Notes 9 : CLT and Poisson Convergence

Math 733-734: Theory of Probability
Lecturer: Sebastien Roch

References: [Dur10, Section 3.4, 3.6].

1 Deterministic Lemmas

We will need some deterministic lemmas throughout.

LEM 9.1 Let \(z_1, \ldots, z_n \) and \(w_1, \ldots, w_n \) be complex numbers of modulus \(\leq \theta \). Then

\[
\left| \prod_{m=1}^{n} z_m - \prod_{m=1}^{n} w_m \right| \leq \theta^{n-1} \sum_{m=1}^{n} |z_m - w_m|.
\]

Proof:

\[
\left| \prod_{m=1}^{n} z_m - \prod_{m=1}^{n} w_m \right| \leq \left| z_1 \prod_{m=2}^{n} z_m - \prod_{m=2}^{n} w_m \right| + \left| z_1 \prod_{m=2}^{n} w_m - w_1 \prod_{m=2}^{n} w_m \right|
\]

\[
\leq \theta \left| \prod_{m=2}^{n} z_m - \prod_{m=2}^{n} w_m \right| + \theta^{n-1} |z_1 - w_1|,
\]

and use induction.

LEM 9.2 If \(\max_{1 \leq j \leq n} |c_{j,n}| \to 0 \), \(\sum_{j=1}^{n} c_{j,n} \to \lambda \) and \(\sup_{n} \sum_{j=1}^{n} |c_{j,n}| < \infty \) then

\[
\prod_{j=1}^{n} (1 + c_{j,n}) \to e^{\lambda}.
\]

Proof: Note that \(\frac{\log(1+x)}{x} \to 1 \) as \(x \to 0 \). Hence \(\forall \varepsilon > 0, \exists \delta > 0 \) such that \(|x| < \delta \) implies

\[
x - \varepsilon |x| < \log(1 + x) < x + \varepsilon |x|.
\]

The following standard expansion is proved in [D].
LEM 9.3 We have
\[\left| e^{ix} - \sum_{m=0}^{n} \frac{(ix)^m}{m!} \right| \leq \min \left(\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right). \]

LEM 9.4 If \(z \) is a complex number then
\[|e^z - (1 + z)| \leq |z|^2 e^{|z|}. \]

Proof: By a Taylor expansion,
\[|e^z - (1 + z)| \leq |z|^2/2! + |z|^3/3! + \cdots \]
\[\leq |z|^2(1/2! + |z|/3! + \cdots) \]
\[\leq |z|^2 e^{|z|}. \]

\[\square \]

2 Easy laws

2.1 CLT

As we saw before, the behavior of \(\phi \) around 0 contains information about the tail/moments of \(\mu \):

THM 9.5 We have
\[\left| \mathbb{E}\left[e^{itX} \right] - \sum_{m=0}^{n} \frac{\mathbb{E}[(itX)^m]}{m!} \right| \leq \mathbb{E} \left[\min \left\{ \frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!} \right\} \right]. \]

Proof: This follows from Lemma 9.3. \(\square \)

We can now prove the CLT.

THM 9.6 Let \((X_n) \) be IID with \(\mathbb{E}[X_1] = \mu \) and \(\text{Var}[X_1] = \sigma^2 < +\infty \). Then if \(S_n = \sum_{k \leq n} X_k \)
\[Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}} \Rightarrow Z, \]
where \(Z \sim N(0, 1) \).

Proof: Suffices to prove the result for \(\mu = 0 \). Note that
\[\phi_{X_1}(t) = 1 - \frac{\sigma^2 t^2}{2} + o(t^2), \]
where the error term is \(\leq t^2 \mathbb{E}[|t||X|^3 \wedge 2|X|^2] \). The expression inside the expectation is dominated by \(2X^2 \) which is integrable. So (DOM) implies that the expectation in the error term goes to 0 as \(t \to 0 \).

By independence

\[
\phi_{Z_n}(t) = \left(1 - \frac{t^2}{2n} + o(t^2) \right)^n \to e^{-t^2/2}.
\]

The inversion formula and continuity theorem conclude the proof. (In fact, one must prove the above limit for complex numbers. This follows from Lemmas 9.1 and 9.4.)

2.2 Poisson convergence

THM 9.7 Let \(X_n \) be binomial with parameters \(n \) and \(\lambda/n \), for \(\lambda > 0 \). Then \(X_n \Rightarrow Z \) where \(Z \) is Poisson with parameter \(\lambda \).

Proof: The CF of \(X_n \) is

\[
\phi_{X_n}(t) = \left(\frac{\lambda}{n} e^{it} + \left(1 - \frac{\lambda}{n} \right) \right)^n \to \exp \left(\lambda(e^{it} - 1) \right),
\]

for all \(t \) as \(n \to +\infty \), by Lemmas 9.1 and 9.4.

3 Lindeberg-Feller CLT

THM 9.8 (Lindeberg-Feller CLT) For each \(n \), let \(X_{n,m}, 1 \leq m \leq n \), be independent with \(\mathbb{E}[X_{n,m}] = 0 \). Suppose

1. \(\sum_{m=1}^{n} \mathbb{E}[X_{n,m}^2] \to 1 \).

2. \(\forall \varepsilon > 0, \lim_n \sum_{m=1}^{n} \mathbb{E}[|X_{n,m}|^2; |X_{n,m}| > \varepsilon] = 0 \).

Then

\[
Z_n = \sum_{m=1}^{n} X_{n,m} \Rightarrow Z,
\]

as \(n \to \infty \) where \(Z \sim N(0,1) \).

In other words, a sum of a large number of small independent effects is approximately normal.
EX 9.9 To recover our previous CLT, take \(X_{n,m} = \frac{X_m}{\sqrt{n}} \). The first condition
is clearly satisfied. If \(\varepsilon > 0 \)
\[
\sum_{m=1}^{n} \mathbb{E}[|X_{n,m}|^2; |X_{n,m}| > \varepsilon] = n \mathbb{E}[|X_1/\sqrt{n}|^2; |X_1/\sqrt{n}| > \varepsilon]
= \mathbb{E}[|X_1|^2; |X_1| > \varepsilon\sqrt{n}] \to 0,
\]
by (DOM) and \(\mathbb{E}[X_1^2] < +\infty \).

Proof: Letting \(\phi_{n,m} \) be the CF of \(X_{n,m} \) and \(\sigma_{n,m}^2 = \mathbb{E}[X_{n,m}^2] \). It suffices to prove
\[
\prod_{m=1}^{n} \phi_{n,m}(t) \to e^{-t^2/2}.
\]
We will show this by proving two claims.

CLAIM 9.10
\[
\left| \prod_{m=1}^{n} (1 - t^2 \sigma_{n,m}^2/2) - e^{-t^2/2} \right| \to 0.
\]

CLAIM 9.11
\[
\left| \prod_{m=1}^{n} \phi_{n,m}(t) - \prod_{m=1}^{n} (1 - t^2 \sigma_{n,m}^2/2) \right| \to 0.
\]

1. Claim 9.10. Note that
\[
\sigma_{n,m}^2 \leq \varepsilon^2 + \mathbb{E}[|X_{n,m}|^2; |X_{n,m}| > \varepsilon],
\]
so by the second condition we have \(\max_{1 \leq m \leq n} \sigma_{n,m}^2 \to 0 \) (where the maximum over the second term is bounded by its sum). By the first condition,
\[
\sum_{m=1}^{n} -t^2 \sigma_{n,m}^2/2 \to -t^2/2.
\]
The result follows from Lemma 9.2 (or Lemmas 9.1 and 9.4).

2. Claim 9.11.
By Lemma 9.3 above (this calculation explains why we need the more sophisticated error term; o.w. the \(\varepsilon \) would not come out),
\[
|\phi_{n,m}(t) - (1 - t^2 \sigma_{n,m}^2/2)|
\leq \mathbb{E}[|tX_{n,m}|^3 \wedge 2|tX_{n,m}|^2]
\leq \mathbb{E}[|tX_{n,m}|^3; |X_{n,m}| \leq \varepsilon] + \mathbb{E}[2|tX_{n,m}|^2; |X_{n,m}| > \varepsilon]
\leq \varepsilon t^3 \mathbb{E}[|X_{n,m}|^2; |X_{n,m}| \leq \varepsilon] + 2t^2 \mathbb{E}[|X_{n,m}|^2; |X_{n,m}| > \varepsilon].
Note that both terms on the LHS are bounded by 1 in absolute value (for \(n \) large enough by the max bound above). (Note this is not uniform in \(t \), but for any fixed \(t \) one can choose \(n \) large enough so that the norm is less than 1.) So the sum over \(m \) converges to 0 and the claim follows from Lemma 9.1.

3.1 Examples

A good example of a triangular array is the following, which we studied as an application of Chebyshev’s inequality.

EX 9.12 (Random permutations) Any permutation can be decomposed into cycles. E.g., if \(\pi = [3, 9, 6, 8, 2, 1, 5, 4, 7] \), then \(\pi = (136)(2975)(48) \). In fact, a uniform permutation can be generated by following a cycle until it closes and starting from the smallest unassigned element, and so on. Let \(X_{n,k} \) be the indicator that the \(k \)-th element in this construction precedes the closure of a cycle. E.g., we have \(X_{9,3} = X_{9,7} = X_{9,9} = 1 \). The construction above implies that the \(X_{n,k} \)'s are independent and

\[
P[X_{n,j} = 1] = \frac{1}{n - j + 1}.
\]

That is because only one of the remaining elements closes the cycle. (To prove independence formally, show by induction on \(j \) that

\[
P[X_{n,i} = x_{n,i}, \forall i \leq j] = \prod_{i=1}^{j} P[X_{n,i} = x_{n,i}].
\]

Letting \(S_n \) be the number of cycles in \(\pi \) we have

\[
\mathbb{E}[S_n] = \sum_{j=1}^{n} \frac{1}{n - j + 1} \sim \log n,
\]

and

\[
\text{Var}[S_n] = \sum_{j=1}^{n} \text{Var}[X_{n,j}] = \sum_{j=1}^{n} \left(\frac{1}{n - j + 1} - \frac{1}{(n - j + 1)^2} \right) \sim \log n.
\]

Then we have

\[
\frac{S_n}{\log n} \to p 1 \quad \text{in fact} \quad \frac{S_n - \log n}{(\log n)^{1/2+\varepsilon}} \to p 0,
\]

by Chebyshev’s inequality.
On the other hand, defining
\[Z_{n,j} = \frac{X_{n,j} - (n - j + 1)^{-1}}{\sqrt{\log n}}, \]
we get \(\mathbb{E}[Z_{n,j}] = 0 \), \(\sum_{j=1}^{n} \mathbb{E}[Z_{n,j}^2] \to 1 \), and for \(\varepsilon > 0 \)
\[\sum_{j=1}^{n} \mathbb{E}[|Z_{n,j}|^2; |Z_{n,j}| > \varepsilon] \to 0, \]
since the sum is 0 as soon as \((\log n)^{-1/2} < \varepsilon \). (Note that \((n - j + 1)^{-1} \leq 1 \).) Hence,
\[\frac{S_n - \log n}{\sqrt{\log n}} \Rightarrow Z, \]
where \(Z \sim N(0,1) \).

4 Law of rare events

4.1 First proof

THM 9.13 (Law of rare events) For each \(n \), let \(X_{n,m}, 1 \leq m \leq n \), be independent with \(\mathbb{P}[X_{n,m} = 1] = p_{n,m} \) and \(\mathbb{P}[X_{n,m} = 0] = 1 - p_{n,m} \) and \(\mathbb{P}[X_{n,m} \geq 2] = \varepsilon_{n,m} \). Suppose
1. \(\sum_{m=1}^{n} p_{n,m} \to \lambda > 0 \).
2. \(\max_{1 \leq m \leq n} p_{n,m} \to 0 \).
3. \(\sum_{m=1}^{n} \varepsilon_{n,m} \to 0 \).

Then
\[S_n = \sum_{m=1}^{n} X_{n,m} \Rightarrow Z, \]
as \(n \to \infty \) where \(Z \sim \text{Poi}(\lambda) \).

Proof: Under the last assumption, the probability that any of the \(X_{n,m} \)'s is \(\geq 2 \) goes to 0 as \(n \to +\infty \). Hence, by the converging together lemma (proved in homework), it suffices to consider the case \(\varepsilon_{n,m} = 0 \).

1. We first compute the moment-generating function of the Poisson distribution. Note that
\[\phi_Z(t) = \mathbb{E}[e^{itZ}] = \sum_{k \geq 0} \frac{e^{-\lambda} \lambda^k}{k!} e^{itk} = e^{-\lambda} e^{e^{it} \lambda} = \exp(\lambda(e^{it} - 1)). \]
2. We compute the moment-generating function of a Bernoulli. Note that
\[\phi_X(n,m)(t) = \mathbb{E}[e^{itX_{n,m}}] = (1 - p_{n,m}) + p_{n,m}e^{it} = 1 + p_{n,m}(e^{it} - 1). \]

3. Since \(\sum_{m=1}^{n} p_{n,m} \rightarrow \lambda \), it suffices to prove
\[\left| \exp \left(\sum_{m=1}^{n} p_{n,m}(e^{it} - 1) \right) - \prod_{m=1}^{n} [1 + p_{n,m}(e^{it} - 1)] \right| \rightarrow 0. \]

Note that
\[|\exp(p(e^{it} - 1))| = \exp(\text{Re}(e^{it} - 1)) = \exp(\cos t - 1) \leq 1 \]
and
\[|1 + p(e^{it} - 1)| = |(1 - p) + pe^{it}| \leq 1, \]
for \(p \in [0, 1] \). So from Lemmas 9.1 and 9.4 above, using that \(\max_{1 \leq m \leq n} p_{n,m} \leq 1/2 \) and \(|e^{it} - 1| \leq 2 \),
\[\left| \exp \left(\sum_{m=1}^{n} p_{n,m}(e^{it} - 1) \right) - \prod_{m=1}^{n} [1 + p_{n,m}(e^{it} - 1)] \right| \leq \sum_{m=1}^{n} |\exp(p_{n,m}(e^{it} - 1)) - [1 + p_{n,m}(e^{it} - 1)]| \]
\[\leq \sum_{m=1}^{n} p_{n,m}^{2} |e^{it} - 1|^{2} \]
\[\leq 4 \left(\max_{1 \leq m \leq n} p_{n,m} \right) \sum_{m=1}^{n} p_{n,m} \]
\[\rightarrow 0. \]

EX 9.14 A typical application of the law of rare events is to approximate a binomial. Assume you have 365 students in class. The probability that none of them has their birthday today is roughly \(e^{-1} \).

4.2 Rate of convergence

Recall the following.
THM 9.15 The following are equivalent:
1. \(F_{X_n}(x) \to F_X(x) \) for all points of continuity of \(F_X \).
2. \(\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \) for all \(f \in C_b(\mathbb{R}) \).
3. \(\mathbb{E}[e^{itX_n}] \to \mathbb{E}[e^{itX}] \) for all \(t \in \mathbb{R} \).

There are several ways of measuring how fast weak convergence occurs. For two PMs \(\mu, \nu \), the following definition gives a natural notion of distance
\[
\|\mu - \nu\|_D = \sup_{f \in \mathcal{D}} \left| \int f(x)\mu(dx) - \int f(x)\nu(dx) \right|
\]
where \(\mathcal{D} \) is a class of functions. The choice \(\mathcal{D} = \{ f : f = 1_{(-\infty, x]}, x \in \mathbb{R} \} \) leads to the Kolmogorov-Smirnov distance.

For the record, the following is a standard result refining the CLT. The proof is in [D].

THM 9.16 (Berry-Esseen theorem) Let \((X_n)_n \) be IID with \(\mathbb{E}[X_1] = 0 \), \(\mathbb{E}[X_1^2] = \sigma^2 \), and \(\mathbb{E}[X_1^3] = \rho < \infty \). If \(F_n \) is the DF of \((X_1 + \cdots + X_n)/\sigma \sqrt{n} \) and \(F \) is the DF of the standard normal, then
\[
\sup_x |F_n(x) - F(x)| \leq \frac{3\rho}{\sigma^3 \sqrt{n}}.
\]

For the Poisson convergence theorem, we will use a stronger notion of distance.

DEF 9.17 (Total variation distance) Let \(\mu, \nu \) be probability measure on \((\Omega, \mathcal{F}) \). The total variation distance between \(\mu \) and \(\nu \) is defined as
\[
\|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{F}} |\mu(A) - \nu(A)|.
\]
Note this corresponds to taking \(\mathcal{D} = \{ f : f = 1_A, A \in \mathcal{F} \} \).

In the countable case, we give an equivalent definition.

LEM 9.18 Assume \(\Omega = S \) is countable and \(\mathcal{F} = 2^S \). Then
\[
\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \nu(\omega)|.
\]

Proof: By the triangle inequality, for any \(A \subseteq \Omega \)
\[
\sum_{\omega \in \Omega} |\mu(\omega) - \nu(\omega)| \geq |\mu(A) - \nu(A)| + |\mu(A^c) - \nu(A^c)| = 2|\mu(A) - \nu(A)|,
\]
with equality when \(A = \{ \omega : \mu(\omega) \geq \nu(\omega) \} \).
4.2.1 Poisson convergence by the coupling method

We prove the following refinement of the Poisson convergence theorem.

THM 9.19 For some n, let $X_{n,m}$, $1 \leq m \leq n$, be independent with $\mathbb{P}[X_{n,m} = 1] = p_{n,m}$ and $\mathbb{P}[X_{n,m} = 0] = 1 - p_{n,m}$. Then

$$\|\mu_{S_n} - \mu_Z\|_{TV} \leq \sum_{m=1}^{n} p_{n,m}^2,$$

where $S_n = \sum_{m=1}^{n} X_{n,m}$ and $Z \sim \text{Poi}(\lambda = \sum_{m \leq n} p_{n,m})$.

We will use coupling to prove the previous theorem. We restrict ourselves to a countable space $\Omega = S$ and $\mathcal{F} = 2^S$. We let $\Delta(S)$ be the set of all PMs on S.

DEF 9.20 (Coupling of RVs) A coupling of $\mu, \nu \in \Delta(S)$ is a pair of S-valued RVs $(X, Y) \in S^2$ (defined on a joint probability space) such that $X \sim \mu$ and $Y \sim \nu$.

EX 9.21 Let $S = \{0, 1\}$. Assume $\mu = \nu$. Then $X \sim \nu$, $Y \sim \nu$ independent defines a coupling. So does $X = Y$. If $\mu \neq \nu$, the latter is not possible. In order to maximize the probability that $\mathbb{P}[X = Y]$ one can choose $\mathbb{P}[X = Y = \omega] = \mu(\omega) \land \nu(\omega)$, $\mathbb{P}[X = 1, Y = 0] = (\nu(0) - \mu(0))_+$, and $\mathbb{P}[X = 0, Y = 1] = (\mu(0) - \nu(0))_+$.

The following lemma gets us closer to our goal.

LEM 9.22 (Coupling lemma) Let (X, Y) be any coupling of $\mu, \nu \in \Delta(S)$. Then

$$\|\mu - \nu\|_{TV} \leq \mathbb{P}[X \neq Y].$$

Proof: Note

$$\mu(s) = \mathbb{P}[X = s] = \mathbb{P}[X = s, X \neq Y] + \mathbb{P}[X = s, Y = s] \leq \mathbb{P}[X = s, X \neq Y] + \mathbb{P}[Y = s] \leq \mathbb{P}[X = s, X \neq Y] + \nu(s).$$

Similarly

$$(\nu(s) - \mu(s))_+ \leq \mathbb{P}[Y = s, X \neq Y],$$

so

$$|\mu(s) - \nu(s)| \leq \mathbb{P}[X = s, X \neq Y] + \mathbb{P}[Y = s, X \neq Y].$$
Summing over y gives the result. (We also give an optimal coupling. Note that)

$$1 = \sum_{\omega \in \Omega} [\mu(\omega) \land \nu(\omega) + (\mu(\omega) - \nu(\omega))^+] = \sum_{\omega \in \Omega} [\mu(\omega) \land \nu(\omega) + (\nu(\omega) - \mu(\omega))^+],$$

so that

$$\sum_{\omega \in \Omega} \mu(\omega) \land \nu(\omega) = 1 - \|\mu - \nu\|_{TV}.$$

Consider the following sub-intervals of $(0, 1)$. Divide up $(0, 1 - \|\mu - \nu\|_{TV})$ into disjoint intervals I_ω of length $\mu(\omega) \land \nu(\omega)$. Similarly, divide up $(1 - \|\mu - \nu\|_{TV}, 1)$ into disjoint intervals J_ω (respectively K_ω) of length $\mu(\omega)$ (respectively $\nu(\omega)$). Then a coupling achieving $\|\mu - \nu\|_{TV} = \mathbb{P}[X \neq Y]$ is obtained by picking U uniformly at random from $(0, 1)$ and assigning $X = Y = \omega$ if $U \in I_\omega$, or $X = \omega_1, Y = \omega_2$ if $U \in J_{\omega_1} \cap K_{\omega_2}$.)

We come back to the proof of the theorem.

Proof: By the coupling lemma, it suffices to find a coupling with high agreement probability. For each $1 \leq m \leq n$, we define

$$\mathbb{P}[X_{n,m} = x, Y_{n,m} = y] = \begin{cases}
1 - p_{n,m} & \text{if } x = y = 0, \\
e^{-p_{n,m} - 1 + p_{n,m}} & \text{if } x = 1, y = 0, \\
e^{-p_{n,m} \frac{p_{n,m}^y}{y!}} & \text{if } x = 1, y \geq 1.
\end{cases}$$

The marginal of $X_{n,m}$ is Bernoulli with parameter $p_{n,m}$ and the marginal of $Y_{n,m}$ is Poisson with parameter $p_{n,m}$. (The goal is to make them as close as possible in distribution.) Therefore

$$Z =_d T_n = \sum_{1 \leq m \leq n} Y_{n,m} \sim \text{Poi}(\lambda).$$
We compute the disagreement probability. Note
\[
P[S_n \neq T_n] \leq \sum_{m \leq n} P[X_n,m \neq Y_n,m]
\]
\[
= \sum_{m \leq n} [e^{-p_{n,m}} - 1 + p_{n,m} + P[Y_n,m \geq 2]]
\]
\[
= \sum_{m \leq n} [e^{-p_{n,m}} + p_{n,m} - P[Y_n,m \leq 1]]
\]
\[
= \sum_{m \leq n} [e^{-p_{n,m}} + p_{n,m} - e^{-p_{n,m}} - p_{n,m}e^{-p_{n,m}}]
\]
\[
= \sum_{m \leq n} p_{n,m}[1 - e^{-p_{n,m}}]
\]
\[
\leq \sum_{m \leq n} p_{n,m}^2.
\]

\[
\text{EX 9.23 (Poisson approximation to the binomial)} \quad \text{Assume } p_{n,m} = \lambda/n \text{ for all } m. \text{ Then}
\]
\[
\|\text{Bin}(n, \lambda/n) - \text{Poi}(\lambda)\|_{TV} \leq \frac{\lambda^2}{n}.
\]

4.3 Example with dependence

\[
\text{EX 9.24 (Matching)} \quad \text{Let } S_n = \sum_{m=1}^n X_{n,m} \text{ be the number of fixed points in a}
\]
\[
\text{uniform random permutation, where } X_{n,m} = 1 \text{ if } m \text{ is a fixed point. We want to}
\]
\[
\text{compute } P[S_n = k]. \text{ Note that we cannot apply the previous theorem because of}
\]
\[
\text{the lack of independence. However, a Poisson limit with } \lambda = 1 \text{ seems natural. We}
\]
\[
\text{will need the following lemma.}
\]

\[
\text{LEM 9.25 (Inclusion-exclusion formula)} \quad \text{Let } A_1, A_2, \ldots, A_n \text{ be events and } A = \cup_{i=1}^n A_i. \text{ Then}
\]
\[
P[A] = \sum_{i=1}^n P[A_i] - \sum_{i<j} P[A_i \cap A_j]
\]
\[
+ \sum_{i<j<k} P[A_i \cap A_j \cap A_k] - \cdots + (-1)^{n-1}P[\cap_{i=1}^n A_i].
\]

(Moreover, truncating the sum at any term gives an upper bound if the next term is
negative and a lower bound if the next term is positive.)
Proof: Expand $1_A = 1 - \prod_{i=1}^n (1 - 1_{A_i})$ and take expectation. See [D].

Let $A_m = \{X_{n,m} = 1\}$. Then

$$\mathbb{P}[A] = n \frac{(n-1)!}{n!} - \frac{(n-2)!}{n!} \left(\frac{n}{2}\right) - \frac{(n-3)!}{n!} \left(\frac{n}{3}\right) - \cdots$$

So

$$P[S_n > 0] = \sum_{m=1}^{n} \frac{(-1)^{m-1}}{m!},$$

and

$$P[S_n = 0] = \sum_{m=0}^{n} \frac{(-1)^m}{m!}.$$

Note that the first two terms cancel each other out. Hence

$$\left|P[S_n = 0] - e^{-1}\right| = \left|\sum_{m=n+1}^{+\infty} \frac{(-1)^m}{m!}\right| \leq \frac{1}{(n+1)!} \left|\sum_{k=0}^{\infty} \frac{1}{(n+2)^k}\right|$$

$$= \frac{1}{(n+1)!} \left(1 - \frac{1}{n+2}\right)^{-1}.$$

Finally,

$$\mathbb{P}[S_n = k] = \binom{n}{k} \frac{1}{n(n-1) \cdots (n-k+1)} \mathbb{P}[S_{n-k} = 0]$$

$$= \frac{1}{k!} \mathbb{P}[S_{n-k} = 0]$$

$$\rightarrow e^{-1}.$$

References