes the proof of lemma 3.

Lemma &: n-fold Recursion Bounding Lemma

Let

f(%,0,...,0) = A
f(x’yl’“”yn) = A

be a nested n-fold recursion. Suppose « has form wnylﬁ and that

o and a satisfy a > maxcceff(a) and
g(ul,ouo,um) < Wa(ul+o..+um}a)

. . . o]
for every functior g, other than f, occurring in A or A.
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f(x,yl,,,.,yn) < Wa+wn—12(x+yl+°,¢+yn+Kn)

where Kn = DO+LO+D+L+a+6+n; DO = depth(AO), LO = length(Ao),

D = depth(A), L = length(4).

Proof. The idea of the proof is this. Define fk (k= 0,1,2;0,0)
by

fk(xile°°°Jyn_l) = f(-XJle""“)yn_l}k) o
Then fk 1s obtained from fo,oao,fk_l (and other functions) by
a nested un-1 fold recursion. Thus the proof will be by induction

on 1.
Cage 1. n =1. Lemma 4 is lemma 3.

case 2. Assume lemma 4 for n-1 (n =2,3,4,...); will prove it
for .
Let Ak result from A by replacing v, by k and every

term of form f(B,C Q,Cm_l,Cn) occurring in A by

l’oo

k

zszi(B’“l’°°"Cn—l)oli(c )
i=0

Let Ai result from Ak by replacing each vy (i = l,.,,,ﬁ—l) by 0.

Then each of the pairs of eguations




J
"
S
o7
e}
fo(x,O,,oo,O) = A
fo(x}yl)""Jyn_l) = AO
o
fk+l(x,0,,o.,0) = A
fk+l(x’yl’.“’yn—l) = Ak+l (k = 0,1,2,...)

is a nested n-1 fold recursiocun.
(@]
Let L, = length(Ak) (= length(Ak)). Note that

depth(A, ) = depth(AE) = depth(A) = D. Define H by
(o) = »° + I°+D+L.+a+6+(n-1) H

0]

H(k+1) = D + L+ D+ I+ Hk) + 6 + (n-1)

Claim.

fk(x,yl,,,.,yn_l) < Wb%wn_22(k+l)(x+yl+°°°+yn—l+H(k>)‘

We prove the claim by induction on k. For k = O this is simply

the induction hypothesis (on n). Assume the claim for i < k; will

prove it for k+1. Since H(i) < H(k) for i = 0,...,k, we have by

induction hypothesis (on k) that

fi<x’yl’°'°’yn-l) < Wa%wn—EE(k+l)(x+yl+u..+yn_lfH(k)),

for i =0,...,k. Also, since a < H(k) and «a is of form Koy
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cee < Fooo
g<ul’ ;um) < Wa(ul+ umfa)

Wd%wn-QE(k+l>(u1+,..+umfﬂ(k))

0
ever unetio t a . curri i or .
for v func n g, no n fl, occurring in Ak Ak+l

Hence, by induction nypothesis (on n),

fk+l<x’yl"°°’yn-l) < WO%uP_QZ(k+2)(X+yl+°°°+yn—l+H(k+l)}°

This completes the proof of the claim

Now Lk <L+ k. Hence, by the definition of H(k+l),

H(k+1) - H(k) < E(Kn_l+k) +1 .

This, together with H(0) =X, 4. implies that

2
< o
H(k) < (K _;+k)
Note that for c >4, b+c = 2 = wo(b+c). Hence,

X+yl+°°°+yn—l + H(yn) < WO(X+yl+°°°+yﬂ-l+yn+Kn-l) .

Hence, by the claim and since oy +1) < Wty +eo ooty +K_ ),
n -0 1 n n-1"7":

f(X,yl,,no,yn) < Woat (WO(X+yl+°°°+yn+Kn—l))

< n-
< W0t (W

o +wh'l+l(x+yl+f°°+yn%Kn—l)>

= wa+wn'l+l(x+yl ou,+yn+Kn_l+l)
< 3 "o 0 0 o
< Wa+wn_12(X¢yl+ +yn+Kn)
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This completes the proof of lemma 4.

Lemma 5: Bounding Lemma

If f € Nn’ there exist a < wn and a natural number a such that

f(Zl"'°’Zr) < Wa(zl+o..+zr+a) .

Proof. By induction on the definition of f.

Case 1. f is an initial function. Then either f(x,y) =x +y or

f(x) = x-= 1. In either case take & = a = O.
Case 2. f 1is obtained by an explicit definition; i.e.,

f(Zl,-.»,Zr> = A

where A 1is a term built up from previously obtained functions,
constants, and the variables Zireess e By the induction hypothesis
and the properties of the W furctions, we may choose an ordinal

B<wn and a constant b so that

g(ul,..a,um) < Wﬁ(ul+.°.+um}b)

for every function g appearing in A. By lemma 2 there is a natural

number K such that
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£(zyennrz,) < Wglz

o

l+.oo+zr+b)

IN

B+l(Zl+ooo+Zr+b))

w5+1(Z1+°°°+Zr+b+K> .

Hence take O = p+1 and a =b + K.

Case 3. f is obtained by a nested n-fold recursion; i.e.,
f(X)O)°‘°JO> = g(x) 5

£(26,5,,0005¥,) = A if (yps--09,) # (050.0,0)

By induction hypothesis and the properties of the W functions, there

is an ordinal B<wn and a constant b such that

Wl 1 - 2
”\ul,ooo,um) < WB(al+ooorumfb)

for every function h such that either h 1is g or h is a function

occurring in A other than f. Clearly we may also choose B and b

so that B is of form wn—lﬁ'o Then, by lemma 4, we have a coamstant
K such that

f<X;yl)o°°)yn) < W6+wn_12(x+yi+noa+yn+K) .

Take a =K and O =P+ w“"lz .

This completes the proof of lemma 5.
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Lemms 6: Honesty Lemma

w . . .
For each O<w  there 1s an elementary recursive function V. and a

constant B, such that if t > Wa(x+Ba), then
Wa(x) = Va(x,t) .

proof. The motivation of the proof is this. The function Wa is

honest in the sense that its complexity is reflected by the magnitude

of its value. (The characteristic function of a complicated recursive

gset would be dishonest, for example,) More precisely, there is a
Turing machine Za which computes Wa such that the length of the
computation of Wa(x) is bourded by some monotonic elementary
recursive function fa of the value Wa(x%Ba)o Hence we may define
Vv, 8O that Va(x,t) — the number represented on the tape of Z,
if it is starbed with input x and stops within fa(t) steps.

We now proceed to the gory details. Let a satisfy

a < W, Define a n+2-ary fuanction W by the condition

W(XJyo}yl" e )yn) = WB(X)
if B = Wy Fe..twy,E
= Yteee Y1t
Then
X
(1)  w(x,0,0,...,0) = 2
<2> W(O)yo'*‘l:yl) oo °:yn) =1
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(3) W(X+l;y FL, Y 000,y ) = W(W(x,y +Ly Y 00y ))y PNABREEEN )
0 1 n 0] 1 n 0’71 n

(4) W(X;O)°°°)OJO:yk+l)yk+l;°°°)yn) =

= W(X’O’"°°’O’X’yk’yk+l’°°°’yn) for k =1,...,n0

This, of course, is a nested n+2-fold recursion.

We now construct a Turing machine Z +to compute W. - For
convenience, we give Z a semi-infinite tape to the left. Z has the
two tape symbols / and ¥ and other tape symbols to compute o as
indicated below. For each constant k, k shall denote the tape word
consisting of Xk+1 repetitions of /; i.e., 0 is /, 1 is //,

2 is ///s etc. % will be used for punctuation. Then the word

XXy ¥y, *... ¥y, ~represents the n+2-tuple (X’yO’yl’°°°’yn)° To

- compute WXﬂbmipowﬂﬁ, give the machine the input y@&yfhmﬁ%

and start it at the left end of that word. Z performs a complete

cycle as follows:

(al) If 2 starts the cycle at the left end of a tape word of form
X¥O%0%, . . ¥0 (n+l 0's), it replaces that word by gx and goes to the
left end of it. Note that a machine which replaces x by g? need

use no more than %41 (i.e., the length of gx) tape squares. To

do this, auxiliary tape symbols are needed.

(a2 If Z starts the cyele at the left end of a tape word of form

Q*zof;%gl*ono*yn, it replaces that word by 1 and goes to the left

end of it.
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(a3) If 2 starts the cycle at the left end of a tape word of form

x+l%10il%zl*..,*z

o> 1t replaces that word by —*Y:+l*ll*°°°*ln*¥o*¥1*

«oo¥y and goes to the left end of it.
=n

(ak) If 2 starts the cycle at the left end of a tape word of form

zfg*,.,Q*Q%Zki£*2k+l*.,,%zn (k =1,...,n), it replaces that word

by 5*9*'°°*9*§*¥k*2k+l*°°°*zn and goes to the left end of it.

The machine repeats these cycles until no more occurrences
of * are on the tape, at which point it stops.
We now define the function 2:'2(X’y0’yl’°°°’yn) = the

number of tape squares used by Z vwhen it commences its computation

at the left end of the input word zfzole*..,*zn ; dl.e., Z is

the amount of tape used in the computation of W. Then

(vl) 7(%x,0,0,...,0) = max{2%+1, x+1+2(n+l)} .

(2%+1 is the length of 2%; x+1+2(n+l) is the length of x¥O%0%...%0.)
(b2) Z(O,yo+l,yl,,,,,yn) = (yo+l)+yl+.o.+yn+25+3

(.e., the length of O¥y ¥ L¥y *. 0 ¥y ).

(b3) E(X+l}yo+l;yl;°°°)yn) = maX{Z(X:yo+l)yl)°'°7yn) +
+yo+yl+..,+yn+2n+2, E(W(x,yo+l,yl,,aa,yn),yo,yl,,.,,yn)] .

(bn) Z(X)O;°°°)O:O)yk+l;yk+l}°°°ﬁyh) = Z(XJO}°’°JO}XJyk)yk+l)°°°7yn>

(k =1,...,n).
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Now for each B < wn+l define a Turing machine 2 to

g

compute WB as follows: write B = wnbn Fooot wbl + bO. Then ZB

tekes an input x, replaces it by §*§O*§l*.oo*gn , and then acts

like Z. Let ZB(X) be the amount of tape used by Z to compute

B
WB(X)} i.e.,

iﬁ(x) = E(X’bo’bl’“°"bn> .
Define BB by

BB = b0+b1+°°'+bn+2n+3 o
Then
(cl) ZO(X) = max{2X+l,x+BO} ;
(c2) 26,1(0) = Bg,,
(e3) ZB+l(x+l) = max{zs+l(x)+Bﬁ—l, ZB(WB+1(X))} ;
(ch) Es(x) = EB[X}(X) for B a limit ordinal.
Also

BB+l = Bﬁ + 1

BB[X] = BB -1+ x for B a limit ordinal.

Now we prove some inequalities.
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(a1) 27+1 < wo(x+BO) ; x+By < WO(X+BO) .

B+1 = WB+1(BB+1> )

(a3) (i) wB+l(x+Be+l)+BB-l < WO(W6+1(X+BB+1))
S Mgy (etl4Bg L)
(i) WB(WB+1(X>+BB) S We(Wg, (x+Bg,,))
= WB+1(X+1+86+1)

(ak) wB[x](X+BB[XJ) = WB[X](X+B6—1+X)

IA

Wﬁ[x](WO(X+BB-l))

N

W)+ (25p)

IN

+
WB[X+BB](X Bg)
= W +B B
plxtBg)
Claim. Za(x) < WB(X+BB)
Prove the claim by induction on B.
Case 1. B = 0. Claim follows from (cl) and (dl1).

Case 2. Assume claim for B; will prove it for B+1 by induction
on x. Claim for x = 0, follows from (c2) and (d2). Claim for x+1

follows from claim for x, (c3), and (d3).
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Case 3. B a limit ordinal. Claim for B follows from claim for

Blx], (ck), and (4k).

This completes the proof of the claim.

Now we construct Vd and fa“ Define the function Zg
as follows: Zg(x) = the number of operations performed by the
machine Z, (until it stops) if it is started at the left end of the
input word x. Then if p is the number of tape symbols and g is

the number of states in Za 5

- 7 - _
Zg(x) < geZep where Z—Za(x) .

Indeed, the expression on the right in the inequality is simply the
number of instantaneous descriptions of Za with tape length Ea(x);
if one of these were repeated in the course of the computation, the
machine would go into a loop and never stop.

Now define f, by fa(t) = qstopt. Then £, is elementary

recursive and

* -
z¥(x) < f£,(t) for t>W,(x+B,) .

Now define U, as follows: Ud(x,r) = the number (if any)
represented on the tape of Za after r operations, the machine
starting at the left end of the input word x. Then Ud(x,r) = wa(x),

if r> 7%(x) . Ud is elementary recursive and we may define Vd by

v (xt) = U (x,£,(t)) -
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This completes the proof of lemma 7.

Lemma 8. Wopn £ E, 5 hence, E, # E6 for a< B.

Proof. Godel number the functions of Ea, We will construct an
elementary recursive function K such that if f is a godel number

of f € Ea ’

Wg(i)(ul+,.,+um)

IN

f(ul,,.,,um)

Wd%l(ul+.,.+ume(£)) .

K is constructed by induction on the defirition of f and lemma 2.

Case 1. f is an initial function of E, ; i.e., f(x,y) =x +y
or f(x) = Wa(x)o In the former case K(f) = 0; in the latter case

K(f) = 1.
Case 2, f 1s obtained by a composition:
f(ul,,oa,um) = A.

Let s be the maximum of X(g) where g ranges over the functions
appearing in A. Let D = depth(A); L = length(A). Then by lemma 2,

may take k(i) = Ds + L.

Case 3. f 1s obtained by limited recursion:

£(x,0) = &(x)



f(x,y+1) = h(x,y,f(x,¥y))

f(X:Y) < j(X)y> .
Take K(f) = K(j).

Suppose wd%l € Ea. Then the function F € @1 where

F(x) = (x+K(x)) + 1 .

W1
Let F be a godel number of F. Then
F(x) < Wd%l(x+K(£)) +1 .

Hence,

F(F) < ®E) ,

a contradiction. Since wa%l € E‘3

E, # EB . This completes the proof of lemma 8.

Lemma 9. W, € Nn for a< w ; hence, Ea < Nn for o< w

04
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for &< B (by lemma 7), we have

Proof. For %k = 0,1,2,... define a function yk by the condition

Ek(x’ yo}yl) °ee Jyn_g) = wﬁ(x)

_ n-1 . n-2
where B = w "k +w yﬂ_2+,,.+ wyy + Vor
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Then each W _€ Nh ; indeed, for n = 2,3,3,¢.

X
Wy (x,0,0,...,0) = o*
_W_O(O)YO+lJle oo }yn_g) = 1

Ho(X+l)yO+l}le°°°)yn_2> =

= EO<EO(X’yO+l’yl’°°°’yh—2)’yl’°°°’yn—2)

KO(X:O:°°°:OJO)Ym+lJym;°°’)yh_2) =
¢ = EO(X,O,.,,,O,x,ym;yﬁ+l,.oo,yn_2) for m=1,...,0-2
and

Ek+l(x,0,...,0,0) = wk(x,o,u.,,O,x)

Ek+l(o’y0+l’yl’°°°’yn—2) = 1
Ek+l(x+l)yo+l)y11 eoe Jyn_e) =

= W (W TGt T e e ¥ 0 ) Vs ¥yse e oV, o)

wk+l(x’o"°°’O’O’ym%l’ym+l’°°°’yn—2) =

= Ek+l(x,0,ooo,O,x,%ﬁym+l,,,uyn_2) for m=1,.0.,0-2
while for n =1
: x
Eo(x) = 2
T j—
T (00 = 1

By (1) = W (1, ()




Thus EO is defined by a nested n-fold recursion; Hk+l is defined
from Hk by a nested n-fold recursion. Hence, each Hk € Nnc Let
_ n-1 n-2
a = W k + w an_2 +ooot wal + aq .
T = ceo . 3 € . This com
Then Wa(x) Kk(x,ao,al, ’an—2) Hence, W, € N is completes

the proof of lemma 9.

Lemma 10. It f € Nﬂ, then f € Ea for some O > w .

Proof. Sinceal\Tn = A<Qh-l) by a theorem of the previous section,

we prove lemma 10 by induction on the definition of f as a function

of A(Q, ;)
Case 1. f is an initial function; i.e., f(x,y) = x + y. Then
f € Ey.

Case 2. f is obbained by an explicit definition; 1.e.,
f(ul,..,,um) = A.

Ry induction hypothesis and lemma 7 there is an O < mn such that

g € Ea for every g occurring ia A, Thus £ € Ea°
Case 3. f 1is obtained from g and h Dby primitive recursion; iee€ey

£(x,0) = &lx)

£(x,y+1) = h(x,y,f(x,y)) -
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By induction hypothesis and lemma 7, g, h € Ea for some O < W'

By the proof of lemma 8, we may select a constant K so that

g(x) < WO%l(X+K)

hix,y,z) = wo%l(x+y+z+K} .

But the schema defining f is a nested 1-fold recursion. Hence by

lemma 3, there is a constant b such that

f(x,y) < Wd%S(x+y+b) .

Then, since g,h € EO% by lemma 7 and f 1s obtained from functions

3

by limited recursicn, f € E

in Ey, 03

3

Case 4. f =m where m is obtained from t© Dby Q%—l_ annihilation;

i.e.,

n(y) = wpx[tf(y) = 0]

where t(y) Qh—l y for y % 0O and t(0) = 0. Here tk(y} is the
>kth iteration of t(y); i.e., to(y) =y and tk+l(y) = t(tk(y>}o
Alsc p is the {unbounded) least number operator. By induction
hypothesis, t € Ea , for some O < W' . Hence, by lemma &,
teN = A(Q,n_l)° Hence, m € A(Qn_l) = N . Hence,by the bounding
lemma,

m(y) < WB(y+b)

where B < Wt We may alsc suppose that o#3 < B. Define

ty) = t5(y) .
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By case 3 and lemma 7, % € ES' But
m(y) = upk < Wﬁ(y+b)[j;(k,y) = 0] .

Since the bounded least number operator is an elementary recursive

operator, m € K This completes the proof of lemma 10.

B
This also completes the proof of the extended Grzegoresyk
theorem: (1) is lemma 7; (2) is lemma 8; (3) follows from lemmas

9 and 10.

Remark. The special case of the extended Grzegorczyk theorem obtained
by setting n =1 is essentially theorem 4.13 in [ 4 ]. Hence, the

title.
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APPLICATIONS TO COMPUTATIONAL COMPLEXTTY

A rather natural measure of the complexity of a recursive

function is the length of the computation of that function. This

length of computation is again a function; i.e. if f = f(x) is
a recursive function, we may define Lf = Lf(x), the length of the

computation of f(x). L, depends on the method used for calculating
x (i.e., Turing machines, equations), the particular definition of
£, the definitipn of the length of computation, and also the notation
used for natural numbers. For example, take the Godel Kleene Herbrand
definition of the recursive functions by equations (see = Davis [21.
The notations for the natural numbers O, 1, 2,... are 0, s(0),
s(s(0)),... (abbreviated 0, 1, 2,...) respectively. For each
system of equations E. with principal function letter F defining
a function f (i.e., F(x) =y dis provable from E if and only if
f(x) = y), we may define LE(X) to be the smallest number of lines
in any proof of F(x) =y. I believe that the results of this
section would go through using this notion of the length of computa-
tion; however, I prefer the more straightforward approach via Turing
machines.

For Turing machines there are two concepts of the length
of a computation: +the amcunt of tape used and the number cf machine
coperations performed. Fix some notation for natural numbers (e.g.,

snary, binary, decimal, dyadic, etc.); for each natural number X,
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let the Word x (a word with symbols from a finite alphabet A)
correspond to x. Then the n-tuple (Xl’°°°’xn) of natural numbers
can be represented by the word gl*.n,*§n . (The notation * is
here used for punctuation; it should not be confused with the
notation Z¥ introduced below.) Then for each Turing machine Z
(whose language contains the alphabet A), we may define the n-ary
functions Z¥ and 2 as follows: z*(xl,.,.,xn) = +the number of
operations performed by 2 when it is started with input El*.on*zn

until Z  haltse 2(xl,...,xn) _ the number of tape squares used by

7 when it is started with input X ;¥...*X i.e., E(Xl,.,,,xn)

is the lengtﬁ of the longest tape word appearing in aun instantaneous
description of the computation by Z beginning with the instantaneous
description consisting of the initial state of Z, the tape word
x.%...%x_, and the initial position of Z at the left end of that

=S 2.

For simplicity we assume that all our Turing machines have

a semi-infinite tape to the right and that they start and end their

computations at the left end of that tape.

Tn order to prove the theorems pelow we must place the follow-

ing restrictions on the notation system:

(NS1) There are machines 2, and Z, computing addition and rre-

decessor respectively such that E+ and ii are elemtary recursive.
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(Ws2) length (x), the length of the word X, is an elementary
recursive function of x; hence, length(ﬁl*.oo*zp) is an elementary

recursive function Of X, jyeeerX o
1 n
(Ws3) length(x+l) 1is an elementary recursive funchbion of X

(NSk) There is & godel numbering of Turing machines such that the
function U(e,x,t) defined in lemma 5 below 18 elementary recursive.

A sufficient condition for copditions (NS1)-(Nsk) is that
there be Turing machines Zl and 22 such that Zl replaces the
unary notation for x by X and 22 replaces X by the urary
notation for X and the amounts of tape used by Zl and Z2
respectively are elementary recufsive functions of X. Thus the usual
notation systems (unary, binary, decimal, dyadic) all satisty these
conditions. The reader who wishes to ignore these subtleties mey
think of X @8 the unary notation for x.(The unary notation for X
consists of x+l vertical strokes. )

Now define for each singulary fynction T the set 9(T)
of functions T = f(xl,ano,xa) suéﬁ that there is a Turing machine
Zg which computes f and satisfies if(xl,anq,xn) < T(xl+oun+xﬂ)
for all but finltely many n-tuples (Xl’°"’Xn)° Define s%(T)
aﬁalogously. Recall that Nﬁ is the set of nested n-fold recursive
functions; recall the definition of Wa, The following theorem is

a corollary of the Extended Gzregorczyk Theorem of the last section.
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Theorem I. N = b}g(Wd) = k}S*(Wa) : (n=1,2,u003

. . . n
in both unions « ranges over the ordinals <w .)

The procf consists of five lemmas. Recall that U(R) is the set

of unnested R-recursive functiouns.

Lemma 1. For every f € U(R) there is a Turing machine Zf which

computes f such that Ef € U(R).

Proof of lemma 1. By induction of the definition of f.

Case 1. f is addition. By (NS1).

Case 2. f 1is obtained from g by an explicit transformation; i.e.,

f(xl,oao,xn) = g(gl,ooo,gm) .

By the induction hypothesis, there is a machine Zg which computes

g and satisfies Zg e U(R). Construct Zf as follows: Zf takes

an input El*,uofgn, replaces it with él*aaa*ém, and behaves like

Zgo Then Zf computes f and

.Ef(xl,noo,x )

y S 7 .
N max{lengtﬂ(gi cea En)’ Zg(gl,ooo,gm)}

Hence by (NS2) Ef e U(R).

Case 3. f 1is obtained from g and h by composition; i-.e.,

£(tysee0r¥,) = Blxpee s 8T,y )
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By induction hypothesis there are appropriate machines Zh and Zg

computing h and g respectively. Construct “Zf as follows:
Zf takes the input §l*...%§%*zl*no.%zm, moves to the left end of

the tape and acts like Z Then Z computes f and

h' f
7 e = : oo + 7 (v, e
Zo(x 500057 ) max{length(x *...*x ) 2, (v 5Y,)

Zh(xl) ceerX s g(yl’ oo °Jym)} o

Hence Zf € U(R).

Case 4. f 1is obtained from g and h by primitive recursion; i.e.,
£(x,0) = g(x)

f(x; y+l) = h(XJY; f(X; y))

By induction hypothesis there are appropriate machines Zg and Zh

computing g and h respectively. Construct Zf as follows:

Zf takes an input x¥y and replaces it by KRy *RKy - 1 ¥x ¥y -2%, . Xx¥]1*x,
Tt then goes to the rightmost x and acts like Zg° Then it goes to
the next x from the right and acts like Zhn This last step is

repeated until all *'s have been removed from the tape. Then the
machine has computed f(x,y). Recall that Z:p computes the predecessor.
Then

Zf(x,o) = max length(x¥0), Zg(x)

Z.(x,y+1) = max{length(x¥y+l¥x*) + zf(y+l),

£
length(f*&ﬂ*) + _Z—f<X:y): Eh(x,y,f(x,y))} o

Hence Z_ € U(R).
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Case 5. f 1is obtained from g, h, and t by unnested R-recursion;

i.€.,
£(x,0) = g(x)
£(x,y) = h(x,y,f(xt(x,y)) for y # 0;
£(x,0) = 0, t(xy)Ry for y # O.

n . - . 0
Let t(x,y) be the nth iteration of t(x,y); i.e., t(xy) =y

ntl n . . .
and t= (x,y) = t(x,t (x,¥)). By induction hypothesis there are
appropriate machines Zg, Zh’ and ZJD computing g, h, and t
respectively. Zf operates as follows: it takes an input XXy

. .0 roser L v il o =1

and replaces it by x¥*t (x,y)*§*t (x,y)%§*t (X,y)*,ooﬁg*t (X,y)%gfg

(here m is the least =n such that tﬁ(x,y) = 0). Then it erases

the last O and replaces the rightmost x by g(x). Then it goes

to the next x from the right and acts like 2 This last step

ho

is repeated. Zf computes f and

Zf(X,O) = max{length(x*0), Eg(x)}

Zo(x,y) = max(length(xéy¥e*) + Z,(x,y), length(xry*) +

+ Zf(x)t(x;Y)>; _Z-h(X:Y)f(X;t<X;y)>>} for y 7é 0.

Hence Z, € U(R).

This completes the procf of lemma 1.
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Lemme 2. For f € N there is a < w" such that
e 0 e < PR i e 3 e __.t.,. <
f(Xl: ’Xr> S Wa(xl+ +Xr) for all but finitely many r-tuples

(Xl,,“,xr)°

proof of lemma 2. By the Extended Gzregordzyk theorem f e EB for
some P < Wt By the proof of lemma 8 in the previous section there

is a K such that
f(xl,ae,,xr) < W6+l(xl+ao,+XT+K)

for all Xx PRI But for X sufficiently large

1

wik < 25T = W (x-1) < Wgp(x-1)
Hence

W’B+l(x+K) < WB+1(WB+2(X—1)) = w6+2(x)

for x large enough. Heunce we may take O = P+2. This completes

the proof of lemma 2.

Temma 3. If f € Nn’ then f € §(Wa) for some O < W

Proof of lemma 3. Recall that Nn = U(Qn-l)° Hence by lemma 1 there
is a machine Zf which computes £ such that if € Nn° Then by lemma

2 f €‘§(Wa) for some O < 2 . This completes the proof of lemma 3.

Lemma k4. é(wa) C S*(WO%l)
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Proof of lemma 4. Choose f € §(wa), Let Zp compute T and
satisfy

7 <

Zf(xl, ’Xr) < Wa(xl+ +Xr)

for all but finitely many r-tuples (Xl,.oo,xr)° TLet p be the
nunber of tape symbols in Zf and let q be the number of states.
Then quw is the number of instantaneous descriptions of Zf with

tape length w. Thus for all but finitely many r-tuples (Xl,oo,,xr),

o W _ ] ]
ZfW(xl,o..,Xr) < gwWp where W = Wa(xl+..o+xr) ;

for if an instantaneous description were repeated in the course of
the computation, Zf would go into a loop and never stop.

Por w large enough,
2
o’ < W) < W) .
Tor x large enough

x < WO(X—B) < WO%1<X—3) .

Hence for x large enough
B () = W) < Wi (x3)) = Mg, ()
(02NN a - ot oL Qi+l

Hence for Xl+°°°+XT large enough

7 < .
Zf(xl, ,xr) < woc+1(xl+ +XI‘)
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Hence f € S*(Wa%1>' This completes the proof of lemma k,

Lemma 5. S*(Wa> < E, -

Proof of lemma 5. Godel number the Turing machines and define the
elementary recursive function U by setting U(e,x,t) = the number
represented on the tape of machine with godel number & when started
with input x 1f it has halted within t or less operations;
U(e,x,t) = O otherwise. This can be done because of (Nsk). Then

for f € s*(wa) there exist e and k such that
f(x) = U(e,x,wa(x)+k)) .

The case where f has more than one argument is no different. This

completes the proof of lemma 5.

Lemmas 3, 4, and 5 together with the extended Gzregorczyk

theorem imply theorem I.

Corollary 1. As « ranges Over the ordinals <w® and e and k
range over the natural numbers, U(e,x,wa(x)+k), as a function of

X , ranges Over all the singulary functions of Nn'

Corollary 2. Nn is the smallest class containing T  and the functions

n ~ . .
Wa for o< w and closed under the elementary recursive operatbions.
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Corollary 3. Nﬂ+l contains a function which enumerates Nn" (To
(To prove corollary 3, note»that the function W defined by

n-1 . s
W(x,yo,aoo,yn_l) = Wa(x) where O = W yn-l+'°'+y0 is in
Nn+l°>

Theorem I suggests other methods for constructing hierarchies.

For example, define functions Vn by

where V = Vn(x)°

Theorem II. E = \) g(Vn>
n

) s*(v,) -

The proof consists of the following five lemmas.

Lemma éo For every f € E there is a Turing machine Zf which

computes f and such that 2f € B,

Proof of lemma 6. By induction on the definition of f. The only
place where the proof differs from the corresponding part of the
proof of lemma 1 1is the case where f 1is obtained from g, h, and
J by limited recursion; i.e.,

£(x,0) = &(x)

£(x,y+1) = h(x,y,£(xy))

f(x,y) < J(X;Y) .
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Construct 2. from %2, Z , and Z_ as in lemma 1. Then
f g h D

2f(x,0) = max{length(x*0), Eg(x)}
'z'f(x,y+1) = max{length(x¥y+l¥x*) + Ep(yﬂ), length(x*y+l%) +
+ Zf(XJY): Eh(X:Y)f(XJY))} .

Recall that E 1is closed under bounded summation. Define

L(x,0) = length(x*0) + Zg(x)
i:ii§:Y>

length(x¥y+1¥x¥*) + Zp(y+1) + zr(x,;y‘,i) .

il

L(x7y+l)

Then

Zf(x7o) S L(X;O)

Zf(x,y+l) < L(x,y+1) + Zf(x,y) .

Hence by induction on ¥y

Hence Ef is defined by a limited recursion. Hence Zf € E. This

completes the proof of lemma 6.

Lemma 7. If £ € E, then there is a k such that

cos < oo
f(XlJ )Xn) — Vk(Xl-F +Xn)

for all but finitely many n-tuples (Xl,ooo,xn),




8k

Proof of lemma 7. By induction on the definition of f.

Case 1. f is addition. Take k = O.

Case 2. f is exponemtiationot Take k = 2.

Case 3. f 1is obtained from g by an explicit transformation; i.e.,
f(xl,ooa,xn) = g(gl,...,gm) .

By induction hypothesis
g(yl,n.,,ym) < wi(yl+°°'+ym)

for all but finitely many m-tuples (yl,o,.,ym) . For xl+°,,+xn

large enough
Eqteoove S Vl(xl+ +Xn>

Since the former inequality fails at most finitely often, we may

take k = i+l.

Case 4. f 1is cbtained from g and h by composition; i.e.,

f<Xl’°°°’ym> = ]ﬁ(Xl}"“:XR) g(yl)““:ym)) °

Then by inducticn hypothesis (with finitely many exceptions)

h(xl,oo,,xi,z) < Vr(xl+°’°+xn+z)
and

glyyseeesvy) < V(ypreeoty)
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Since Vr(x+VS(y)) < Vr(Vs(X+y)) = Vr+s(x+y), we may take k = r+s.

Case 5. f is obtained from g, h, and J by limited recursion.
Then ~ f(x,y) < j(x,y). Hence we may find k by the induction
hypothesis on J-

This completes the proof of lemma 7.

Lemma 8. If f € E, then f € §(Vn) for scme n.

Lemma 8 follows immediately from lemmas 6 and 7.

- — ]
Lemme 9.  S(V,) < S¢(V_,p) -

The proof of lemma 9 is similar to the proof of elmma ks note that

qvp’ < V,(v) for v sufficiently large.

Lemma 10. s*(vn) < E.

The proof of lemma 10 is similar to the proof of lemma 5; note that

Theorem II now follows from lemmas 8, 9, and 10.
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THE KLEENE SUBRECURSIVE HIERARCHY

In this section we will characterize Nn in terms cf the

i

subrecursive hierarchy of Kleene [7 1. The idea of the proof is

not unlike the idea of the proof of the extended Grzegorczyk theorem;

the reader should also comﬁare it with a similar theorem in Axt [1].
As a first step we simplify our definition of Nna If

X '

f(x) 1) ; i.e.,

I

g

£(0) = 1

f(x+l) = g(£(x))

then we say that f is obtained from g by 1-fold iteration.

Suppose the operation of n-fold.iteration is defined for some n > 1.

Let f, = fO(X’yO’yl’°"°’yn-2) be obtained from g € g(x) by n-fold

o)
iteration. Suppose fk = fk(x’yo’yl’°°°’yn—3’yn—2) is defined; let
o

£, = fK(X,O,O,Duo,O,x) and let £, = fk+l<X’yO’yl’°°°’&ﬁ—2) be

obtained from fE by n-fold iteration. Then we say that the function

f defined by

f(X;yO;yl;°-°7yn_27Y) = fy(X’yO’yl’°°°’yn—2)

is obtained from g by n+l-fold iteration.

For n > 2 the equations defining f from g by an n-fold

iteration are

f(X,0,0,.j.,O) = g(X)

f(o’y0+l’yl’°°°’yn—2) = 1




f(x+l,yo+l,yl,.,,,yn_2)

f(x,O,...,0,0,yj+l,yj+l,,..,yn_g)

= £(x,0,.++,0, %Y 5V
Define wk by
EK(X,yo,yl,,..,yn_2) =
where o = oK+ wn—Eyn—z

(See lemma 9 of the section on the extended Gr

Then WO is obtained from BX

obtained from wk
Hence, n-fold iteration

iteration.

: . n
the functions Wa for o< w . Hence,

of the last section,

Theorem. N
S n

ynder the elementary recursiv

Tn order to define the Kleene
is necessary to give an indexing (i.e.
functions of P(V) where
recursive in the binary function V.

indexing, I wi

by n-fold iteration and wk+l

e operations and n-
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f(f(x,yo+l,yl, oo ;yn_g) I AR 7yn_2)

)

+l’°°"yn—2

o)

+oeee oWy, T Vg

zegorczyk theorem. )

is

by an explicit transformation and n~-fold

is powerful enough o obtain all

by a corollary to thebrem 1

is the smallest class containing addition and closed

fold iteration.
subrecursive hierarchy, it

, a godel aumbering) to the

p(v) is the set of functions primitive
Rather than give & particular

11 list the properties which the indexing must have
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in order that the theorem below go through. I will state these

properties as I need them.

Now for each o< w” define the binary function Vd as

follows:
(1) Voloy) = x4y 1
(2) Vd%l( <?l,.a.,x%> ,£) = f(xl,oo.,xr) if f is an index

of the r-ary function f of P(V,); Vd&l(x’£> =0 'if f ‘is not

an index of any function in P(Vd)o

/ - o .
(3) Va(x, \n,£> ) = Vd[n](x,i) for O a limit ordinal.

Hence, V., is a universal function for P(Vd) and  V,

is a uwniversal function for g!inwa[n]) for & a limit ordinal.
Define Pa = P(Vd), the set of functions primitive recursive

in V., -

Characterization of l\TVl via the Kleene Subrecursive Hierarchy:

(1) 1If a<p, then P, P

5 -

(2) If a<p, then By # Py -

3) m ={J)r, a<st.
a

04
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Proof. We prove (1) by induction on P. The case g = is trivial.
Assume O < B + 1 and that (1) holds for P. Must show that

Ru c P P, € Py by 1nducﬁlon hypothesis. VB € P6+l is

B+1° TQ B _
obvious. Hence P5 < P5+l° henceA Pa < P§+]_“ Hence (l) holds
for P+l. Finally suppose that & <B, B is a limit ordinal, and
that (1) holds for all B' < p. Then choose n such that O < Blal < B.

Clearly, Vﬁ[n] € P(VB). Hence PB{n]<§}PB. By induction hypothesis,

qu;:PB[n}’ Hence P& PBo This completgs the proof of (1). ]
To prove (2) note that Vd%l € PB by (1), oubt Vd%l % Pa |

by the usual diagonalization argument. |
The proof of (3) consists of two lemmas. If

Va(<3ﬁjeoo,x£> ,2) = f<Xl’°°"Xr>’ we say that f 1s an Q~index

of f.

Lemma 1. For each n =2,3,... there is a primitive recursive function

S

I such that 1f O = w'-gﬁ , & is an O+l-index of g, and f 1is

obtained frem f by n-fold iteration, then In(g) is a O+ W e

©

index of f.

Proof of lemma 1. We impose some conditions on the indexing in order

to prove the lemma.

Property 1. O is an index of V; 1 1is an index of .addition.
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Property 2. Let A De a term built up from functions gl’""’gr’
constants al,..,,as, »and variables X1’°"’Xm° Then there is a
primitive recursive function S’ depending on the structure of A
such that if gl,;,,,gr are indices of gl"”’gr respectively,

then f = S<§l’°°°’§r’ al’°'°’as> is an index of the function ¥

defined by

f(xl,ee.,xm> = A.

Property 3. There is a primitive recursive function I such that
if g 1is an index for a function g and if f 1s obtained from g
by 1-fold iteration (i.e., f(x) = g%(1)), then f = I(g) is en

index of fT.

Property 4, Each primitive recursive function has an index which is
an O-index for every a > 0; i.e., if f = f(xl,.oa,xr) is
primitive recursive, then there is a number T such that for all
a> 0,

Va( <gl,oo.,x£>r,£) = f(xl,oao,xr) .

The proof of lemma 1 now proceeds by induction on n.

Case 1. n = 2. Let fo be obtained from g by 1l-fold iteration

and let fk+l be obtained from fk by 1-fold iteration. Then

f(x,y) = fy(x)"
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Let the primitive recursive function L be defined by

L(0,g) = I(e)

L(k+l,g) = I(L(k,g))-
Then by property 3 and induction on ¥,
£(xy) = fx) = Vo (5 L(ys8)) -

This is an explicit definition of £ in terms of funchtionms from
PO%1° By property 3 there is a function S = S(y,é,g) such that
if V and L are indices of Va+l and L respectively, then
8(V,L,g) is an index of f. By property 1, Vg, always has
o+2-index O and by property 4 we may choose L independent of .

Hence define 12 by

12(,%_) = S(O:_L_;_g_) .

Case 2, We assume the lemma for n  and prove it for un+l. For

. . o
any n-ary function h = h(x,yo,ooa,yn_3,yﬁ_2) define h by
setting ho(x) = n(x,0,...,0,%x); 1i.e., the singulary function h°
is obtained from the n-ary function h by identifying the first
and last variables and setting the other variables equal to O. By

property 2 let S %be a primitive recursive function which converts

. ) ) o _
an index of h into an index of h-. Now let £, = fO(X’yO’yl’°°°’yn—

be obtained from g by n-fold iteration and let fk*l be obtained

from f; by n-fold iteration. Then, if f 1s obtained from g by

n+l-fold 1lteration,

)
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f(x’yO’yl’°°°’yn—2’y) = fy(x’yo’yl’°°°’yn~2)' .

Define the primitive recursive function L by

1(0,8) = I(g)

L(k+l,g) = I (S(L(k,g))) -

Then by induction hypothesis and induction on Kk, L(k,g) is a

-2
ot 2(k+1)-index of £,5

i.e.,

f(XﬁyOJ"°}yn_2)y) = fy(X’yo""’yn_g)

= ‘Va"}u)n—22(y4'l>( < X,yo, o oo )yn_2> ,L(y,g})

Vo 21 ¥ rVy o7 s <2(y+1),L(y,§)>) .

This is an explicit definition of f in terms of primitive recursive

W

functions and Vb% n-1 . By property L the primitive recursive
,_l )

o]

functions have O#w  ~—2-irdices which are independent of . Define

; k
- . _ . Then. i . R
vy = O and Viey1 4},vk>7o Then, if 7y 1is divisible by w ,

Vi is a 7+wk—index of V. . Thisg is proves from property 1 bty
induction oa k.) By one of the hypotheses of this lemma, O+ W

is divisible by wn—la Now by property 3 we may define In» in

exactly the same way we defined 12 in case 1.

This completes the proof of lemma 1.
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Proof of lemma 2. We list two further restrictions on the indexing

required to prove this lemma.

Property 5. There are singulary primitive recursive functions G

and H, a ternary primitive recursive function J, and a binary
primitive recursive function K such that for every positive integer
£, G(f)<f and H(f) < £ and such that for every natural number

f exactly one of the following six cases holds:

Case 0. f 1s not an index of any fuaction.
Case 1. £ =0; i.e., f is an index of V.
Cage 2. f =1; i.e., f. is an index of addition.

log

Case 3. G(f) = and H(f) =h are indices for functions g and

h respectively, and f is en index of the function f obtained

from g and h by composition; 1.€.,
f(Xl’“”Xn’yl’“"’ym) = h(Xl:°°°;Xn)g(‘yl;°°°;ym)} o
In this case,

J(E: <Xl’°°°’Xn’yl’°°°’ym> ,u) = <Xl,”o,xn,u>

and

K(i; <Xl’°°°’xn’yl’°°°’ym> ) = <yl”“’ym>,




. ok

Case kL. G(i) = g 1is an index for a function g and f is an index |
for a function f obtained from g by an explicit transformation;
i.€0,

f(xly"“JX%) = g(gl"’”’gm) o

In this case, - ‘ i 1

K(i) <Xl7°°°;xn> ) = (ﬁl)°°)§m> o

Case 5. G(f) =g and H(f) = h are indices of functions g and h
respectively and f 1is an index of a function f which is cttained

from g and hk by primitive recursion; i.e€.,

f(x,y) = &(x) Y =0

£(x,7) h(x,y-1,f(x,y-1)) for y # O.

Property 6. There is a primitive recursive function whose value for

argument f is 1 =0,1,..4,5 according as case i above holds.

Temms 2 is trivial for = = 1; hence, suppose & 2> 2, For

each k = 0,1,2,... define the n-ary function Yk by

E—K(W)E;yo)yl} oo :y,_Q_B) = Voé(W)f_)
where
a = 2y 4 3 + + oy, +
yn_3 oo T WPyt Vg e
Iet w = '\'x,y/ and f = <u,v/) .
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Then .
yk(w,_f_*,o,,.,,o) = w+f if k =0,
x_rk(w,lf_,o,,..,,o,o) = yk_l(w,v,o,.,.o,@,u) if k # 0.

Abbreviate yO,yl,on,,yn_3 by Y and y0+l,yl,aaa,yn_3 by  Y+1.

Then
y&(wyﬁ,Y+l) = 0 if case 0;
Y£<W)£;Y*l) = Ek(x,y,Y) if case 1
Vv, (w,f,Y+l) = x+y if case 2;
Y (o, v+1) = ¥V (3(g,w, ¥, (K(£,w),6(£),¥+1)), H(E),¥+1) if case 3;
VO, ¥+1) = ¥ (K(E,w),6(£),7+1) if case k;
v (w,f,741) = v, (x,6(£),v+1) if case 5 and y = O;
v (n,f,741) = ¥ {\{c,y-l,"\fk( /\'x,y—l}.. ,_f_,Y+1)>, H(£),v+1)

if case 5 and y # O,

2

Ek(w5£107°°°?O?o’yj+l’yj+l’°°°Jyn_3) =

= Y£(W)VJO:°°°)OJUan}yj+lJ°°°:yn_3) .

This is a schema of nested n-fold recursion in the variables v, f,
Yoo yl,ooq,yn_3a Hence YO is cbtained by a nested n-fold recursion

and for k # O, Yk is cbtained from..yk_l by a nested n-fold
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recursion. Hence by induction on k, V, € I\Tn for each k. Hence

—k
Va € 1\Tn for a< wn"l as was to be shown. This completes the proof

of lemma 2,

Now by lemma 1, LJPa a< ol is closed under n-fold
a

iteration and hence contains Nba By lemma 2 the converse contairment

holds. This completes the proof of the theorem.
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PATHOLOGY

Theorem 1. For every general recursive function f there is an
elementary recursive well ordering R such that

(1) IR = w.
(2) £ e U(R).

Proof. Let Z by a Turing machine which computes f; let Z#¥(x) ’ ‘
be the number of operations performed by Z when the input is X;

let U(x,t) be the number on the tape of Z if it is started with

input x and stops in t or less operations. Then U is elementary
recursive and

f(x) = U(x,t) for t > Z¥(x).

At this point there are two ways of proceeding. The first
is advantageous in that it will enable us to give a definition of f
without using a schema of primitive recursion. The second has an

interesting corollary.

First Proof. For each natural number x let CX be the set of all
numbers of the form <§,x> + 1 where t < Z¥(x). Then CX has
exactly Z¥(x) elements. Let € be the union of the Cxo Define

the well ordering R as follows:

(1) Every element of CX precedes every element of Cy if x<y.
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(2) The element <;tl,x>' + 1 of C, precedes the element

\\ q :
<t2,x/ +1 of C if t2<tl,

(3) An element x not in C precedes all the elements of ¢_  for

;§
-

y > x and follows all the elements of Cy for y < x.
(4) The elements not in C are ordered among themselves by < .

Then R 1is an elementary recursive well ordering with O

as its least element. Also ]R] = W.

Define the function T as follows:

| (1) o(y) = (wH,xr +1 if y= t,x +1 and both{t,x) +1
%3 and qif+l,xj7 + 1 are elements of C;
(2) T(y) = 0O otherwise.

Then T is elementary recursive and

T(0) = 0

T(y) Ry for y # O.

Note that T applied to an element of CX gives the next smaller
element of CX in the ordering R 1if such exists. Define M from

T by R-annihilation; i.e.,

M(0) 0

Il

1+ M(Z(y)) for y # O.

Il

M(y)
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Then M € U(R), and

z#(x) = M(<0,x))

Hence 7% € U(R). Hence since U is elementary recursive, I € U(R).

This completes the first proof.

Second Proof. Let SO be the set of y such that O <y < 7%(0)

and for x> 0 let SX be the set of y such that
7%(0) . o o +Z%(x-1) < y < 2%(0)+.. . +2%(x) ;

i.e., 8y 1is the first block of 2¥(0) positive integers, 85, 1s
the next block of Z*(1) integers, etc. Define the well ordering

R as follows:
(1) O is the least element in R.

(2) The elements of Su precede the elements of Sv it u < v.
(3) For vy Yo € Sx’ vy R Vo if Vo < vy o

The two place predicate t = 7#(x) is elementary recursive.

(Although, of course, the function Z¥* may not be.) Define s by

s(0) = O
y € Ss(y> for y # O.

B — o . +_ Y‘"" " . o 0o ‘-
Then s(y+1) s(y) + 1 if there exist numbers to,tl, ’ts(y)

such that ti <y and ti = 7z%(i) for 1i = O,l,.e.,s(y) and such
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that tO+tl+°’°+ts(y) =y; s(y+l) = s(y) otherwise. Hence s is
elementary recursive. Now v R Yo if and only if vy = 0 and

vp # 0, or s(y)) <s(y,), or s(y;) = s(y,) and y, <y,. Hence
R is elementary recursive. Clearly fR! = W,

Define T as follows:

0 if s(y) # s(y+l)

=y
NS
I

T(y) y+1  if  s(y) = s(y+1).

Then T is elementary recursive and T(y) Ry for y # 0. T takes

an element of SX which is not the smallest element of SX (in the

ordering R) into the next smaller element of S, (in the ordering R).

Define M from T by R-annihilation; i.e.,

»M(O) = 0
M(y) = 1+ M(T(y)) for y # O.
Then M € U(R) and
7z¥(0) = M(1)
Z¥(x+1) = M(1 + i 7%(1i)) .
i=0

This is a primitive recursive schema. Hence Z¥% & U(R). Hence

f € U(R). This completes the second proof.
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Corollary. There is an elementary recursive well ordering R such
that

(1) |R[ = W,

(2) < is not embeddable in R.

Proof. Recall that < is embeddable in R 1f there is a primitive
recursive function e such that e(x) R e(y) whenever x <y.
Consider the well ordering R defined from the function f 1in the
second proof above. We will show that if < 1is embeddable in R,
then f is primitive recursive. Hence we may construct an R
satisfying the corcllary if we take f to be any recursive, non-
primitive recursive function.

Hence suppose e is a primitive recursive function and
e(x) R e(y) whenever x < y. Recall ﬁhe definitions of U, Z%,
Sx’ and s from above. Let r(0) =0 and for ¥y # 0, let r(y)

be the number of elements 2z such that =z € Ss(y) and y R z. Then

r(0) = »(1) = 0
r(y+l) = 1 + r(y) if s(y) = s(y+1)
r(y+l) = O otherwise.

Then r is elementary recursive. Now note that

e(x) R e(x+1) R e(x+2) R ... R e(x+n)

Hence if e(x) € 8, then e(x + r(e(x)) + 1) € s, where u < v.

Define g by
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(see Davis [2]). If a is an ordinal notation, we let lal be
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g(x+1) = gx) + re(g(x))) + 1
and define h by

hix) = e(g(x)) .

Ther h is primitive recursive. Since g(x) < g{x+1), we have
n(x) R h(y) whenever x < yv. Furthermore, s(h(x)) < s(h(x+l)};
i.e., if hix) € S, ‘then hix+l) € §, Wwhere u < wv. Hence by
the definition of Sx’

2#(0j+. . .+Z%(x) < h(x+l).
Thus 2Z#{x) < h(x+l) and so,
f(x) e U(x,h(x+l)) .

Thus f 1s primitive recursive as was *to be shown. This completes

the proof of the corollary.

We now generalize the CGrzegorczyk and Kleene hierarchies.

Recall the definition of the set of Church Kleene crdiznal rnotaticrns

<

the ordinal whick it denoctes. Then

(1) 1 is a nctation for O; i.e., ]l] = O,

(2) If a is an ordinal notation, then so is 2% and ]2af = faf + 1.
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(3) 1If 3:5% ig an ordinal notation, then g is a godel number of

a recursive function ¢, and q(n) is an ordinal notation for -every

n. The sequence of ordinals |q(0)1, ]q(l)], ]q(2)|, eoo 1S a
strictly increasing sequence with limit [3°53| (i.e., is a funda-

mental sequence for |3:54]).

Remark: The reader should be careful not to confuse the concept of
a godel number of a general rcursive fuanction (which might for instance
be the godel number of a Turing machine which computes the function)
with the primitive recursive indices used to define the Kleene sub-

recursive hierarchy.

Following Kleene we let . be the (unique) ordinal

notation for the finite ordinal n; i.e.,

| o, =1
|
. 1,
0 —
| (n+l)O 2
so that
In] = n .
o]

Now for each ordinal notation a define the function Wa

-as follows:

Il
no

(1) W, (x)

(2) W (x)

1l
o
-
~
e
h
o
1l

e}
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_ . _ 2.c9 :
(3) Wa(x) = Wq(x)(x) if a =-3°5 where g 1is a godel

number of (.

Now define Ea = E(Wa), the set of functions elementary recursive

in W_o.
a

Theorem 2. For every general recursive function f there 1s an

ordinal notation a such that
(1) Ial = W,

(2) fekE

Proof. As in theorem 1 let Z*¥ and U satisfy
f(x) = U(x,t) for t > 7¥(x)

where U% is general recursive and U is primitive recursive.

Choose a strictly increasing recursive function r such that
zx(x) < r(x) .

Define q by

alx) = (x(x)), 3

(o]

then

la(x)| = =(x).

Let. g be a godel number of g and let a = 3~53, Then a 1is an

ordinal notation with lai = W,
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Tt is easy to show that

W (x) > n for x # O.
Hence
Wa(x) = Wq(x)(x) < r(z) > z¥(x)
Hence
f(x) = U(X,Wa(x)).

Hence f € Ea' This completes the proof of theorem 2.

Let P(V) be the set of functions which are primitive
recursive in the binary function V. Fix an indexing of these
functions which satisfies the properties laid down in the last
section. For each ordinal notation a define the function Aa

as follows:

(l) Va(x,y) = x+y if a = 1.
(2) Va(<\xl,,.°,x£> ,£) = f(Xl""’xr) where f 1is an index
of the function f € U(V,) if a= 2P,

(3) Va(x, <u¢§:> ) = Vq(u)(x,ﬁ) where g 1s the function with

godel number g if a = 3-5-(l .

Let P, = P(Va), the set of functions primitive recursive

in V. If £, £, and a satisfy (2), we say that f is an a-index

of T




Theorem 3. For every general recursive function f there is an

ordinal notation a such that

Proof. The proof requires two lemmas. The first lemma is a version

of the recursion theorem.

Lemmg L. If F € P(Vb), there is a natural number e such that

VE( <Xl’°°°’xr> , e) = F(Xl’°°°’xr’e)

where c = Eb and F is r+l-ary.

Proof of lemma 1. By property 2 (see the last section) let S be
a primitive recursive function such that if h 1is an index of the
r+l-ary function h = h(xl,...,xr,z), then S(E,k) is an index of

the r-ary fuanction hk = h(xl’""’xr’k)° Let g be defined by
g(xl,u,.,xr,z) = F(xl,oa,,xr,s(z,z))o

Let g be a c-index of g. Let e = S(g,g)-

VC( <xl,..o,xr> ,e) = VC(<fxl,,,.,xr> 5 S(g,g))

= g(Xl: oo :Xr:_g_)

= F(X ,o,Xr;S(gyg))

17’

= F(Xl,o.,,xr,e) .
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This completes the proof of lemma 1.

Lemma g. There is a natural number e such that for all n

Vh (l,e) = e+n+1.
o)

Proof of lemma 2. Consider the function F defined by

F(X)Z) = Vn (X)Z) + X
O

The definition of F depends on mn, but by properties 1 and 2 of

the preceding section a (n+l)o-index of F may be chosen independent

of n. (0 is always a (n+l)o—index of V_ .) Thus by the proof of

e}
the last lemma there is a natural number e such that for all n

V(n+l) (x,e) = Vh (x,e) + X
- 0 o)
Then
v, (1,e) = 1l+e = e+0+1
(e}
and if V_ (1,e) = e+ n+ 1, then
o)
V(n41) (L,e) = v, (1,e) + 1
O [}

Hence lemma 2 is proved by induction on n.

e + (n+l) + 1.




108

We now return to the proof of theorem 3. Choose an

arbitrary recursive function f. As in theorem 2, chbose recursive

functions Z¥, r, and g, a primitive recursive function U, and

an ordinal notation a such that

(1) f(x) = U(xt) for t > Z¥(x).
(2)  z*(x) < r(x) .

(3)  q(0), q(1), a(2),... is an increasing sequence of finite

ordinal notations with ]q(x)l = r(x).

(4) a= 3.54 where g is a godel number of g. Hence la| = .
For the natural number e of the previous lemma

Va(l)‘<X;§7) = Vq(x)(l,e) = e + r(x) + 1.

.
.
L
.
%
.
.
|
%
.
|
.
:
§
.
|
.
|
%

Hence, r € P_. Hence f e P since f(x) = U(x,r(x)). This completes

the proof of theorem 3.
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BIBLIOGRAPHICAL REMARKS

Davis [2] and Ritchie [12] contain good expositions of the
theory of Turing machines. [2] also contains an exposition of the
theory of Church Kleene ordinal notations. Grzegorczyk [L4] contains

a good exposition of the theory of elementary recursive functions and

g‘ Peter [11] contains an exposition of the theory of nested n-fold
recursion.

Most of the theorems in the section entitled "The Ordinal

Recursion Hierarchy' were proven by Tait in [14]. The special case
of theorem 1 was;proven there; the general case is due to J. Guard

(personal communication). Theorems 6 and 8 appear in [14] with the

Y

same proofs I have given. Theorem 7 appears in [1L4] for the special

cagse n = 0; Guard pointed out to me that the general case can be

proven with essentially the same argument. Theorem 9 appears in
[14]; the simpler proof which I have given is due to Guard.

The case n =1 of the Extended Grzegorczyk Theorem is
essentially theorem 4.13 of Grzegorczyk [4]. His hierarchy differs
from mine in that the first few classes of his hierarchy are not
elementary recursive degrees; in fact, they do not contain all the
elementary recursive functiong. Also, he uses binary functions to
define his hierarchy where I used singulary functions.

The ideas in the section eatitled "Applications to Computational

Complexity" were inspired by Hartmanis and Stearns [5] and [6] and by

Ritchie [12].
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The Kleene subrecursive hierarchy was defined in Kleene [7].
The characterization of Nn in terms of that hierarchy is very much
like a theorem in Axt [1].

Theorem 1 in the section entitled "Pathology" was first
armounced by Myhill [10]. A slightly weaker theorem was proved
independently by Routledge [13]. Similar theorems appear in Liu [8]
and [9]. The corollary is due to Guard. Theorem 3 of that section
is a slightly stronger version of a theorem in Axt [1]; he showed
that every recursive set is obtained at level w. A very nice pathology
theorem appears in Feferman [3]. He shows that even if ordinal

notations are restricted so as to allow only primitive recursive

fundamental sequences, the Kleene hierarchy collapses at wg.
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