1 Independence

1.1 Definition of independence

Let \((\Omega, \mathcal{F}, P)\) be a probability space.

DEF 2.1 (Independence) Sub-\(\sigma\)-algebras \(G_1, G_2, \ldots\) of \(\mathcal{F}\) are independent for all \(G_i \in G_i\), \(i \geq 1\), and distinct \(i_1, \ldots, i_n\) we have

\[
P[G_{i_1} \cap \cdots \cap G_{i_n}] = \prod_{j=1}^{n} P[G_{i_j}].
\]

Specializing to events and random variables:

DEF 2.2 (Independent RVs) RVs \(X_1, X_2, \ldots\) are independent if the \(\sigma\)-algebras \(\sigma(X_1), \sigma(X_2), \ldots\) are independent.

DEF 2.3 (Independent Events) Events \(E_1, E_2, \ldots\) are independent if the \(\sigma\)-algebras \(E_i = \{\emptyset, E_i, E_i^c, \Omega\}, \ i \geq 1,\)

are independent.

The more familiar definitions are the following:

THM 2.4 (Independent RVs: Familiar definition) RVs \(X, Y\) are independent if and only if for all \(x, y \in \mathbb{R}\)

\[
P[X \leq x, Y \leq y] = P[X \leq x]P[Y \leq y].
\]

THM 2.5 (Independent events: Familiar definition) Events \(E_1, E_2\) are independent if and only if

\[
P[E_1 \cap E_2] = P[E_1]P[E_2].
\]
The proofs of these characterizations follows immediately from the following lemma.

LEM 2.6 (Independence and π-systems) Suppose that \mathcal{G} and \mathcal{H} are sub-σ-algebras and that \mathcal{I} and \mathcal{J} are π-systems such that

$$\sigma(\mathcal{I}) = \mathcal{G}, \quad \sigma(\mathcal{J}) = \mathcal{H}.$$

Then \mathcal{G} and \mathcal{H} are independent if and only if \mathcal{I} and \mathcal{J} are, i.e.,

$$\mathbb{P} [I \cap J] = \mathbb{P} [I] \mathbb{P} [J], \quad \forall I \in \mathcal{I}, J \in \mathcal{J}.$$

Proof: Suppose \mathcal{I} and \mathcal{J} are independent. For fixed $I \in \mathcal{I}$, the measures $\mathbb{P}[I \cap H]$ and $\mathbb{P}[I] \mathbb{P}[H]$ are equal for $H \in \mathcal{J}$ and have total mass $\mathbb{P}[I] < +\infty$. By the Uniqueness lemma the above measures agree on $\sigma(\mathcal{J}) = \mathcal{H}$.

Repeat the argument. Fix $H \in \mathcal{H}$. Then the measures $\mathbb{P}[G \cap H]$ and $\mathbb{P}[G] \mathbb{P}[H]$ agree on \mathcal{I} and have total mass $\mathbb{P}[H] < +\infty$. Therefore they must agree on $\sigma(\mathcal{I}) = \mathcal{G}$.

1.2 Construction of independent sequences

We give a standard construction of an infinite sequence of independent RVs with prescribed distributions.

Let $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}[0, 1], \lambda)$ and for $\omega \in \Omega$ consider the binary expansion

$$\omega = 0.\omega_1\omega_2\ldots.$$

(For dyadic rationals, use the all-1 ending and note that the dyadic rationals have measure 0 by countability.) This construction produces a sequence of independent Bernoulli trials. Indeed, under λ, each bit is Bernoulli(1/2) and any finite collection is independent.

To get two independent uniform RVs, consider the following construction:

$$U_1 = 0.\omega_1\omega_3\omega_5\ldots$$

$$U_2 = 0.\omega_2\omega_4\omega_6\ldots$$

Let \mathcal{A}_1 (resp. \mathcal{A}_2) be the π-system consisting of all finite intersections of events of the form $\{\omega_i \in H\}$ for odd i (resp. even i). By Lemma 2.6, the σ-fields $\sigma(\mathcal{A}_1)$ and $\sigma(\mathcal{A}_2)$ are independent.

More generally, let

$$V_1 = 0.\omega_1\omega_3\omega_6\ldots$$

$$V_2 = 0.\omega_2\omega_4\omega_9\ldots$$

$$V_3 = 0.\omega_4\omega_8\omega_{13}\ldots$$

$$\vdots = \ldots.$$
i.e., fill up the array diagonally. By the argument above, the \(V_i \)'s are independent and Bernoulli(1/2).

Finally let \(\mu_n, n \geq 1 \), be a sequence of probability distributions with distribution functions \(F_n, n \geq 1 \). For each \(n \), define

\[
X_n(\omega) = \inf \{ x : F_n(x) \geq V_n(\omega) \}
\]

By the Skorokhod Representation result from the previous lecture, \(X_n \) has distribution function \(F_n \) and:

DEF 2.7 (IID Rvs) A sequence of independent RVs \((X_n)_n \) as above is independent and identically distributed (IID) if \(F_n = F \) for some \(n \).

Alternatively, we have the following more general result.

THM 2.8 (Kolmogorov’s extension theorem) Suppose we are given probability measures \(\mu_n \) on \((\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \) that are consistent, i.e.,

\[
\mu_{n+1}((a_1, b_1] \times \cdots \times (a_n, b_n] \times \mathbb{R}) = \mu_n((a_1, b_1] \times \cdots \times (a_n, b_n]).
\]

Then there exists a unique probability measure \(\mathbb{P} \) on \((\mathbb{R}^N, \mathcal{R}^N) \) with

\[
\mathbb{P}[\omega : \omega_i \in (a_i, b_i], 1 \leq i \leq n] = \mu_n((a_1, b_1] \times \cdots \times (a_n, b_n]).
\]

Here \(\mathcal{R}^N \) is the product \(\sigma \)-algebra, i.e., the \(\sigma \)-algebra generated by finite-dimensional rectangles.

1.3 Kolmogorov’s 0-1 law

In this section, we discuss a first non-trivial result about independent sequences.

DEF 2.9 (Tail \(\sigma \)-algebra) Let \(X_1, X_2, \ldots \) be RVs on \((\Omega, \mathcal{F}, \mathbb{P}) \). Define

\[
\mathcal{T}_n = \sigma(X_{n+1}, X_{n+2}, \ldots), \quad \mathcal{T} = \bigcap_{n \geq 1} \mathcal{T}_n.
\]

As an intersection of \(\sigma \)-algebras, \(\mathcal{T} \) is a \(\sigma \)-algebra. It is called the tail \(\sigma \)-algebra of the sequence \((X_n)_n \).

Intuitively, an event is in the tail if changing a finite number of values does not affect its occurrence.
EX 2.10 If \(S_n = \sum_{k \leq n} X_k \), then
\[
\{ \lim_n S_n \text{ exists} \} \in \mathcal{T},
\]
\[
\{ \limsup_n n^{-1} S_n > 0 \} \in \mathcal{T},
\]
but
\[
\{ \limsup_n S_n > 0 \} \notin \mathcal{T}.
\]

THM 2.11 (Kolmogorov’s 0-1 law) Let \((X_n)_n\) be a sequence of independent RVs with tail \(\sigma \)-algebra \(\mathcal{T} \). Then \(\mathcal{T} \) is \(\mathbb{P} \)-trivial, i.e., for all \(A \in \mathcal{T} \) we have \(\mathbb{P}[A] = 0 \) or 1.

Proof: Let \(\mathcal{X}_n = \sigma(X_1, \ldots, X_n) \). Note that \(\mathcal{X}_n \) and \(\mathcal{T}_n \) are independent. Moreover, since \(\mathcal{T} \subseteq \mathcal{T}_n \) we have that \(\mathcal{X}_n \) is independent of \(\mathcal{T} \). Now let
\[
\mathcal{X}_\infty = \sigma(X_n, n \geq 1).
\]
Note that
\[
\mathcal{K}_\infty = \bigcup_{n \geq 1} \mathcal{X}_n,
\]
is a \(\pi \)-system generating \(\mathcal{X}_\infty \). Therefore, by Lemma 2.6, \(\mathcal{X}_\infty \) is independent of \(\mathcal{T} \). But \(\mathcal{T} \subseteq \mathcal{X}_\infty \) and therefore \(\mathcal{T} \) is independent of itself! Hence if \(A \in \mathcal{T} \),
\[
\mathbb{P}[A] = \mathbb{P}[A \cap A] = \mathbb{P}[A]^2,
\]
which can occur only if \(\mathbb{P}[A] \in \{0, 1\} \).

2 Integration and Expectation

2.1 Construction of the integral

Let \((S, \Sigma, \mu)\) be a measure space. We denote by \(\mathbb{1}_A \) the indicator of \(A \), i.e.,
\[
\mathbb{1}_A(s) = \begin{cases}
1, & \text{if } s \in A \\
0, & \text{o.w.}
\end{cases}
\]

DEF 2.12 (Simple functions) A simple function is a function of the form
\[
f = \sum_{k=1}^m a_k \mathbb{1}_{A_k},
\]
where $a_k \in [0, +\infty]$ and $A_k \in \Sigma$ for all k. We denote the set of all such functions by SF^+. We define the integral of f by

$$
\mu(f) = \sum_{k=1}^{m} a_k \mu(A_k) \leq +\infty.
$$

The following is (somewhat tedious but) immediate. (Exercise.)

PROP 2.13 (Properties of simple functions) Let $f, g \in \text{SF}^+$.

1. If $\mu(f \neq g) = 0$, then $\mu(f) = \mu(g)$. (Hint: Rewrite f and g over the same disjoint sets.)

2. For all $c \geq 0$, $f + g, cf \in \text{SF}^+$ and

$$
\mu(f + g) = \mu(f) + \mu(g), \quad \mu(cf) = c\mu(f).
$$

(Hint: This one is obvious by definition.)

3. If $f \leq g$ then $\mu(f) \leq \mu(g)$. (Hint: Show that $g - f \in \text{SF}^+$ and use linearity.)

The main definition and theorem of integration theory follows.

DEF 2.14 (Non-negative functions) Let $f \in (m\Sigma)^+$. Then the integral of f is defined by

$$
\mu(f) = \sup \{ \mu(h) : h \in \text{SF}^+, h \leq f \}.
$$

THM 2.15 (Monotone convergence theorem) If $f_n \in (m\Sigma)^+$, $n \geq 1$, with $f_n \uparrow f$ then

$$
\mu(f_n) \uparrow \mu(f).
$$

Many theorems in integration follow from the monotone convergence theorem. In that context, the following approximation is useful.

DEF 2.16 (Staircase function) For $f \in (m\Sigma)^+$ and $r \geq 1$, the r-th staircase function $\alpha^{(r)}$ is

$$
\alpha^{(r)}(x) = \begin{cases}
0, & \text{if } x = 0, \\
(i - 1)2^{-r}, & \text{if } (i - 1)2^{-r} < x \leq i2^{-r} \leq r, \\
r, & \text{if } x > r,
\end{cases}
$$

We let $f^{(r)} = \alpha^{(r)}(f)$. Note that $f^{(r)} \in \text{SF}^+$ and $f^{(r)} \uparrow f$.

Lecture 2: Measure-theoretic foundations II
Using the previous definition, we get for example the following properties. (Exercise.)

PROP 2.17 (Properties of non-negative functions) Let \(f, g \in (m\Sigma)^+ \).

1. If \(\mu(f \neq g) = 0 \), then \(\mu(f) = \mu(g) \).
2. For all \(c \geq 0 \), \(f + g, cf \in (m\Sigma)^+ \) and
 \[
 \mu(f + g) = \mu(f) + \mu(g), \quad \mu(cf) = c\mu(f).
 \]
3. If \(f \leq g \) then \(\mu(f) \leq \mu(g) \).

2.2 Definition and properties of expectations

We can now define expectations. Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. For a function \(f \), let \(f^+ \) and \(f^- \) be the positive and negative parts of \(f \), i.e.,

\[
f^+(s) = \max\{f(s), 0\}, \quad f^-(s) = \max\{-f(s), 0\}.
\]

DEF 2.18 (Expectation) If \(X \geq 0 \) is a RV then we define the expectation of \(X \), \(\mathbb{E}[X] \), as the integral of \(X \) over \(\mathbb{P} \). In general, if

\[
\mathbb{E}[|X|] = \mathbb{E}[X^+] + \mathbb{E}[X^-] < +\infty,
\]

we let

\[
\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-].
\]

We denote the set of all such RVs by \(L^1(\Omega, \mathcal{F}, \mathbb{P}) \).

The monotone-convergence theorem implies the following results. (Exercise.) We first need a definition.

DEF 2.19 (Convergence almost sure) We say that \(X_n \to X \) almost surely (a.s.) if

\[
\mathbb{P}[X_n \to X] = 1.
\]

PROP 2.20 Let \(X, Y, X_n, n \geq 1 \), be RVs on \((\Omega, \mathcal{F}, \mathbb{P})\).

1. \((MON)\) If \(0 \leq X_n \uparrow X \), then \(\mathbb{E}[X_n] \uparrow \mathbb{E}[X] \leq +\infty \).
2. \((FATOU)\) If \(X_n \geq 0 \), then \(\mathbb{E}[\liminf_n X_n] \leq \liminf_n \mathbb{E}[X_n] \).
3. (DOM) If \(|X_n| \leq Y, n \geq 1\), with \(\mathbb{E}[Y] < +\infty\) and \(X_n \to X\) a.s., then
\[
\mathbb{E}|X_n - X| \to 0,
\]
and, hence,
\[
\mathbb{E}[X_n] \to \mathbb{E}[X].
\]
(Indeed,
\[
|\mathbb{E}[X_n] - \mathbb{E}[X]| = |\mathbb{E}[X_n - X]| = |\mathbb{E}[(X_n - X)^+] - \mathbb{E}[(X_n - X)^-]| \leq \mathbb{E}[(X_n - X)^+] + \mathbb{E}[(X_n - X)^-] = \mathbb{E}|X_n - X|.
\]

4. (SCHEEFFE) If \(X_n \to X\) a.s. and \(\mathbb{E}|X_n| \to \mathbb{E}|X|\) then
\[
\mathbb{E}|X_n - X| \to 0.
\]

5. (BDD) If \(X_n \to X\) a.s. and \(|X_n| \leq K < +\infty\) for all \(n\) then
\[
\mathbb{E}|X_n - X| \to 0.
\]

Proof: We only prove (FATOU). To use (MON) we write the lim inf as an increasing limit. Letting \(Z_k = \inf_{n \geq k} X_n\), we have
\[
\lim_{n} \inf_{n} X_n = \uparrow \lim_{k} Z_k,
\]
so that by (MON)
\[
\mathbb{E}[\lim \inf_{n} X_n] = \uparrow \lim_{k} \mathbb{E}[Z_k].
\]
For \(n \geq k\) we have \(X_n \geq Z_k\) so that \(\mathbb{E}[X_n] \geq \mathbb{E}[Z_k]\) hence
\[
\mathbb{E}[Z_k] \leq \inf_{n \geq k} \mathbb{E}[X_n].
\]
Hence
\[
\mathbb{E}[\lim \inf_{n} X_n] \leq \uparrow \lim_{k} \inf_{n \geq k} \mathbb{E}[X_n].
\]

The following results are well-known.

DEF 2.21 (Space \(\mathcal{L}^2\)) We denote the set of all RVs \(X\) with \(\mathbb{E}[X^2] < +\infty\) by \(\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})\).
THM 2.22 (Cauchy-Schwarz inequality) If $X, Y \in L^2$ and $XY \in L^1$ then
\[\mathbb{E} |XY| \leq \sqrt{\mathbb{E}[X^2] \mathbb{E}[Y^2]}. \]

THM 2.23 (Jensen’s inequality) Let $h : G \to \mathbb{R}$ be a convex function on an open interval G such that $\mathbb{P}[X \in G] = 1$ and $X, h(X) \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ then
\[\mathbb{E}[h(X)] \geq h(\mathbb{E}[X]). \]

2.3 Computing expected values

The following result is useful for computing expectations.

THM 2.24 (Change-of-variables formula) Let X be a RV with law \mathcal{L}. If $f : \mathbb{R} \to \mathbb{R}$ is such that $f \geq 0$ or $\mathbb{E}|f(X)| < +\infty$ then
\[\mathbb{E}[f(X)] = \int_{\mathbb{R}} f(y) \mathcal{L}(dy). \]

Proof: We use the standard machinery.

1. For $f = \mathbb{1}_B$ with $B \in \mathcal{B},$
\[\mathbb{E}[\mathbb{1}_B(X)] = \mathcal{L}(B) = \int_{\mathbb{R}} \mathbb{1}_B(y) \mathcal{L}(dy). \]

2. If $f = \sum_{k=1}^{m} a_k \mathbb{1}_{A_k}$ is a simple function, then by (LIN)
\[\mathbb{E}[f(X)] = \sum_{k=1}^{m} a_k \mathbb{E}[\mathbb{1}_{A_k}(X)] = \sum_{k=1}^{m} a_k \int_{\mathbb{R}} \mathbb{1}_{A_k}(y) \mathcal{L}(dy) = \int_{\mathbb{R}} f(y) \mathcal{L}(dy). \]

3. Let $f \geq 0$ and approximate f by a sequence $\{f_n\}$ of increasing simple functions. By (MON)
\[\mathbb{E}[f(X)] = \lim_n \mathbb{E}[f_n(X)] = \lim_n \int_{\mathbb{R}} f_n(y) \mathcal{L}(dy) = \int_{\mathbb{R}} f(y) \mathcal{L}(dy). \]

4. Finally, assume that f is such that $\mathbb{E}|f(X)| < +\infty$. Then by (LIN)
\[\begin{align*}
\mathbb{E}[f(X)] &= \mathbb{E}[f^+(X)] - \mathbb{E}[f^-(X)] \\
&= \int_{\mathbb{R}} f^+(y) \mathcal{L}(dy) - \int_{\mathbb{R}} f^-(y) \mathcal{L}(dy) \\
&= \int_{\mathbb{R}} f(y) \mathcal{L}(dy).
\end{align*} \]
2.4 Fubini’s theorem

DEF 2.25 (Product measure) Let (S_1, Σ_1) and (S_2, Σ_2) be measure spaces. Let $S = S_1 \times S_2$ be the Cartesian product of S_1 and S_2. For $i = 1, 2$, let $\pi_i : S \to S_i$ be the projection on the i-th coordinate, i.e.,

$$\pi_i(s_1, s_2) = s_i.$$

The product σ-algebra $\Sigma = \Sigma_1 \times \Sigma_2$ is defined as

$$\Sigma = \sigma(\pi_1, \pi_2),$$

i.e., it is the smallest σ-algebra that makes coordinate maps measurable. It is generated by sets of the form

$$\pi_i^{-1}(B_i) = B_1 \times S_2, \quad \pi_2^{-1}(B_2) = S_1 \times B_2, \quad B_i \in \Sigma_i, B_2 \in \Sigma_2.$$

We now define the product measure and state the celebrated Fubini’s theorem. (A proof is sketched in the appendix below.)

THM 2.26 (Fubini’s theorem) For $F \in \Sigma$, let $f = 1_F$ and define

$$\mu(F) = \int_{S_1} I_1^f(s_1) \mu_1(ds_1) = \int_{S_2} I_2^f(s_2) \mu_2(ds_2),$$

where

$$I_1^f(s_1) = \int_{S_2} f(s_1, s_2) \mu_2(ds_2) \in b\Sigma_1, \quad I_2^f(s_2) = \int_{S_1} f(s_1, s_2) \mu_1(ds_1) \in b\Sigma_2.$$

(The equality and inclusions above are part of the statement.) The set function μ is a measure on (S, Σ) called the product measure of μ_1 and μ_2 and we write $\mu = \mu_1 \times \mu_2$ and

$$(S, \Sigma, \mu) = (S_1, \Sigma_1, \mu_1) \times (S_2, \Sigma_2, \mu_2).$$

Moreover μ is the unique measure on (S, Σ) for which

$$\mu(A_1 \times A_2) = \mu(A_1)\mu(A_2), \quad A_i \in \Sigma_i.$$

If $f \in (m\Sigma)^+$ then

$$\mu(f) = \int_{S_1} I_1^f(s_1) \mu_1(ds_1) = \int_{S_2} I_2^f(s_2) \mu_2(ds_2),$$

where I_1^f, I_2^f are defined as before (i.e., as the sup over bounded functions below). The same is valid if $f \in m\Sigma$ and $\mu(|f|) < +\infty.$
Some applications of Fubini’s theorem follow.

THM 2.27 Let X and Y be independent RVs with respective laws μ and ν. Let f and g be measurable functions such that $f, g \geq 0$ or $E|f(X)|, E|g(Y)| < +\infty$. Then

$$E[f(X)g(Y)] = E[f(X)]E[g(Y)].$$

Proof: From Fubini’s theorem and the change-of-variables formula,

$$E[f(X)g(Y)] = \int f(x)g(y)(\mu \times \nu)(dx \times dy)$$

$$= \int \left(\int f(x)g(y)(dx) \right) \nu(dy)$$

$$= \int (g(y)E[f(X)]) \nu(dy)$$

$$= E[f(X)]E[g(Y)].$$

DEF 2.28 (Density) Let X be a RV with law μ. We say that X has density f_X if for all $B \in \mathcal{B}(\mathbb{R})$

$$\mu(B) = \mathbb{P}[X \in B] = \int_B f_X(x)\lambda(dx).$$

THM 2.29 (Convolution) Let X and Y be independent RVs with distribution functions F and G. Then the distribution function H of $X + Y$ is

$$H(z) = \int F(z - y)dG(y).$$

This is called the convolution of F and G. Moreover, if X and Y have densities f and g, then $X + Y$ has density

$$h(z) = \int f(z - y)g(y)dy.$$
Proof: From Fubini’s theorem, denoting the laws of X and Y by μ and ν,

\[
\mathbb{P}[X + Y \leq z] = \int \int 1_{\{x+y\leq z\}} \mu(dx) \nu(dy)
= \int F(z - y) \nu(dy)
= \int F(z - y) dG(y)
= \int \left(\int_{-\infty}^{z} f(x - y) dx \right) dG(y)
= \int_{-\infty}^{z} \left(\int f(x - y) dG(y) \right) dx
= \int_{-\infty}^{z} \left(\int f(x - y) g(y) dy \right) dx.
\]

Further reading

More background on measure theory [Dur10, Appendix A].

References

A Proof of Fubini’s Theorem

We need a more powerful variant of the standard machinery used in Theorem 2.24.

THM 2.30 (Monotone-class theorem) Let \mathcal{H} be a class of bounded functions from a set S to \mathbb{R} satisfying:

1. \mathcal{H} is a vector space over \mathbb{R}.
2. The constant 1 is an element of \mathcal{H}.
3. If \((f_n)_n\) is a sequence of non-negative functions in \(\mathcal{H}\) such that \(f_n \uparrow f\) where \(f\) is a bounded function on \(S\), then \(f \in \mathcal{H}\).

Then if \(\mathcal{H}\) contains the indicator function of every set in some \(\pi\)-system \(\mathcal{I}\), then \(\mathcal{H}\) contains every bounded \(\sigma(\mathcal{I})\)-measurable function on \(S\).

The proof is omitted.

We begin with two lemmas (which are proved below).

LEM 2.31 Let \(\mathcal{H}\) denote the class of functions \(f : S \to \mathbb{R}\) which are in \(b\Sigma\) and are such that

1. for each \(s_1 \in S_1\), the map \(s_2 \mapsto f(s_1, s_2)\) is \(\Sigma_2\)-measurable on \(S_2\),
2. for each \(s_2 \in S_2\), the map \(s_1 \mapsto f(s_1, s_2)\) is \(\Sigma_1\)-measurable on \(S_1\).

Then \(\mathcal{H} = b\Sigma\).

Then define, for \(f \in b\Sigma\),

\[
I_f^1(s_1) = \int_{S_2} f(s_1, s_2) \mu_2(ds_2), \quad I_f^2(s_2) = \int_{S_1} f(s_1, s_2) \mu_1(ds_1).
\]

LEM 2.32 Let \(\mathcal{H}'\) be the class of elements in \(b\Sigma\) such that the following property holds:

1. \(I_f^1 \in b\Sigma_1\) and \(I_f^2 \in b\Sigma_2\),
2. we have

\[
\int_{S_1} I_f^1(s_1) \mu_1(ds_1) = \int_{S_2} I_f^2(s_2) \mu_2(ds_2).
\]

Then \(\mathcal{H}' = b\Sigma\).

We are now ready to prove the two lemmas above.

Proof: We begin with the first lemma. Let

\[
\mathcal{I} = \{B_1 \times B_2 : B_i \in \Sigma_i\}
\]

be a \(\pi\)-system generating \(\Sigma\). Note that if \(A \in \mathcal{I}\) then \(1_A \in \mathcal{H}\) since, for fixed \(s_1\), \(1_A\) reduces to an indicator on \(S_2\). The assumptions of the Monotone-class theorem are satisfied by the standard properties of measurable functions. (Note that, for fixed \(s_1\), a sum of measurable functions is measurable, and so is the limit.) Therefore, \(\mathcal{H} = b\Sigma\).
The second lemma follows in the same way. Note that for $A = A_1 \times A_2 \in \mathcal{I}$ and $f = \mathbb{1}_A$

$$I_1^f(s_1) = \mu_2(A_2)\mathbb{1}_{A_1}(s_1), \quad \int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \mu_2(A_2)\mu_1(A_1),$$

and similarly interchanging 1 and 2. The assumptions of the Monotone-class theorem are satisfied by (LIN) and (MON). That concludes the proof. ■

Finally, we obtain Fubini’s theorem.

THM 2.33 (Fubini’s theorem) For $F \in \Sigma$, let $f = \mathbb{1}_F$ and define

$$\mu(F) \equiv \int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2),$$

where

$$I_1^f(s_1) \equiv \int_{S_2} f(s_1, s_2)\mu_2(ds_2) \in b\Sigma_1, \quad I_2^f(s_2) \equiv \int_{S_1} f(s_1, s_2)\mu_1(ds_1) \in b\Sigma_2.$$

(The equality and inclusions above are part of the statement.) The set function μ is a measure on (S, Σ) called the product measure of μ_1 and μ_2 and we write $\mu = \mu_1 \times \mu_2$ and

$$(S, \Sigma, \mu) = (S_1, \Sigma_1, \mu_1) \times (S_2, \Sigma_2, \mu_2).$$

Moreover μ is the unique measure on (S, Σ) for which

$$\mu(A_1 \times A_2) = \mu(A_1)\mu(A_2), \quad A_i \in \Sigma_i.$$

If $f \in (m\Sigma)^+$ then

$$\mu(f) = \int_{S_1} I_1^f(s_1)\mu_1(ds_1) = \int_{S_2} I_2^f(s_2)\mu_2(ds_2),$$

where I_1^f, I_2^f are defined as before (i.e., as the sup over bounded functions below). The same is valid if $f \in m\Sigma$ and $\mu(|f|) < +\infty$.

Proof: The fact that μ is a measure follows from (LIN) and (MON). The uniqueness follows from the Uniqueness lemma. The second follows from the previous lemma, the staircase approximation and (MON). ■